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Midterm exam

Problem 1 15 Points

a): Insert the closure relation

δ(x− x′) =
∑
m

2
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)
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and the expansion

G(x,x′) =
∑
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)

into the given equation for the Green’s function and execute the ∂2/∂x2-part of the Laplace operator to
obtain

∑
m

[
d2

dy2
Am(y|x′, y′)− m2π2

L2
Am(y|x′, y′)

]
sin

(mπx

L

)
=

∑
m

[
−8π

L
δ(y − y′) sin

(
mπx′

L

)]
sin

(mπx

L

)

The resultant equation for the reduced Green’s function,

gm(y, y′) =
Am(y|x′, y′)
− 8π

L sin
(

mπx′
L

) ,

is

{
d2

dy2
− m2π2

L2

}
gm(y, y′) = δ(y, y′)

Since the solutions of the homogeneous equation are exponentials, and since the boundary conditions are
gm(y, y′) = 0 for y or y′ equal to 0 or L, the reduced Green’s function is of the form

gm(y, y′) = C sinh
(mπy<
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)
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(
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)

where y< = min(y, y′) and y> = max(y, y′). To find the constant C, we integrate around the δ-function and
find, for infinitesimal ε,
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C = − L
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where we have used sinh(x) cosh(y) + cosh(x) sinh(y) = sinh(x + y). Inserting the results, it is
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G(x,x′) =
∞∑
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b): The normalized eigenfunctions of

{
∂2

∂x2
+

∂2

∂y2
+ λmn

}
ψmn(x, y) = 0

are ψmn(x, y) = 2
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(
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)
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(
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)
, and the corresponding eigenvalues are λmn =

(
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)2 +
(
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)2. Using
Eq. 3.160 of the textbook, we find
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∑
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c): For zero charge density and given potential on the boundary, the potential is

Φ(x, y) = − 1
4π

∫

∂S

V (x′, y′)
∂G(x, y, x′, y′)

∂n′
dl′

For the given case, we only need ∂G(x,y,x′,y′)
∂n′ on the left side of the square, where it is

∂G(x, y, x′, y′)
∂n′

= − ∂G(x, y, x′, y′)
∂x′

∣∣∣∣
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Using the result of part b), we have
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Thus,
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∞∑
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Note 1: I have checked that the same answer is obtained when using the result of part a), as expected.
However, when using the Green’s function from part a) one cannot employ any orthogonality condition when
integrating over dy′. As a result, the calculation is lengthy.

Note 2: Due to symmetry, in the result of part a) x and y-variables can be swapped. If the resultant Green’s
function is used for c), a closed result for Φ(x, y) is obtained:

Φ(x, y) =
V0

sinh(3π)
sin

(
3πy

L

)
sinh

(
3π(L− x)

L

)

Note 3: The result of Note 2 can also be obtained by direct variable separation.

Note 4: Some students replaced both δ-functions in part a) with closure relations and expanded the Green’s
function as a double sum. This method essentially is an alternate route to arrive at the eigenfunction
expansion, which is asked for in part b).



Problem 2 15 Points

a): Interior potential (r < a): Φ1 =
∑∞

l=0 Alr
lPl(cos θ)

Exterior potential (a < r < b): Φ2 =
∑∞

l=0

[
Blr

l + Clr
−l−1

]
Pl(cos θ)

There are three boundary conditions: the potential must be zero at r = b, the radial D-field component
must satisfy Dr,2 −Dr,1 = σ at r = a, and the tangential E-field component must satisfy Eθ,2 −Eθ,1 = 0 at
r = a.

The first boundary condition is satisfied by setting

Blb
l + Clb

−l−1 = 0 ⇔ Cl = −Blb
2l+1 .

The second boundary condition reads

Dr,2 −Dr,1 = σ(θ)

−ε2
∂

∂r
Φ2(r, θ)

∣∣∣∣
r=a

+ ε1
∂

∂r
Φ1(r, θ)

∣∣∣∣
r=a

= σ0P1(cos θ)

∞∑

l=0

{
ε1Alla

l−1 − ε2Bl

[
lal−1 + b2l+1(l + 1)a−l−2

]}
Pl(cos θ) = σ0P1(cos θ)

ε1Alla
l−1 − ε2Bl

[
lal−1 + b2l+1(l + 1)a−l−2

]
= σ0δ1,l ∀ l

The third boundary condition,

Eθ,2 − Eθ,1 = 0

− ∂

r∂θ
Φ2(r, θ)

∣∣∣∣
r=a

+
∂

r∂θ
Φ1(r, θ)

∣∣∣∣
r=a

= 0

∞∑

l=1

{
Ala

l−1 + Bl

[−al−1 + b2l+1a−l−2
]} ∂

∂θ
Pl(cos θ) = 0

Ala
l + Bl

[−al + b2l+1a−l−1
]

= 0 ∀ l > 0

is equivalent to Φ2(r, θ)|r=a = Φ1(r, θ)|r=a, except in the case l = 0, in which the continuity of the tangential
field does not provide a condition. Since the potential has to be continuous across surface charges in general,
we extend the last equation to include the case l = 0, making it entirely equivalent with Φ2(r, θ)|r=a =
Φ1(r, θ)|r=a:

Ala
l + Bl

[−al + b2l+1a−l−1
]

= 0 ∀ l

In matrix form, the second and third boundary conditions read

(
ε1la

l−1 −ε2
[
lal−1 + b2l+1(l + 1)a−l−2

]
al

[−al + b2l+1a−l−1
]

)(
Al

Bl

)
=

(
σ0δ1,l

0

)



The determinant

det = la2l−1(ε2 − ε1) + b2l+1a−2(lε1 + (l + 1)ε2) 6= 0 ∀ l .

