
Physics 505 Electricity and Magnetism Fall 2003
Prof. G. Raithel

Problem Set 10

Maximal score: 30 Points

1. Jackson, Problem 6.8 6 Points

Strategy. We first calculate the volume and surface charge densities that correspond to the electric polar-
ization of the sphere. Multiplying the charge densities with the local velocity, we then obtain the volume
and surface current density. The current densities will be equivalent to that of a (static) magnetization M.
The corresponding magnetostatic potential is obtained by consideration of the magnetic charge density that
corresponds to M.

Polarization (Eq. 4.57 in Jackson):

P = 3ε0
εr − 1
εr + 2

E0x̂ =: αE0x̂

Volume charge density: −∇ ·P = 0. Volume current density = 0.

Surface charge density: σ = n̂ ·P = r̂ ·P. The surface current density,

K = σ(x)v(x) = (r̂ ·P)ωẑ× rr̂ = M× r̂ ,

equals that of an effective magnetization

M(x) = (r ·P)ωẑ = αE0ω(r · x̂)ẑ = αE0ωxẑ

The magnetic charges that correspond to M are

ρm = −∇ ·M = 0

σm = n̂ ·M = r̂ ·M = αE0ωx(ẑ · r̂) = αE0ωx cos θ

= αE0ωa sin θ cos θ cosφ

= −αE0ωa

√
8π

15
1
2

[Y21 + Y ∗
21]

=: β [Y21 + Y ∗
21] = β [Y21 − Y2−1] (1)

Thus, the magnetic potential
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Φm(x) =
1
4π

∫
σ(x′)da′

|x− x′|

=
a2β

4π

∑

l,m

4π

2l + 1
rl
<

rl+1
>

Ylm(θ, φ)
∫

Y ∗
lm(θ′, φ′) [Y21(θ′, φ′)− Y2−1(θ′, φ′)] d cos θ′dφ′

=
a2β

4π

4π

5
r2
<

r3
>

[Y21(θ, φ) + Y ∗
21(θ, φ)]

=
a2β

4π

4π

5
r2
<

r3
>

[
−2

√
15
8π

sin θ cos θ cosφ

]

=
αE0ωa3

5
r2
<

r3
>

sin θ cos θ cosφ

=
αE0ωa

5
r2
<

r3
>

xz

r2
=

αE0ωa

5
xz

{
a5

r5 , a < r
1 , a ≥ r

=
3
5
ε0

εr − 1
εr + 2

E0ωxz

(
a

r>

)5

q.e.d.
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2. Jackson, Problem 6.15 6 Points

The Hall effect describes an electric field linear in the current density j up to a certain order in H. Here,
the maximum order in H is specified to be two. Thus, forming all quantities that “look like” vectors, the
electric field could be of the form

E = aj + bH× j + c(H ·H)j + d(j ·H)H .

A term ∝ H × (H × j) is not needed, because such a term would be a linear combination of the last two
terms of the above. Now, to see which terms are in principle possible we check the transformation behavior
of the terms.

a): Parity upon spatial inversion: E is odd (true vector = polar vector).

a-term: allowed, because j is odd.

b-term: allowed, because the cross product of an even vector (H) with an odd one (j) is odd.

c-term: allowed, because H ·H is an even scalar, which, when multiplied with an odd vector (j) results in
an odd vector.

d-term: allowed, because H · j is an odd scalar, which, when multiplied with an even vector (H) results in
an odd vector.

Thus, all terms are allowed under spatial inversion. Relabeling of the constants yields the equation in
Problem 6.15 part a).

b): Parity upon time reversal: E is a time-even vector.

a-term: not allowed, because j is t-odd.

b-term: allowed, because the cross product of a t-odd vector (H) with another t-odd vector (j) is t-even.

c-term: not allowed, because H ·H is a t-even scalar, which, when multiplied with a t-odd vector (j) results
in a t-odd vector.

d-term: not allowed, because H · j is a t-odd scalar, which, when multiplied with a t-odd vector (H) results
in a t-odd vector.

Thus, only the usual b-term is allowed under time reversal.

Note 1. In analogy with the elaborations on page 272 of Jackson, terms with arbitrary-order time derivatives
of j may be added, some of which would survive. Seemingly, Jackson only had a static situation in mind.

