
Physics 505 Fall 2005

Homework Assignment #10 — Solutions

Textbook problems: Ch. 6: 6.3, 6.4, 6.14, 6.18

6.3 The homogeneous diffusion equation (5.160) for the vector potential for quasi-static
fields in unbounded conducting media has a solution to the initial value problem of
the form

~A(~x, t) =
∫

d3x′G(~x− ~x ′, t) ~A(~x ′, 0)

where ~A(~x ′, 0) describes the initial field configuration and G is an appropriate kernel.

a) Solve the initial value problem by use of a three-dimensional Fourier transform
in space for ~A(~x, t). With the usual assumption on intrchange of orders of inte-
gration, show that the Green function has the Fourier representation

G(~x− ~x ′, t) =
1

(2π)3

∫
d3k e−k2t/µσei~k·(~x−~x ′)

and it is assumed that t > 0.

We define the Fourier transform by

~A(~x, t) =
1

(2π)3

∫
~A(~k, t)e−~k·~x d3k

In this case, the diffusion equation ∇2 ~A = µσ∂ ~A/∂t becomes

|i~k|2 ~A = µσ
∂

∂t
~A ⇒ ∂

∂t
~A = − k2

µσ
~A

This equation is first order in time, and is easily solved to yield

~A(~k, t) = ~A(~k, 0)e−k2t/µσ (1)

Note that we have written the solution in terms of initial conditions specified as
~A(~k, 0) at time t = 0. This is essentially the answer in momentum space. All we
have to do is to invert the transform. The inverse transform gives

~A(~x, t) =
1

(2π)3

∫
~A(~k, 0)e−k2t/µσei~k·~x d3k

where
~A(~k, 0) =

∫
~A(~x ′, 0)e−i~k·~x ′

d3x′



The result is

~A(~x, 0) =
1

(2π)3

∫ ∫
~A(~x ′, 0)e−k2t/µσei~k·(~x−~x ′) d3k d3x′

=
∫

G(~x− ~x ′, t) ~A(~x ′, 0) d3x′

with the Greens function

G(~x− ~x ′, t) =
1

(2π)3

∫
e−k2t/µσei~k·(~x−~x ′) d3k

Alternatively, we could have noted directly from (1) that the solution in momen-
tum space is a product of e−k2t/µσ with ~A(~k, 0). As a result, the ordinary space
solution is a convolution as indicated.

b) By introducing a Fourier decomposition in both space and time, and performing
the frequency integral in the complex ω plane to recover the result of part a), show
that G(~x− ~x ′, t) is the diffusion Green function that satisfies the inhomogeneous
equation

∂G

∂t
− 1

µσ
∇2G = δ(3)(~x− ~x ′)δ(t)

and vanishes for t < 0.

Introducing the Fourier transform

G(~x, t) =
1

(2π)4

∫
G(~k, ω)ei(~k·~x−ωt) d3k dω

the above inhomogeneous equation becomes

[(−iω)2 − |i~k|2/µσ]G = e−i~k·~x′

which gives the Greens’ function

G(~k, ω) =
e−i~k·~x′

k2/µσ − iω

We may invert the transform by first performing the ω integral. We have

G(~k, t) =
1
2π

∫ ∞

−∞
G(~k, ω)e−iωt dω =

ie−i~k·~x′

2π

∫
e−iωt

ω + ik2/µσ
dω

This may be performed by contour integration. For t > 0, Jordan’s lemma tells
us to close the contour in the lower-half plane. As a result, we pick up the residue
at ω = −ik2/µσ. The result is

G(~k, t) = (−2πi)
ie−i~k·~x′

2π
e−k2t/µσ = e−k2t/µσe−i~k·~x ′



On the other hand, for t < 0, we close the contour in the upper-half plane and end
up with G = 0 as there are no enclosed poles. Finally, writing out the momentum
space Fourier transform gives

G(~x− ~x ′, t) =
Θ(t)
(2π)3

∫
e−k2t/µσei~k·(~x−~x ′) d3k (2)

c) Show that if σ is uniform throughout all space, the Green function is

G(~x, t; ~x ′, 0) = Θ(t)
( µσ

4πt

)3/2

exp
(
−µσ|~x− ~x ′|2

4t

)
Actually, we must take both µ and σ to be uniform in all space. In this case, the
momentum integration in (2) may be performed by completing the square

