
Physics 505 Fall 2005

Homework Assignment #8 — Solutions

Textbook problems: Ch. 5: 5.10, 5.14, 5.17, 5.19

5.10 A circular current loop of radius a carrying a current I lies in the x-y plane with its
center at the origin.

a) Show that the only nonvanishing component of the vector potential is

Aφ(ρ, z) =
µ0Ia

π

∫ ∞

0

dk cos kz I1(kρ<)K1(kρ>)

where ρ< (ρ>) is the smaller (larger) of a and ρ.

The vector potential may be obtained by

~A(~x ) =
µ0

4π

∫ ~J(~x ′)
|~x− ~x ′|

d3x′

where (for a circular current loop)

~J(~x ′) = Iδ(z′)δ(ρ′ − a)φ̂′

in cylindrical coordinates. Note that to obtain the cylindrical components of ~A(~x )
we have to be careful to convert the basis vector φ̂′ at the point x′ to components
at x. (This is because the basic vectors depend on position.) A bit of geometry
gives

φ̂′ = ρ̂ sin(φ− φ′) + φ̂ cos(φ− φ′)

[Or, alternatively, we may choose the point x to lie at φ = 0, so that φ̂ = ŷ

and ρ̂ = x̂. Then it is straightforward to see that φ̂′ = ŷ cos φ′ − x̂ sinφ′ =
φ̂ cos φ′ − ρ̂ sinφ′. Using symmetry, we can see that only the φ̂ component of ~A
is nonvanishing.]

The integral expression for the vector potential is then

~A(~x) =
µ0I

4π

∫
δ(z′)δ(ρ′ − a)[ρ̂ sin(φ− φ′) + φ̂ cos(φ− φ′)]

|~x− ~x ′|
ρ′dρ′ dφ′ dz′

=
µ0Ia

4π

∫ 2π

0

ρ̂ sin(φ− φ′) + φ̂ cos(φ− φ′)
|~x− ~x ′|

dφ′
(1)

where the integrand in the second line is to be evaluated at z′ = 0 and ρ′ = a.
We now use the cylindrical Green’s function expressed as

1
|~x− ~x ′|

=
4
π

∫ ∞

0

dk cos[k(z − z′)]
[

1
2I0(kρ<)K0(kρ>)

+
∞∑

m=1

cos[m(φ− φ′)]Im(kρ<)Km(kρ>)
]



Note that the integral over φ′ picks out the m = 1 term in the sum. Furthermore,
the ρ̂ component drops out because sin(φ − φ′) is orthogonal to cos(φ − φ′), a
result that could have been obtained by symmetry. We end up with

~A(~x ) =
µ0Ia

4π

4
π

πφ̂

∫ ∞

0

dk cos(kz)I1(kρ<)K1(kρ>)

=
µ0Ia

π
φ̂

∫ ∞

0

dk cos(kz)I1(kρ<)K1(kρ>)

b) Show that an alternative expression for Aφ is

Aφ(ρ, z) =
µ0Ia

2

∫ ∞

0

dk e−k|z|J1(ka)J1(kρ)

To obtain the alternative expression, we use the alternate form of the Greens’
function

1
|~x− ~x ′|

= 2
∫ ∞

0

dk e−k(z>−z<)
[

1
2J0(kρ)J0(kρ′)

+
∞∑

m=1

cos[m(φ− φ′)]Jm(kρ)Jm(kρ′)
]

Since, for z′ = 0, we have z> − z< = |z|, it is clear that when we stick this into
(1) we end up with

~A(~x ) =
µ0Ia

2
φ̂

∫ ∞

0

dk e−k|z|J1(kρ)J1(ka)

c) Write down integral expressions for the components of magnetic induction, using
the expressions of parts a) and b). Evaluate explicitly the components of ~B on
the z axis by performing the necessary integrations.