Thus, Al = Bl = 0 unless l = 1. In the latter case,

A1 =
σ0(b3 − a3)

a3(ε2 − ε1) + b3(2ε2 + ε1)

B1 =
−σ0a

3

a3(ε2 − ε1) + b3(2ε2 + ε1)

The potential thus is

Φ1(r, θ) =
σ0(b3 − a3)

a3(ε2 − ε1) + b3(2ε2 + ε1)
r cos θ , r < a

Φ2(r, θ) =
−σ0a

3

a3(ε2 − ε1) + b3(2ε2 + ε1)

[
r − b3

r2

]
cos θ , a < r < b

b): The radial component of the electric field, Er = − ∂
∂r Φ(r, θ), is

Er,1(r, θ) = − σ0(b3 − a3)
a3(ε2 − ε1) + b3(2ε2 + ε1)

cos θ , r < a

Er,2(r, θ) =
σ0a

3

a3(ε2 − ε1) + b3(2ε2 + ε1)

[
1 + 2

b3

r3

]
cos θ , a < r < b

The tangential component of the electric field, Eθ = − ∂
r∂θ Φ(r, θ), is

Eθ,1(r, θ) =
σ0(b3 − a3)

a3(ε2 − ε1) + b3(2ε2 + ε1)
sin θ , r < a

Eθ,2(r, θ) =
−σ0a

3

a3(ε2 − ε1) + b3(2ε2 + ε1)

[
1− b3

r3

]
sin θ , a < r < b

Note that the inner field is a homogeneous field, and the outer field is the superposition of a homogeneous
field and a dipole field.

c): The macroscopic polarization is P(r, θ) = (εi − ε0)Ei(r, θ), with i = 1 or i = 2.

d): Due the absence of free volume charge densities, the volume polarization charge is zero (ρpol = −∇·P =
−(1− ε0/ε)∇ ·D = (ε0/ε− 1)ρfree = 0).

Explicit calculation from the fields is not required, but it could proceed as follows:

ρpol = −∇ ·P = −(εi − ε0)∇ ·Ei = −(εi − ε0)
[

1
r2

∂

∂r
(r2Er,i) +

1
r sin θ

∂

∂θ
(sin θEθ,i)

]
,



with i = 1 or i = 2. The result is always zero.

On the surface r = a, the surface polarization charge density is

σpol,r=a = Pr,1 − Pr,2 = (ε1 − ε0)Er,1 − (ε2 − ε0)Er,2

σpol,r=a = σ0 cos θ

(
a3(ε1 − ε2) + b3(3ε0 − ε1 − 2ε2)

a3(ε2 − ε1) + b3(2ε2 + ε1)

)
,

which equals 0 for ε1 = ε2 = ε0 (as required). On the surface r = b, the surface polarization charge density
is

σpol,r=b = Pr,2 − Pr,conductor = (ε2 − ε0)Er,2

σpol,r=b = σ0 cos θ

(
3a3(ε2 − ε0)

a3(ε2 − ε1) + b3(2ε2 + ε1)

)
,

which equals 0 for ε2 = ε0 (as required). The free induced charge density on the conductor is

σfree,r=b = −Dr,2 = −ε2Er,2

σfree,r=b = σ0 cos θ

( −3ε2a
3

a3(ε2 − ε1) + b3(2ε2 + ε1)

)
.

Note 1: The E- and D-fields are zero in the conductor. Application of the respective versions of Gauss’s
law then shows that both the total and the free charges need to add up to zero. This result is guaranteed
by the cos θ-dependence of all involved charge densities.

Note 2: In the conductor region, the E-field is zero. Thus, when accounting for both free and polarization
charges explicitly, all generated multipole moments must vanish. In Note 1 we have already seen that the
monopole moment is zero. Further, due to the cos θ-dependence of all involved charge densities, the only
other multipole moment that could possibly arise in the region r > b is that of a net dipole moment p in
the z-direction. Since pz would produce a field ∝ 1

r3 in the conductor, our results must satisfy the condition
pz =

∑
k pk,z =

∑
4π
3 σkr3

k = 0, where the σk are the pre-factors of the cos θ-terms of the surface charge
densities, and rk are their radii. In the present case, there are two surfaces with free charge, and two with
polarization charge (i.e. k = 1, 2, 3, 4), and the radii are either a or b. A calculation with the above results
shows pz = 0.

Note 3: The case εi = ε0 can also be treated with the Green’s function given in Eq. 3.125 of the textbook;
see also Chapter 3.10.