G(~x− ~x ′, t) =
Θ(t)
(2π)3

e−µσ|~x−~x ′|2/4t

∫
e−t|~k−iµσ(~x−~x ′)/2t|2/µσ d3k

=
Θ(t)
(2π)3

(πµσ

t

)3/2

e−µσ|~x−~x ′|2/4t

= Θ(t)
( µσ

4πt

)3/2

e−µσ|~x−~x ′|2/4t

(3)

d) Suppose that at time t′ = 0, the initial vector potential ~A(~x ′, 0) is nonvanishing
only in a localized region of linear extent d around the origin. The time depen-
dence of the fields is observed at a point P far from the origin, i.e., |~x | = r � d.
Show that there are three regimes of time, 0 < t ≤ T1, T1 ≤ t ≤ T2, and t � T2.
Give plausible definitions of T1 and T2, and describe qualitatively the time depen-
dence at P . Show that in the last regime, the vector potential is proportional to
the volume integral of ~A(~x ′, 0) times t−3/2, assuming that integral exists. Relate
your discussion to those of Section 5.18.B and Problems 5.35 and 5.36.

For a local ‘disturbance’ near the origin, physical intuition tells us that it will
take some time before the observer at point P will manage to observe it. For
a diffusion problem, this time is essentially the timescale for diffusion, set by
the diffusion coefficient D = 1/µσ, where the diffusion equation is of the form
∂ρ/∂t = ~∇·(D~∇ρ). To be specific, the field at point P is given by the convolution

~A(~x, t) =
∫

G(~x− ~x ′, t) ~A(~x ′, 0) d3x′

= Θ(t)
( µσ

4πt

)3/2
∫

~A(~x ′, 0)e−µσ|~x−~x ′|2/4t d3x′

Assuming |~x | = r � d, we may approximate the integral by simply taking
|~x− ~x ′|2 ≈ d2. This gives

~A(r, t) ≈ Θ(t)
(

µσd

4πt

)3/2

e−µσr2/4t〈 ~A 〉t=0 (4)



where 〈 ~A 〉 is the spatial average of ~A in the nonvanishing region. Defining τ1 =
µσr2/4 and τ2 = µσd/4π, the behavior of the vector potential is then

~A(r, t) ≈ Θ(t)
(τ2

t

)3/2

e−τ1/t

At short times, t � τ1, the exponential is highly suppressed, and there is no signal
at point P . After time τ1, however, the exponential becomes of order O(1). The
initial vector potential has now diffused to P . However, because of the (τ2/t)3/2

prefactor, the signal dies away at long times. For a rough estimate, we take

T1 = τ1 = µσr2/4 T2 = 2T1

Then for t < T1 the vector potential at point P is essentially zero. Between T1

and T2, the vector potential is non-zero, and at long times after T2, everything
has diffused away. Finally, noting that the volume integral of ~A(~x ′, 0) is simply
d3〈 ~A 〉, the expression in (4) demonstrates that at late times (when the exponen-
tial is essentially unity) the vector potential is indeed proportional to this volume
integral times t−3/2.

6.4 A uniformly magnetized and conducting sphere of radius R and total magnetic mo-
ment m = 4πMR3/3 rotates about its magnetization axis with angular speed ω. In
the steady state no current flows in the conductor. The motion is nonrelativistic; the
sphere has no excess charge on it.

a) By considering Ohm’s law in the moving conductor, show that the motion induces
an electric field and a uniform volume charge density in the conductor, ρ =
−mω/πc2R3.