Note 2. The Ohm-type term E = aj does not survive, because dissipation is not invariant under time
reversal. To accommodate the (phenomenological) Ohm’s law anyways, one can define a as a t-odd scalar
resistivity....
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3. Jackson, Problem 6.18 6 Points

a): Use

A(x) =
g

4π

∫ z′=0

z′=−∞

ẑdz′ × (x− ẑz′)
|x− ẑz′|3

Note ẑdz′×(x− ẑz′) = dz′(−x̂y+ ŷx) = dz′ r sin θφ̂ and |x− ẑz′| = r2+z′2−2rz′ cos θ. Thus, A is azimuthal
and

A(x) = φ̂
g

4π
r sin θ

∫ z′=0

z′=−∞

dz′
√

r2 − 2rz′ cos θ + z′2
3 = φ̂

g

4π
r sin θ

[
1− cos θ

r2 sin2 θ

]
= φ̂

g

4πr

1− cos θ

sin θ
q.e.d.

b): B = ∇×A for azimuthal A is

B(x) = r̂
1

r sin θ

∂

∂θ
sin θAφ + θ̂

−1
r

∂

∂r
rAφ

For the A from part a) the second term vanishes and

B(x) = r̂
g

4πr2
q.e.d.

c): Case θ < π/2, upward flux.

∫
B · n̂da =

∫ 1

cos θ

∫ 2π

φ=0

B · r̂r2d cos θdφ =
g

4π
2π [cos θ]1cos θ =

g

2
(1− cos θ)

Case θ > π/2, upward flux

∫
B · n̂da =

∫ cos θ

−1

∫ 2π

φ=0

B · (−r̂)r2d cos θdφ = −g

2
[cos θ]cos θ

−1 = −g

2
(cos θ + 1)

This does not count any flux inside the string.

d): For any θ, it is

∮
A · dl =

∫ 2π

φ=0

g

4πr

1− cos θ

sin θ
r sin θdφ =

g

2
(1− cos θ)

In the region θ < π/2, this is the same as in part c), while for θ > π/2 there is a constant difference of

∮
A · dl−

∫
B · n̂da = g .

Obviously, the difference g is the (upward) magnetic flux through the string, which is included in part d)
but has been neglected in part c).
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4. Jackson, Problem 7.3 6 Points Only the case of E perpendicular to the plane of incidence is to be
considered.

The geometry of the problem is shown in the figure. Note that the internal up- and downward traveling
waves with respective electric fields E+ and E− account for reflections up to infinite order.

i0

i

E0

B0

Er

Br

E+

E-

Et

Bt

i0

i0

i

ii

Refractive index
n (>1)

n

1

1

2

B+
B-

d

Figure 1: Geometry of the problem.

A sufficient set of equations is obtained as follows. Boundary conditions at point 1:

Equation 1. Tangential E-component:

E+ + E− = E0 + Er

Equation 2. Tangential H-component: cos(i0) [H0 −Hr] = cos(i) [H+ −H−]. Since H = 1
µB =

√
εµ

µ E and
for non-permeable media µ = µ0, H = n

c0µ0
E with refractive index n and vacuum velocity of light c0,

n cos(i0) [E0 − Er] = cos(i) [E+ − E−]

Boundary conditions at point 2: Defining φ = kd
cos(i) , the internal electric-field amplitudes at location 2 are

E+ exp(iφ) and E− exp(−iφ) for the up- and downgoing waves, respectively. Thus,

Equation 3. Tangential E-component:

E+ exp(iφ) + E− exp(−iφ) = Et
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Equation 4. Tangential H-component:

cos(i) [E+ exp(iφ)− E− exp(−iφ)] = Etn cos(i0)

Solution: The first two equations can be used to eliminate E+ and E−,

E+ =
1
2

[
E0 + Er − n cos(i0)

cos(i)
(Er − E0)

]

E− =
1
2

[
E0 + Er +

n cos(i0)
cos(i)

(Er − E0)
]

;

call this Equation 5. Then, Equation 3 minus 1
n cos(i0)

× Equation 4 yields Equation 6):

E+ exp(iφ)(1− 1
α

) + E− exp(−iφ)(1 +
1
α

) = 0

where α = n cos(i0)
cos(i) . Inserting 5 into 6 then yields

Er

E0
=

(α2 − 1)(exp(2iφ)− 1)
(α− 1)2 exp(2iφ)− (α + 1)2

Equation 3 plus 1
n cos(i0)

