Practice Midterm - Solutions

The midterm will be a 120 minute open book, open notes exam. Do all three problems.

1. A two-dimensional problem is defined by a semi-circular wedge with $0 \leq \phi \leq \beta$ and $a \leq \rho \leq b$.

a) For the Dirichlet problem, it is possible to expand the Green's function as

$$
G\left(\rho, \phi ; \rho^{\prime}, \phi^{\prime}\right)=\sum_{m=1}^{\infty} g_{m}\left(\rho, \rho^{\prime}\right) \sin \left(\frac{m \pi \phi}{\beta}\right) \sin \left(\frac{m \pi \phi^{\prime}}{\beta}\right)
$$

Write down the appropriate differential equation that $g_{m}\left(\rho, \rho^{\prime}\right)$ must satisfy.
Note that the expansion in terms of $\sin (m \pi \phi / \beta)$ is designed to satisfy Dirichlet boundary counditions on the straight segments of the wedge. The Green's function equation we wish to solve is

$$
\nabla_{x^{\prime}}^{2} G\left(\rho, \phi ; \rho^{\prime}, \phi^{\prime}\right)=-4 \pi \delta^{2}\left(\vec{x}-\vec{x}^{\prime}\right)=-\frac{4 \pi}{\rho} \delta\left(\rho-\rho^{\prime}\right) \delta\left(\phi-\phi^{\prime}\right)
$$

By completeness, we have

$$
\sum_{m=1}^{\infty} \sin \left(\frac{m \pi \phi}{\beta}\right) \sin \left(\frac{m \pi \phi^{\prime}}{\beta}\right)=\frac{\beta}{2} \delta\left(\phi-\phi^{\prime}\right)
$$

Hence

$$
\begin{equation*}
\nabla_{x^{\prime}}^{2} G\left(\rho, \phi ; \rho^{\prime}, \phi^{\prime}\right)=-\frac{8 \pi}{\beta \rho} \delta\left(\rho-\rho^{\prime}\right) \sum_{m=1}^{\infty} \sin \left(\frac{m \pi \phi}{\beta}\right) \sin \left(\frac{m \pi \phi^{\prime}}{\beta}\right) \tag{1}
\end{equation*}
$$

Using the polar coordinate expression for the Laplacian, we find

$$
\begin{array}{r}
\nabla_{x^{\prime}}^{2} G\left(\rho, \phi ; \rho^{\prime}, \phi^{\prime}\right)=\sum_{m=1}^{\infty}\left[\frac{1}{\rho^{\prime}} \frac{\partial}{\partial \rho^{\prime}} \rho^{\prime} \frac{\partial}{\partial \rho^{\prime}}-\frac{1}{\rho^{\prime 2}}\left(\frac{m \pi}{\beta}\right)^{2}\right] g_{m}\left(\rho, \rho^{\prime}\right) \\
\times \sin \left(\frac{m \pi \phi}{\beta}\right) \sin \left(\frac{m \pi \phi^{\prime}}{\beta}\right)
\end{array}
$$

Comparing this with (1) yields the ODE

$$
\left[\frac{1}{\rho^{\prime}} \frac{\partial}{\partial \rho^{\prime}} \rho^{\prime} \frac{\partial}{\partial \rho^{\prime}}-\frac{1}{\rho^{\prime 2}}\left(\frac{m \pi}{\beta}\right)^{2}\right] g_{m}\left(\rho, \rho^{\prime}\right)=-\frac{8 \pi}{\beta \rho} \delta\left(\rho-\rho^{\prime}\right)
$$

which may be converted into Sturm-Liouville form by multiplying by ρ^{\prime}

$$
\left[\frac{\partial}{\partial \rho^{\prime}} \rho^{\prime} \frac{\partial}{\partial \rho^{\prime}}-\frac{1}{\rho^{\prime}}\left(\frac{m \pi}{\beta}\right)^{2}\right] g_{m}\left(\rho, \rho^{\prime}\right)=-\frac{8 \pi}{\beta} \delta\left(\rho-\rho^{\prime}\right)
$$