We assume the sphere is magnetized and spinning along the ẑ axis. Since the
magnetic moment is ~m = ~M V where V = 4

3πR3 is the volume of the sphere,
we see that the magnetization is simply ~M = Mẑ. As demonstrated earlier, a
uniformly magnetized sphere has a uniform magnetic induction ~B = 2

3µ0
~M in its

interior. In terms of m, this is

~B = 2
3µ0

(
3

4πR3
mẑ

)
=

µ0m

2πR3
ẑ

We now observe that the electric field ~E′ in the rotating frame of the sphere
may be related to lab quantities by ~E′ = ~E + ~v × ~B. Ohm’s law in the rotating
reference frame is then ~J = σ ~E′ = σ( ~E + ~v × ~B). Since no current flows in the
steady state ( ~J = 0), this motion must induce an electric field ~E = −~v× ~B. Using
~ω = ωẑ and ~v = ω × ~r, we obtain

~E = −(~ω × ~r)× ~B = −µ0mω

2πR3
(ẑ × ~r)× ẑ = −µ0mω

2πR3
(~r − ẑ(ẑ · ~r))



The vector structure is essentially a projection of ~r into the horizontal plane
perpendicular to the ẑ axis. In cylindrical coordinates, this indicates that

Eρ = −µ0mωρ

2πR3
(5)

It is then a simple matter of applying Gauss’ law to recover the volume charge
density. However, before we do so, we note that this is a cylindrically symmetric
electric field (pointed horizontally inward towards the ẑ axis). It may at first be
somewhat surprising that a sphere will give a cylindrical electric field. However,
rotation about an axis is actually a cylindrical process. So from this point of
view, the electric field is quite natural.

Using ρ = ε0~∇ · ~E we obtain a uniform volume charge density

ρ = ε0
∂Eρ

∂ρ
= −µ0ε0mω

2πR3
= − mω

2πc2R3

It is important to note that, while the charge density is uniform inside the sphere,
the electric field is not radial. The discrepancy between a uniform spherical charge
distribution and the cylindrical electric field must then arise due to a surface
charge. This then provides a hint as to how to approach the remainder of this
problem.

b) Because the sphere is electrically neutral, there is no monopole electric field out-
side. Use symmetry arguments to show that the lowest possible electric multipo-
larity is quadrupole. Show that only a quadrupole field exists outside and that the
quadrupole moment tensor has nonvanishing components, Q33 = −4mωR2/3c2,
Q11 = Q22 = −Q33/2.

No charge resides outside the sphere. As a result, the exterior field may be
described through the multipole expansion. As indicated, charge neutrality guar-
antees the vanishing of the monopole (l = 0) moment. Furthermore, the odd
moments vanish due to symmetry of the electric field (5) under the parity trans-
formation z → −z. (That is of course the internal field; however we may see that
the external field must necessarily respect the symmetry of the internal one.)
Thus a simple symmetry argument demonstrates that the lowest possible multi-
pole is the quadrupole (l = 2). Symmetry along will not preclude higher even
moments. However an explicit calculation will.

Without knowing the surface charge, we cannot directly calculate the electric
multipoles. However, we note that the interior electric field (5) can be integrated
to obtain the interior electrostatic potential

Φ(ρ) = −
∫

~E · ~d` = −
∫

Eρ dρ = Φ0 +
µ0mωρ2

4πR3

Converted back to spherical coordinates, this gives

Φ(r, θ) = Φ0 +
µ0mω

4πR3
r2 sin2 θ = Φ0 +

µ0mω

6πR3
r2[P0(cos θ)− P2(cos θ)]



where we have converted sin2 θ into Legendre polynomials. This can be written
explicitly as a Legendre expansion

Φ(r, θ) =
(
Φ0 +

µ0mω

6πR3
r2

)
P0(cos θ)− µ0mω

6πR3
r2P2(cos θ)

so that in particular the potential at the surface of the sphere is

Φ(R, θ) =
(
Φ0 +

µ0mω

6πR

)
P0(cos θ)− µ0mω

6πR
P2(cos θ)

We may now solve for the exterior potential by treating this as an electrostatic
boundary value problem. We recall that, given a sphere with azimuthally sym-
metric potential V (θ) =

∑
l αlPl(cos θ) on the surface, the exterior solution has

the form Φ(r, θ) =
∑

l αl(R/r)l+1Pl(cos θ). Furthermore, charge neutrality in the
present case forces the monopole (l = 0) term to vanish. Hence we find that
Φ0 = −µ0mω/6πR, and that the external potential is

Φ(r, θ) = −µ0mωR2

6πr3
P2(cos θ) (6)

Incidentally, we could write an expression valid both in the interior and the
exterior as

Φ(r, θ) =
µ0mω

6πR

[(
r2

R2
− 1

)
Θ(R− r)P0(cos θ)−R

r2
<

r3
>

P2(cos θ)
]

(7)

Note that this potential is only harmonic outside the sphere; inside the sphere
the r2/R2 term multiplying P0(cos θ) is not of the right (Alr

l +Blr
−l−1)Pl(cos θ)

form to be harmonic. However, this is present precisely because of the uniform
volume charge density, which acts as a l = 0 source.