× Equation 4 yields

Et

E0
=

−4α exp(iφ)
(α− 1)2 exp(2iφ)− (α + 1)2

a): For i0 less than the critical angle of total internal reflection, i0 < sin−1
(

1
n

)
, we find the intensity

reflection and transmission coefficients, R and T ,

R =
Er

E0

(
Er

E0

)∗
=

2(α2 − 1)2(1− cos(2φ))
(α + 1)4 + (α− 1)4 − 2(α + 1)2(α− 1)2 cos(2φ)

T =
Et

E0

(
Et

E0

)∗
=

16α2

(α + 1)4 + (α− 1)4 − 2(α + 1)2(α− 1)2 cos(2φ)

Note that R + T = 1 and that both φ = kd
cos(i) and α = n cos(i0)

cos(i) are real.

For i0 > sin−1
(

1
n

)
, write cos(i) = i

√
(n sin(i0))2 − 1 (purely imaginary),

β := exp(2iφ) = exp

(
2kd√

(n sin(i0))2 − 1

)
(real),
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γ :=
α

−i
=

n cos(i0)√
(n sin(i0))2 − 1

(real),

to find

T =
Et

E0

(
Et

E0

)∗
=

16γ2β

(1− γ2)2(1− β)2 + 4γ2(1 + β)2

b: The transmitted power in the case i0 > sin−1
(

1
n

)
can be sketched by considering the limiting cases

d → 0: Then, β → 1 and T → 1.

d À λ0 (the vacuum wavelength): Then, β →∞ and T → 16γ2

β(1+γ2)2 =
(

4γ
1+γ2

)2

exp
(
− 4πd

λ0

√
(n sin(i0))2−1

)
.
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5. Jackson, Problem 7.4 6 Points

a): Use ε = εb + i σ
ω (Eq. 7.57) and Eq. 7.39 for i = 0:

E′′
0

E0
=

n− n′

n + n′
=

1− n′

1 + n′
with n′ =

√
1
ε0

(
εb + i

σ

ω

)

Define r and φ via n′ =
√

r exp(iφ/2). Then,

r =
1
ε0

√
ε2b +

(σ

ω

)2

φ = tan−1

(
σ

ωεb

)

Note that εb > 0 and σ ≥ 0; thus, 0 ≤ φ ≤ π
2 . Then,

E′′
0

E0
=

1− n′

1 + n′
=

1− r − 2i
√

r sin
(

φ
2

)

1 + r + 2
√

r cos
(

φ
2

)

Define a and δ via the amplitude reflectivity E′′0
E0

= a exp(iδ), where

a =

√
(1− r)2 + 4r sin2

(
φ
2

)

1 + r + 2
√

r cos
(

φ
2

)

δ =





tan−1

(
−2
√

r sin(φ
2 )

1−r

)
, 1− r > 0

π + tan−1

(
−2
√

r sin(φ
2 )

1−r

)
, 1− r < 0

b): Good conductor. In this case, σ → ∞ and εb finite. Then, φ → π
2 and r → σ

ε0ω À 1, and 1 − r < 0.
Take the corresponding result from part a) to find

δ → π

a → 1−
√

2
ε0ω

σ

The significance of δ = π is that the electric field undergoes a phase jump of π upon refection. Since ε0ω
σ ¿ 1,

the intensity reflectivity R = a2 → 1− 2
√

2 ε0ω
σ .

Also, the skin depth s =
√

2
µσω , which for µ = µ0 and vacuum velocity of light c0 = 1√

µ0ε0
is s = c0

√
2ε0
σω .

Thus,
√

2ε0ω
σ = sω

c0
and
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R → 1− 2
sω

c0
q.e.d.

Poor conductor. In this case, σ → 0. Then, φ = 0, and

a → |1− r|
1 + r + 2

√
r

=
|√r − 1|√

r + 1
=
|n′ − 1|
n′ + 1

δ →
{

0 , n′ =
√

r < 1
π , n′ =

√
r > 1

We thus recover the “normal” result Eq. 7.39 for reflection at an optically less dense (1st line) and an
optically denser (2nd line) dielectric medium.
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