b) Solve the Green's function equation for $g_{m}\left(\rho, \rho^{\prime}\right)$ subject to Dirichlet boundary conditions and write down the result for $G\left(\rho, \phi ; \rho^{\prime}, \phi^{\prime}\right)$.
The Dirichlet boundary conditions are that $g_{m}\left(\rho, \rho^{\prime}\right)$ vanish when $\rho^{\prime}=a$ or b, namely $g_{m}(\rho, a)=g_{m}(\rho, b)=0$. For these homogeneous boundary conditions, the Green's function takes the form

$$
g_{m}\left(\rho, \rho^{\prime}\right)=-\frac{8 \pi}{\beta A} u\left(\rho_{<}\right) v\left(\rho_{>}\right)
$$

where $u\left(\rho^{\prime}\right)$ and $v\left(\rho^{\prime}\right)$ are solutions to the homogeneous equation satisfying boundary conditions $u(a)=v(b)=0$, and A is related to the Wronskian by $W(u, v)=$ $-A / \rho^{\prime}$. Noting that the solution to the homogeneous radial equation has the form

$$
g_{m}\left(\rho, \rho^{\prime}\right) \sim \rho^{ \pm m \pi / \beta}
$$

it is easy to write down the appropriate $u\left(\rho^{\prime}\right)$ and $v\left(\rho^{\prime}\right)$

$$
u=\rho^{\prime \frac{m \pi}{\beta}}\left(1-\left(\frac{a}{\rho^{\prime}}\right)^{\frac{2 m \pi}{\beta}}\right) \quad v=\rho^{\prime \frac{m \pi}{\beta}}\left(1-\left(\frac{b}{\rho^{\prime}}\right)^{\frac{2 m \pi}{\beta}}\right)
$$

Computing the Wronskian yields

$$
\begin{aligned}
W=u v^{\prime}-v u^{\prime}= & \frac{m \pi}{\beta \rho^{\prime}} \rho^{\prime \frac{2 m}{\beta}}\left(1-\left(\frac{a}{\rho^{\prime}}\right)^{\frac{2 m \pi}{\beta}}\right)\left(1+\left(\frac{b}{\rho^{\prime}}\right)^{\frac{2 m \pi}{\beta}}\right) \\
& -\frac{m \pi}{\beta \rho^{\prime}} \rho^{\prime \frac{2 m}{\beta}}\left(1-\left(\frac{b}{\rho^{\prime}}\right)^{\frac{2 m \pi}{\beta}}\right)\left(1+\left(\frac{a}{\rho^{\prime}}\right)^{\frac{2 m \pi}{\beta}}\right) \\
= & \frac{1}{\rho^{\prime}}\left(\frac{2 m \pi}{\beta}\right)\left(b^{\frac{2 m \pi}{\beta}}-a^{\frac{2 m \pi}{\beta}}\right)
\end{aligned}
$$

As a result

$$
\begin{aligned}
g_{m}\left(\rho, \rho^{\prime}\right) & =-\frac{4}{m} \frac{\left(\rho_{<} \rho_{>}\right)^{\frac{m \pi}{\beta}}}{b^{\frac{2 m \pi}{\beta}}-a^{\frac{2 m \pi}{\beta}}}\left(1-\left(\frac{a}{\rho_{<}}\right)^{\frac{2 m \pi}{\beta}}\right)\left(1-\left(\frac{b}{\rho_{>}}\right)^{\frac{2 m \pi}{\beta}}\right) \\
& =\frac{4}{m}\left(\frac{\rho_{<}}{\rho_{>}}\right)^{\frac{m \pi}{\beta}} \frac{\left(1-\left(\frac{a}{\rho_{<}}\right)^{\frac{2 m \pi}{\beta}}\right)\left(1-\left(\frac{\rho_{>}}{b}\right)^{\frac{2 m \pi}{\beta}}\right)}{1-\left(\frac{a}{b}\right)^{\frac{2 m \pi}{\beta}}}
\end{aligned}
$$