In any case, we are essentially done, as the exterior potential (6) clearly has only
a quadrupole term

Φ = −
√

4π

5
µ0mωR2

6π

Y2,0(θ, φ)
r3

Comparing this with the multipole expansion

Φ =
1

4πε0

∑
l,m

4π

2l + 1
ql,m

Yl,m(θ, φ)
rl+1

gives

q2,0 = −4πε0

√
5
4π

µ0mωR2

6π
= −

√
5
4π

2mωR2

3c2

Converting to cartesian tensors yields

Q33 = 2

√
4π

5
q2,0 = −4mωR2

3c2
, Q11 = Q22 = − 1

2Q33



c) By considering the radial electric fields inside and outside the sphere, show that
the necessary surface-chrage density σ(θ) is

σ(θ) =
1

4πR2

4mω

3c2

[
1− 5

2
P2(cos θ)

]
The surface charge may be computed by first obtaining the jump in the normal
component of the electric field at the surface of the sphere. Working in spherical
components, and taking the gradient of the potential (7), we find

Eout
r = −µ0mωR2

2πr4
P2(cos θ)

Ein
r = −µ0mωr

3πR3
[P0(cos θ)− P2(cos θ)]

The surface charge is then computed as

σ = ε0(Eout
r − Ein

r )
∣∣∣
r=R

= −µ0ε0mω

3πR2
[ 32P2(cos θ)− (P0(cos θ)− P2(cos θ))]

=
mω

3πc2R2
[P0(cos θ)− 5

2P2(cos θ)]

d) The rotating sphere serves as a unipolar induction device if a stationary circuit
is attached by a slip ring to the pole and a sliding contact to the equator. Show
that the line integral of the electric field from the equator contact to the pole
contact by any path) is E = µ0mω/4πR.

Although the sphere is rotating, both the electric and the magnetic field are static.
Hence the line integral of the electric field gives simply the electrostatic potential.
In this case

E =
∫ pole

equator

~E · d~̀ = Φequator − Φpole = Φ(θ = π
2 )− Φ(θ = 0)

Using (6) or (7) evaluated on the surface, this becomes

E = −µ0mω

6πR
[P2(0)− P2(1)] =

µ0mω

4πR

6.14 An ideal circular parallel plate capacitor of radius a and plate separation d � a is
connected to a current source by axial leads, as shown in the sketch. The current in
the wire is I(t) = I0 cos ωt.

a) Calculate the electric and magnetic fields between the plates to second order in
powers of the frequency (or wave number), neglecting the effects of fringing fields.

We begin with an observation that this problem is cylindrically symmetric. For
a static circular parallel plate capacitor, the electric field is in the axial direction



(which we take to be ẑ). If this were to vary in time, it would induce an azimuthal
magnetic field. Hence we are concerned with finding the cylindrical coordinate
components Ez(ρ, t) and Bφ(ρ, t), at least if we were to neglect fringing. Note
that, in this case, both ~∇ · ~E = 0 and ~∇ · ~B = 0 are automatically satisfied, and
we are left with Faraday’s law and the Ampère-Maxwell law.