Since ~B = ~∇× ~A and the only non-vanishing component of ~A is Aφ, we end up
with

Bρ = −∂zAφ, Bz =
1
ρ
∂ρ(ρAφ)

The z derivative is straightforward. For the ρ derivative, on the other hand, we
may use the Bessel equation identity

d

dz
X1(z) +

1
z
X1(z) = X0(z)

where Xm denotes either Jm, Nm, Im or Km. This gives, in particular

1
ρ
∂ρ[ρX1(kρ)] = kX0(kρ)



Hence, for the expression of a) we find

Bρ =
µ0Ia

π

∫ ∞

0

dk k sin(kz)I1(kρ<)K1(kρ>)

and

Bz =
µ0Ia

π

∫ ∞

0

dk k cos(kz)
{

I0(kρ)K1(ka)
I1(ka)K0(kρ)

}
where the top line holds for ρ < a, while the bottom line holds for ρ > a.

Similarly, the vector potential of b) yields the magnetic induction

Bρ = −µ0Ia

2
sgn(z)

∫ ∞

0

dk ke−k|z|J1(kρ)J1(ka)

and

Bz =
µ0Ia

2

∫ ∞

0

dk ke−k|z|J0(kρ)J1(ka)

The z axis corresponds to ρ = 0. In this case, it is easy to see that Bρ = 0 (a
result demanded by symmetry) follows from the result that either J1(0) = 0 or
I1(0) = 0. For the Bz component, we take the representation of part b). Noting
that J0(0) = 1, we end up with

Bz(ρ = 0) =
µ0Ia

2

∫ ∞

0

dk ke−k|z|J1(ka)

=
µ0Ia

2
a

(z2 + a2)3/2

=
µ0Ia2

2(z2 + a2)3/2

which agrees with the elementary result for a current loop on axis. [This integral
was performed by noting that it is a Laplace transform L{tJ1(at)}, which in turn
is the derivative −d/ds of the transform L{J1(at)}. The Laplace transform of a
Bessel function can be looked up, with the result L{Jn(at)} = a−n(

√
s2 + a2 −

s)n/
√

s2 + a2.]

5.14 A long, hollow, right circular cylinder of inner (outer) radius a (b), and of relative
permeability µr, is placed in a region of initially uniform magnetic-flux density ~B0 at
right angles to the field. Find the flux density at all points in space, and sketch the
logarithm of the ratio of the magnitudes of ~B on the cylinder axis to ~B0 as a function
of log10 µr for a2/b2 = 0.5, 0.1. Neglect end effects.

For a long cylinder (neglecting end effects) we may think of this as a two-
dimensional problem. Since there are no current sources, we use a magnetic scalar



potential ΦM which must be harmonic in two dimensions. Since ~H = −~∇ΦM ,
we orient the uniform magnetic field H0 along the +x axis and write

ΦM (ρ, φ) =


(−H0ρ +

∑
α
ρ ) cos φ, ρ > b

(βρ + γ
ρ ) cos φ, a < ρ < b

δρ cos φ, ρ < a

(2)

Of course, the general harmonic expansion would be of the form (Amρm +
Bmρ−m) cos mφ+(Cmρm +Dmρ−m) sinmφ. However here we have already used
the shortcut that all matching conditions for m 6= 1 lead to homogeneous equa-
tions admitting only a trivial (zero) solution.

The magnetostatic boundary conditions demand that Hφ and Bρ are continu-
ous at both ρ = a and ρ = b. The magnetic field (and magnetic induction)
components are

Hφ = −1
ρ
∂φΦM =


(−H0 + α

ρ2 ) sinφ, ρ > b

(β + γ
ρ2 ) sinφ, a < ρ < b

δ sinφ, ρ, a

and

Bρ = µ∂ρΦM =


µ0(−H0 − α

ρ2 ) cos φ, ρ > b

µ(β − γ
ρ2 ) cos φ, a < ρ < b

µ0δ cos φ, ρ < a

The resulting matching conditions at a and b are

−H0 +
α

b2
= β +

γ

b2
, −H0 −

α

b2
= µr

(
β − γ

b2

)
β +

γ

a2
= δ, β − γ

a2
=

1
µr

δ

where µr = µ/µ0. These equations may be solved to yield

α = ∆−1(µr − µ−1
r )(b2 − a2)H0

β = −2∆−1(1 + µ−1
r )H0

γ = −2∆−1(1− µ−1
r )a2H0

δ = −4∆−1H0

where

∆ = (1+µr)(1+µ−1
r )+(1−µr)(1−µ−1

r )
(a

b

)2

=
1
µr

[
(µr + 1)2 − (µr − 1)2

(a

b

)2
]