Combining this with the angular functions yields the final result

$$
\begin{array}{r}
G\left(\rho, \phi ; \rho^{\prime}, \phi^{\prime}\right)=\sum_{m=1}^{\infty} \frac{4}{m}\left(\frac{\rho_{<}}{\rho_{>}}\right)^{\frac{m \pi}{\beta}} \frac{\left(1-\left(\frac{a}{\rho_{<}}\right)^{\frac{2 m \pi}{\beta}}\right)\left(1-\left(\frac{\rho_{>}}{b}\right)^{\frac{2 m \pi}{\beta}}\right)}{1-\left(\frac{a}{b}\right)^{\frac{2 m \pi}{\beta}}} \\
\times \sin \left(\frac{m \pi \phi}{\beta}\right) \sin \left(\frac{m \pi \phi^{\prime}}{\beta}\right)
\end{array}
$$

Note that this has the expected behavior as either $a \rightarrow 0$ or $b \rightarrow \infty$.
2. A conducting spherical shell of inner radius a is held at zero potential. The interior of the shell is filled with electric charge of a volume density

$$
\rho(\vec{r})=\rho_{0}\left(\frac{a}{r}\right)^{2} \sin ^{2} \theta
$$

a) Find the potential everywhere inside the shell. To obtain the potential, we make use of the Green's function for the interior of a conducting sphere

$$
G\left(\vec{x}, \vec{x}^{\prime}\right)=4 \pi \sum_{l, m} \frac{1}{2 l+1} \frac{r_{<}^{l}}{r_{>}^{l+1}}\left(1-\left(\frac{r_{>}}{a}\right)^{2 l+1}\right) Y_{l m}^{*}\left(\Omega^{\prime}\right) Y_{l m}(\Omega)
$$

Actually, because of azimuthal symmetry, we only need the $m=0$ components of the Green's function expansion

$$
G\left(\vec{x}, \vec{x}^{\prime}\right)=\sum_{l} \frac{r_{<}^{l}}{r_{>}^{l+1}}\left(1-\left(\frac{r_{>}}{a}\right)^{2 l+1}\right) P_{l}\left(\cos \theta^{\prime}\right) P_{l}(\cos \theta) \quad+\quad(m \neq 0)
$$

Although the charge density is specified in terms of $\sin ^{2} \theta$, this can be converted into Legendre polynomials. Since $\sin ^{2} \theta=1-\cos ^{2} \theta$, and since $P_{l}(\cos \theta)$ is of degree $(\cos \theta)^{l}$, we see that $\sin ^{2} \theta$ has to be a linear combination of P_{0} and P_{2}. It is not too hard to see that

$$
\sin ^{2} \theta=\frac{2}{3}\left[P_{0}(\cos \theta)-P_{2}(\cos \theta)\right]
$$

We now note that since the surface is held at zero potential the solution in the interior is given by

$$
\begin{aligned}
\Phi(\vec{x})= & \frac{1}{4 \pi \epsilon_{0}} \int \rho\left(\vec{x}^{\prime}\right) G\left(\vec{x}, \vec{x}^{\prime}\right) d^{3} x^{\prime} \\
= & \frac{\rho_{0} a^{2}}{4 \pi \epsilon_{0}} \sum_{l} P_{l}(\cos \theta) \int \frac{2}{3}\left[P_{0}\left(\cos \theta^{\prime}\right)-P_{2}\left(\cos \theta^{\prime}\right)\right] \\
& \quad \times P_{l}\left(\cos \theta^{\prime}\right) \frac{r_{<}^{l}}{r_{>}^{l+1}}\left(1-\left(\frac{r_{>}}{a}\right)^{2 l+1}\right) d r^{\prime} d \phi^{\prime} d\left(\cos \theta^{\prime}\right)
\end{aligned}
$$