One method to approach this problem is to expand in powers of frequency.
Working with complex quantities, a current I(t) = I0e

−iωt results in a charge
q =

∫
I dt = (iI0/ω)e−iωt. At lowest order in frequency, we essentially have an

electrostatic problem. Thus the charge q = iI0/ω gives rise to a surface charge
density σ = q/πa2 = iI0/πa2ω. The resulting electric field is

E(0)
z = − σ

ε0
=

−iI0

ε0πa2ω

(where we have hidden the e−iωt behavior). By the Ampère-Maxwell law, this
induces a magnetic field

~∇× ~B(1) =
1
c2

(−iω) ~E(0) = −µ0I0

πa2
ẑ

Working in cylindrical coordinates, we solve

(~∇× ~B(1))z =
1
ρ
∂ρρB

(1)
φ = −µ0I0

πa2

to obtain
B

(1)
φ = −µ0I0ρ

2πa2

Note that a possible integration constant was dropped to avoid an unphysical 1/ρ
singularity in the magnetic induction.

Proceeding in a similar fashion, this oscillating magnetic field will induce an
electric field by Faraday’s law

−∂ρE
(2)
z = (~∇× ~E(2))φ = iωB

(1)
φ = − iωI0ρ

2πε0a2c2

This integrates to

E(2)
z =

iI0ρ
2ω

4πε0a2c2

Note that this time we have chosen to drop a possible constant of integration since
any such ρ independent constant can be absorbed in E

(0)
z by suitable redefinition

of I0. This does indicate to us, however, that we may need to reexamine the
assumed boundary condition that was used to relate E

(0)
z to the current specified

by I0. Ignoring this for the moment, we proceed once more with the Ampère-
Maxwell law to obtain

B
(3)
φ =

µ0Iρ3ω2

16πa2c2



Putting the above expressions together gives

Ez = − iI0

πε0a2ω

(
1− ρ2ω2

4c2
+ · · ·

)
Bφ = −µ0I0ρ

2πa2

(
1− ρ2ω2

8c2
+ · · ·

) (8)

and restoring the time dependence gives

Ez = − I0

πε0a2ω

(
1− ρ2ω2

4c2
+ · · ·

)
sinωt

Bφ = −µ0I0ρ

2πa2

(
1− ρ2ω2

8c2
+ · · ·

)
cos ωt

A more formal method for solving this problem is to develop a series expansion
in ω of the form

Ez =
∞∑

n=−1

en(ρ)ωn, Bφ =
∞∑

n=0

bn(ρ)ωn

and to substitute this into the component Faraday and Ampère-Maxwell equa-
tions

1
ρ
∂ρρBφ = − iω

c2
Ez, ∂ρEz = −iωBφ (9)

Collecting the resulting powers of ω of course reduces to the same expressions
that we solved one at a time to arrive at (8) above. Of course, we could also be
more clever, and simply manipulate (9) to obtain the second order equations

1
ρ
∂ρρ∂ρEz = −ω2

c2
Ez, ∂ρ

1
ρ
∂ρρBφ = −ω2

c2
Bφ

which may be rewritten as

ζ2E′′
z (ζ)+ζE′

z(ζ)+(ζ2−0)Ez(ζ) = 0, ζ2Bφ′′(ζ)+ζB′
φ(ζ)+(ζ2−1)Bφ(ρ) = 0

where ζ = ωρ/c. These may be recognized as Bessel’s equations, with solution

Ez(ρ) = E0
zJ0(ωρ/c), Bφ(ρ) = B0

φJ1(ωρ/c)

(We have avoided the Neumann functions since they blow up at ρ = 0.) Note,
however, that the first order equations (9) tie together E0

z and B0
φ. Using

Bφ =
i

ω
∂ρEz =

i

c
∂ζEz =

iE0
z

c
J ′

0(ζ) = − iE0
z

c
J1(ζ)



(since J ′
0 = −J1 by the Bessel recursion relations), we see that B0

φ = −iE0
z/c.

Since J0(ζ) → 1 for small argument, ζ → 0, the above above boundary conditions
are satisfied by taking

