Practice Midterm

The midterm will be a 120 minute open book, open notes exam. Do all three problems.

1. A two-dimensional problem is defined by a semi-circular wedge with $0 \leq \phi \leq \beta$ and $a \leq \rho \leq b$.

a) For the Dirichlet problem, it is possible to expand the Green's function as

$$
G\left(\rho, \phi ; \rho^{\prime}, \phi^{\prime}\right)=\sum_{m=1}^{\infty} g_{m}\left(\rho, \rho^{\prime}\right) \sin \left(\frac{m \pi \phi}{\beta}\right) \sin \left(\frac{m \pi \phi^{\prime}}{\beta}\right)
$$

Write down the appropriate differential equation that $g_{m}\left(\rho, \rho^{\prime}\right)$ must satisfy.
b) Solve the Green's function equation for $g_{m}\left(\rho, \rho^{\prime}\right)$ subject to Dirichlet boundary conditions and write down the result for $G\left(\rho, \phi ; \rho^{\prime}, \phi^{\prime}\right)$.
2. A conducting spherical shell of inner radius a is held at zero potential. The interior of the shell is filled with electric charge of a volume density

$$
\rho(\vec{r})=\rho_{0}\left(\frac{a}{r}\right)^{2} \sin ^{2} \theta
$$

a) Find the potential everywhere inside the shell.
b) What is the surface charge density on the inside surface of the shell?
3. A thin disk of radius a lies in the $x-y$ plane with its center at the coordinate origin. The disk is uniformly charged with a surface density σ.
a) Calculate the multipole moments of the charge distribution. Make sure to indicate which moments are non-vanishing.
b) Write down the multipole expansion for the potential in explicit form up to the first two non-vanishing terms.