By orthogonality of Legendre polynomials, this becomes

$$
\begin{aligned}
& \Phi(\vec{x})=\frac{2 \rho_{0} a^{2}}{3 \epsilon_{0}}\left[P_{0}(\cos \theta) \int_{0}^{a} \frac{1}{r_{>}}\left(1-\left(\frac{r_{>}}{a}\right)\right) d r^{\prime}\right. \\
&\left.-\frac{1}{5} P_{2}(\cos \theta) \int_{0}^{a} \frac{r_{<}^{2}}{r_{>}^{3}}\left(1-\left(\frac{r_{>}}{a}\right)^{5}\right) d r^{\prime}\right] \\
&=\frac{2 \rho_{0} a^{2}}{3 \epsilon_{0}}\left[P_{0}(\cos \theta) \int_{0}^{a}\left(\frac{1}{r_{>}}-\frac{1}{a}\right) d r^{\prime}\right. \\
&\left.-\frac{1}{5} P_{2}(\cos \theta) \int_{0}^{a} r_{<}^{2}\left(\frac{1}{r_{>}^{3}}-\frac{r_{>}^{2}}{a^{5}}\right) d r^{\prime}\right] \\
&=\frac{2 \rho_{0} a^{2}}{3 \epsilon_{0}}\left[P_{0}(\cos \theta)\left(\left(\frac{1}{r}-\frac{1}{a}\right) \int_{0}^{r} d r^{\prime}+\int_{r}^{a}\left(\frac{1}{r^{\prime}}-\frac{1}{a}\right) d r^{\prime}\right)\right. \\
&\left.-\frac{1}{5} P_{2}(\cos \theta)\left(\left(\frac{1}{r^{3}}-\frac{r^{2}}{a^{5}}\right) \int_{0}^{r} r^{\prime 2} d r^{\prime}+r^{2} \int_{r}^{a}\left(\frac{1}{r^{\prime 3}}-\frac{r^{\prime 2}}{a^{5}}\right) d r^{\prime}\right)\right] \\
&=\frac{2 \rho_{0} a^{2}}{3 \epsilon_{0}}\left[P_{0}(\cos \theta) \ln \frac{a}{r}-\frac{1}{6} P_{2}(\cos \theta)\left(1-\left(\frac{r}{a}\right)^{2}\right)\right]
\end{aligned}
$$

Inserting the expressions for Legendre polynomials, this becomes

$$
\Phi\left(\vec{x}^{\prime}\right)=\frac{2 \rho_{0} a^{2}}{3 \epsilon_{0}}\left[\ln \frac{a}{r}-\frac{1}{12}\left(1-\left(\frac{r}{a}\right)^{2}\right)\left(3 \cos ^{2} \theta-1\right)\right]
$$

b) What is the surface charge density on the inside surface of the shell?

The surface charge density is given by

$$
\begin{aligned}
\sigma=\left.\epsilon_{0} \frac{\partial \Phi}{\partial r}\right|_{r=a} & =\frac{2 \rho_{0} a^{2}}{3}\left[-\frac{1}{r}+\frac{1}{6} \frac{r}{a^{2}}\left(3 \cos ^{2} \theta-1\right)\right]_{r=a} \\
& =-\frac{2 \rho_{0} a}{3}\left(1-\frac{1}{6}\left(3 \cos ^{2} \theta-1\right)\right)
\end{aligned}
$$

Note that only the $l=0$ term contributes to the total charge induced on the shell. This is simply

$$
Q_{\text {shell }}=-\frac{2 \rho_{0} a}{3}\left(4 \pi a^{2}\right)=-\frac{8 \pi \rho_{0} a^{3}}{3}
$$

This is the negative of the charge contained in the interior

$$
Q_{\text {inside }}=\int \rho(\vec{x}) d^{3} x=2 \pi \rho_{0} a^{3} \int \sin ^{2} \theta d(\cos \theta)=\frac{8 \pi \rho_{0} a^{3}}{3}
$$