Ez = − I0

πε0a2ω
J0(ωρ/c) sinωt, Bφ = −µ0I0c

πa2ω
J1(ωρ/c) cos ωt (10)

b) Calculate the volume integrals of we and wm that enter the definition of the
reactance X, (6.140), to second order in ω. Show that in terms of the input
current Ii, defined by Ii = −iωQ, where Q is the total charge on one plate, these
energies are∫

we d3x =
1

4πε0

|Ii|2d
ω2a2

,

∫
wm d3x =

µ0

4π

|Ii|2d
8

(
1 +

ω2a2

12c2

)
Working with the series expansion, (8), the small signal energy densities are given
by

we = 1
4

~E · ~D∗ =
ε0
4
| ~E |2 =

|I0|2

4π2ε0a4ω2

(
1− ρ2ω2

2c2
+ · · ·

)
wm = 1

4
~B · ~H∗ =

1
4µ0

| ~B |2 =
|I0|2ρ2

16π2ε0a4c2

(
1− ρ2ω2

4c2
+ · · ·

)
Integrating over the volume of the capacitor with∫

d3x = 2πd

∫ a

0

ρdρ

gives ∫
we d3x =

|I0|2d
4πε0a2ω2

(
1− a2ω2

4c2
+ · · ·

)
∫

wm d3x =
µ0|I0|2d

32π

(
1− a2ω2

6c2
+ · · ·

) (11)

These do not seem to agree with the expected results. However, we have used
the constant I0 to describe the current, whereas Ii = −iωQ, defined by the total
charge on one plate, may differ from I0 due to frequency dependent effects. To
compute the total charge Q, we may first use Gauss’ law to obtain the surface
charge density σ and then integrate σ over the plate. For Ez given in (8), this
gives simply

σ = ε0(−Ez) =
iI0

πa2ω

(
1− ρ2ω2

4c2
+ · · ·

)
(where the extra sign comes from taking the charge on the top plate) so that

Q = 2π

∫ a

0

σ(ρ) ρdρ =
2iI0

a2ω

(
a2

2
− a4ω4

16c2
+ · · ·

)
=

iI0

ω

(
1− a2ω2

8c2
+ · · ·

)



This yields the relation between I0 and Ii

Ii = −iωQ = I0

(
1− a2ω2

8c2
+ · · ·

)
so that

|Ii|2 = |I0|2
(

1− a2ω2

4c2
+ · · ·

)
Substituting this into (11) finally results in∫

we d3x =
|Ii|2d

4πε0a2ω2
,

∫
wm d3x =

µ0|Ii|2d
32π

(
1 +

a2ω2

12c2

)
at least to the order that we are working at.

c) Show that the equivalent series circuit has C ≈ πε0a
2/d, L ≈ µ0d/8π, and that

an estimate for the resonant frequency of the system is ωres ≈ 2
√

2c/a. Compare
with the first root of J0(x).

The reactance is given by

X ≈ 4ω

|I|2

∫
(wm − we) d3x ≈ 4ω

|I|2

(
µ0|I|2d

32π
− |I|2d

4πε0a2ω2

)
=

µ0d

8π
ω −

(
πε0a

2

d
ω

)−1

Since the reactance of an inductor is X = Lω and a capacitor is X = 1/(Cω),
we see that the equivalent series circuit has C ≈ πε0a

2/d and L ≈ µ0d/8π as
indicated. The resonant frequency of a LC circuit is then

ωres =
1√
LC

≈
√

8
µ0ε0a2

=
2
√

2c

a

The reason we may compare this with the first zero of the Bessel function J0(x)
is that the ‘exact’ expression for the electric field in (10) involves J0(ωρ/c). The
assumption of no fringing outside the capacitor demands that the electric field
vanish at ρ = a. This occurs when ωa/c = x0,1 where x0,1 ≈ 2.4 is the first zero
of J0. The value we have computed, 2

√
2 ≈ 2.8, differs from x0,1 by more than

15%. Nevertheless, it is at least of the correct magnitude.

6.18 Consider the Dirac expression

~A(~x ) =
g

4π

∫
L

d~l ′ × (~x− ~x ′)
|~x− ~x ′|3

for the vector potential of a magnetic monopole and its associated string L. Suppose
for definiteness that the monopole is located at the origin and the string along the
negative z axis.



a) Calculate ~A explicitly and show that in spherical coordinates it has components

Ar = 0, Aθ = 0, Aφ =
g(1− cos θ)

4πr sin θ
=

( g

4πr

)
tan

θ

2

Taking the Dirac string along the negative ẑ axis, we write ~x ′ = z′ẑ and d~̀′ =
ẑdz′. Hence Dirac’s expression is