The magnetic scalar potential is then given by (2) with the above values of the
coefficients. We see that the magnetic induction for ρ < a is uniform, pointed



along the same direction as ~B0. The other two regions contain a dipole field in
addition a uniform component.

Since ~H = −~∇ΦM = −δx̂ for ρ < a, the ratio of ~B on axis (ρ = 0) to ~B0 is given
by

B

B0
= 4∆−1 =

4
(1 + µr)(1 + µ−1

r ) + (1− µr)(1− µ−1
r )(a/b)2

This may be plotted as follows
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5.17 A current distribution ~J(~x ) exists in a medium of unit relative permeability adjacent
to a semi-infinite slab of material having relative permeability µr and filling the half-
space, z < 0.

a) Show that for z > 0 the magnetic induction can be calculated by replacing the
medium of permeability µr by an image current distribution, ~J∗, with compo-
nents,(

µr − 1
µr + 1

)
Jx(x, y,−z),

(
µr − 1
µr + 1

)
Jy(x, y,−z), −

(
µr − 1
µr + 1

)
Jz(x, y,−z)

We will end up solving parts a) and b) simultaneously. We start, however, by
defining the reflection (Parity) operator P : z → −z so that

P : (x, y, z) → (x, y,−z)

On the right (z > 0), we assume the magnetic induction is generated by both
the original current ~J (contained entirely on the right) and an image current ~J∗

(contained entirely on the left). Thus

~BR(~x ) =
µ0

4π

∫
( ~J(~x ′) + ~J∗(~x ′))× (~x− ~x ′)

|~x− ~x ′|3
d3x′

By changing variables z′ → −z′ in the ~J∗ term, we may restrict this volume
integral to z′ > 0

~BR(~x ) =
µ0

4π

∫
z′>0

(
~J(~x ′)× (~x− ~x ′)

|~x− ~x ′|3
+

~J∗(P~x ′)× (~x− P~x ′)
|~x− P~x ′|3

)
d3x′ (3)



On the left (z < 0), we assume the magnetic induction is generated by a current
of the same form as the original ~J , but with possibly modified strength (because
of the change of permeability). Given a modified current λ ~J and permeability µ,
we write

~BL(~x ) =
µλ

4π

∫
z′>0

~J(~x ′)× (~x− ~x ′)
|~x− ~x ′|3

d3x′ (4)

Our aim is now to match the left and right magnetic field and magnetic induction.
More precisely, at z = 0, both Hx and Hy (the parallel components) must be
continuous, and Bz (the perpendicular component) must also be continuous. To
perform this matching, we first note that the norms |~x − ~x ′| and |~x − P~x ′| are
identical at z = 0. (The are both equal to

√
(x− x′)2 + (y − y′)2 + z′2.) Thus

all denominators are the same, and we deduce that the numerators of (3) and (4)
must be matched as appropriate. For Bz, we have

(Jx + J∗x)(y − y′)− (Jy + J∗y )(x− x′) = µrλ(Jx(y − y′)− Jy(x− x′))

where any component of ~J∗ is understood to have argument P~x. For Hx and Hy

matching, we find

−(Jy − J∗y )z′ − (Jz + J∗z )(x− x′) = λ(−Jyz′ − Jz(x− x′))

(Jz + J∗z )(x− x′) + (Jx − J∗x)z′ = λ(Jz(x− x′) + Jxz′)