3. A thin disk of radius a lies in the $x-y$ plane with its center at the coordinate origin. The disk is uniformly charged with a surface density σ.
a) Calculate the multipole moments of the charge distribution. Make sure to indicate which moments are non-vanishing.
The volume charge density for the disk can be written as

$$
\rho(\vec{x})=\frac{\sigma}{r} \delta(\cos \theta)
$$

(provided $r<a$). Note that the factor of $1 / r$ ensures uniform surface charge density since

$$
d \rho=\rho(\vec{x}) d^{3} x=\frac{\sigma}{r} \delta(\cos \theta) r^{2} d r d \phi d(\cos \theta)=\left.\sigma r d r d \phi\right|_{\theta=\pi / 2}
$$

and $r d r d \phi$ is the standard area element in polar coordinates. The multipole moments are then given by

$$
q_{l m}=\int r^{l} Y_{l m}^{*}(\Omega) r(\vec{x}) d^{3} x=\sigma \int r^{l+1} Y_{l m}(\theta, \phi) \delta(\cos \theta) d r d \phi d(\cos \theta)
$$

By azimuthal symmetry, only the $m=0$ moments are non-vanishing. Integrating the ϕ and θ angles gives

$$
q_{l, 0}=2 \pi \sigma Y_{l, 0}\left(\frac{\pi}{2}, 0\right) \int_{0}^{a} r^{l+1} d r=2 \pi \sigma \sqrt{\frac{2 l+1}{4 \pi}} P_{l}(0) \frac{a^{l+2}}{l+2}
$$

(Note that $Y_{l, 0}$ is independent of ϕ.) Since the Legendre polynomials are even and odd depending on l, we see that only even l moments are non-vanishing

$$
q_{2 k, 0}=\frac{\sqrt{(4 k+1) \pi} P_{l}(0)}{2 k+2} \sigma a^{2 k+2}=\frac{(-)^{k} \sqrt{4 k+1} \Gamma\left(k+\frac{1}{2}\right)}{2(k+1)!} \sigma a^{2 k+2}
$$

Since the disk is uniformly charged, the total charge is simply $q=\sigma\left(\pi a^{2}\right)$. This allows us to write

$$
q_{2 k, 0}=\frac{(-)^{k} \sqrt{4 k+1} \Gamma\left(k+\frac{1}{2}\right)}{2 \pi(k+1)!} q a^{2 k}
$$

The first two non-vanishing moments are

$$
q_{00}=\sqrt{\frac{1}{4 \pi}} q \quad q_{20}=-\frac{1}{4} \sqrt{\frac{5}{4 \pi}} q a^{2}
$$

b) Write down the multipole expansion for the potential in explicit form up to the first two non-vanishing terms.
The multipole expansion yields

$$
\begin{aligned}
\Phi(\vec{x}) & =\frac{1}{4 \pi \epsilon_{0}} 4 \pi\left[q_{00} \frac{Y_{00}(\Omega)}{r}+\frac{1}{5} q_{20} \frac{Y_{20}(\Omega)}{r^{3}}+\cdots\right] \\
& =\frac{q}{4 \pi \epsilon_{0}} 4 \pi\left[\sqrt{\frac{1}{4 \pi}} \frac{1}{r} \sqrt{\frac{1}{4 \pi}}-\frac{1}{20} \sqrt{\frac{5}{4 \pi}} \frac{a^{2}}{r^{3}} \sqrt{\frac{5}{4 \pi}} P_{2}(\cos \theta)+\cdots\right] \\
& =\frac{q}{4 \pi \epsilon_{0}}\left[\frac{1}{r}-\frac{1}{4} \frac{a^{2}}{r^{3}} P_{2}(\cos \theta)+\cdots\right]=\frac{q}{4 \pi \epsilon_{0}}\left[\frac{1}{r}-\frac{1}{8} \frac{a^{2}}{r^{3}}\left(3 \cos ^{2} \theta-1\right)+\cdots\right]
\end{aligned}
$$