~A(~x ) =
g

4π

∫ 0

−∞
dz′

ẑ × (~x− z′ẑ)
|~x− z′ẑ|3

=
g

4π

∫ 0

−∞
dz′

ẑ × ~x

[ρ2 + (z − z′)2]3/2

=
g

4π
(ẑ × ~x)

∫ −z

−∞

du

(ρ2 + u2)3/2

This integral is easily performed by trig substitution. The result is

~A(~x ) =
g

4π

ẑ × ~x

ρ2

(
1− z

r

)
where ρ2 = x2 + y2 and r2 = x2 + y2 + z2. Noting that ẑ × ~x = ρφ̂ = r sin θφ̂,
and converting to spherical coordinates, we obtain

~A(~x ) =
g

4π

r − z

r2 sin θ
φ̂ =

g

4π

1− cos θ

r sin θ
φ̂

b) Verify that ~B = ~∇× ~A is the Coulomb-like field of a point charge, except perhaps
at θ = π.

Note that the vector potential blows up on the negative ẑ axis. (The positive
ẑ axis is safe, as a Taylor or l’Hopital expansion near θ = 0 will demonstrate.)
Away from this point, we have

~B = ~∇× ~A = r̂
1

r sin θ
∂θ(sin θAφ)− θ̂

1
r
∂r(rAφ)

= r̂
1

r sin θ
∂θ

(
g

4π

1− cos θ

r

)
= r̂

( g

4πr2

)
which is the expected field of a magnetic monopole.

c) With the ~B determined in part b), evaluate the total magnetic flux passing
through the circular loop of radius R sin θ shown in the figure. Consider θ < π/2
and θ > π/2 spearately, but always calculate the upward flux.



Assuming ~B = gr̂/4πr2 everywhere, the flux through a circular loop of radius
R sin θ is

Φ =
∫

~B · n̂ da =
∫

Bz da =
g

4π

∫
z

(ρ2 + z2)3/2
ρdρ dφ

=
gz

4

∫ (R sin θ)2

0

du

(u + z2)3/2
= − gz

2
1√

u + z2

∣∣∣∣(R sin θ)2

0

=
gR cos θ

2

(
1

R| cos θ|
− 1

R

)
=

g

2
(
sgn(cos θ)− cos θ

)
where we have used z = R cos θ. For θ < π/2 (the top hemisphere) we find
Φtop = g

2 (1−cos θ), while for θ > π/2 we find Φbottom = g
2 (−1−cos θ). Note that

the (upward) flux so calculated is discontinuous as we pass through the plane of
the monopole.

d) From
∮

~A · d~L around the loop, determine the total magnetic flux through the
loop. Compare the result with that found in part c). Show that they are equal
for 0 < θ < π/2, but have a constant difference for π/2 < θ < π. Interpret this
difference.

By Stokes’ theorem, the line integral of the vector potential gives the magnetic
flux. We find∮

~A · d~̀ =
∫

02πAφ(R, θ) R sin θ dφ =
g

4π

1− cos θ

R sin θ
(2πR sin θ) =

g

2
(1− cos θ)

Thus ∮
~A · d~̀ = Φtop = Φbottom + g

What has happened in this case is that the computation of part c) did not take
into account the flux of the Dirac string. For a positively charged monopole, the
Dirac string carries upward magnetic flux. So the total flux of the monopole plus
string is really Φbottom + g. This is fully accounted for by taking the line integral
of the vector potential (which is after all the vector potential due to the Dirac
string).

Of course, an ‘honest’ magnetic monopole will have a magnetic field ~B = gr̂/4πr2

everywhere in space. In this case, the flux calculation of part c) is the ‘correct’ one.
Every calculation involving the vector potential must then be treated with care,
and in particular the location of the Dirac string may have to be moved by gauge
transformation when working with ~A in the southern hemisphere. In the modern
language of differential geometry (fiber bundles), we have to introduce separate
coordinate patches for the northern and southern hemisphere, with an overlap
region around the equator. We then define differentiable transition functions
(essentially gauge transformations) connecting the different sections of the bundle
in the overlap region. The Dirac string can then be avoided by working with the
fiber bundle itself.