Since these equations hold for all values of (x, y), they separate into

λJy = Jy − J∗y λJz = Jz + J∗z

λJz = Jz + J∗z λJx = Jx − J∗x

µrλJx = Jx + J∗x µrλJy = Jy + J∗y

These equations may be solved to yield

J∗x = (1− λ)Jx, J∗y = (1− λ)Jy, Jz = −(1− λ)Jz

provided µrλ−1 = 1−λ, or λ = 2/(µr +1). This may be given in a more concise
form using the reflection operator

~J∗(~x ) = (1− λ)P ~J(P~x ) =
µr − 1
µr + 1

P ~J(P~x )

b) Show that for z < 0 the magnetic induction appears to be due to a current
distribution [2µr/(µr + 1)] ~J in a medium of unit relative permeability.

From the expression (4) for ~BL, the magnetic induction appears to be due to a
current λ ~J = [2/(µr + 1)] ~J in a medium of permeability µ. This is equivalent



to having a current distribution [2µr/(µr + 1)] ~J in a medium of unit relative
permeability.

5.19 A magnetically “hard” material is in the shape of a right circular cylinder of length L
and radius a. The cylinder has a permanent magnetization M0, uniform throughout
its volume and parallel to its axis.

a) Determine the magnetic field ~H and magnetic induction ~B at all points on the
axis of the cylinder, both inside and outside.

We use a magnetic scalar potential and the expression

ΦM = − 1
4π

∫
V

~∇ · ~M(~x ′)
|~x− ~x ′|

d3x′ +
1
4π

∮
S

n̂′ · ~M(~x ′)
|~x− ~x ′|

da′

Orienting the cylinder along the z axis, we take a uniform magnetization ~M =
M0ẑ. In this case the volume integral drops out, and the surface integral only
picks up contributions on the endcaps. Thus

ΦM =
M0

4π

[∫
top

1
|~x− ~x ′|

da′ −
∫

bottom

1
|~x− ~x ′|

da′
]

where ‘top’ and ‘bottom’ denote z = ±L/2, and the integrals are restricted to
ρ < a. On axis (ρ = 0) we have simply

ΦM (z) =
M0

4π

∫ (
1√

ρ2 + (z − L/2)2
− 1√

ρ2 + (z + L/2)2

)
ρ dρ dφ

=
M0

4

∫ a2

0

(
1√

ρ2 + (z − L/2)2
− 1√

ρ2 + (z + L/2)2

)
dρ2

=
M0

2

[√
a2 + (z − L/2)2 −

√
a2 + (z + L/2)2 − |z − L/2|+ |z + L/2|

]
On axis, the field can only point in the z direction. It is given by

Hz = −∂zΦM = −M0

2

[
z − L/2√

a2 + (z − L/2)2
− z + L/2√

a2 + (z + L/2)2

− sgn(z − L/2) + sgn(z + L/2)
]

Note that the last two terms cancel when |z| > L/2, but add up to 2 inside the
magnet. Thus we may write

Hz = −M0

2

[
z − L/2√

a2 + (z − L/2)2
− z + L/2√

a2 + (z + L/2)2
+ 2 Θ(L/2− |z|)

]



where Θ(ξ) denotes the unit step function, Θ = 1 for ξ > 0 (and 0 otherwise).
The magnetic induction is obtained by rewriting the relation ~H = ~B/µ0 − ~M as
~B = µ0( ~H + ~M ). Since the magnetization is only nonzero inside the magnet [ie
Mz = M0 Θ(L/2 − |z|)], the addition ~H + ~M simply removes the step function
term. We find

Bz = µ0(Hz + Mz) = −µ0M0

2

[
z − L/2√

a2 + (z − L/2)2
− z + L/2√

a2 + (z + L/2)2

]

b) Plot the ratios ~B/µ0M0 and ~H/M0 on the axis as functions of z for L/a = 5.

The z component of the magnetic field looks like
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while the z component of the magnetic induction looks like
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Note that Bz is continuous, while Hz jumps at the ends of the magnet. This
jump may be thought of as arising from effective magnetic surface charge.


