Physics 505 Fall 2005

Homework Assignment #8 — Solutions

Textbook problems: Ch. 5: 5.10, 5.14, 5.17, 5.19

5.10 A circular current loop of radius a carrying a current I lies in the z-y plane with its
center at the origin.

a) Show that the only nonvanishing component of the vector potential is
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where p. (p-) is the smaller (larger) of a and p.

The vector potential may be obtained by
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where (for a circular current loop)

J(@') =15()3(p' — a)¢’

in cylindrical coordinates. Note that to obtain the cylindrical components of /T(a?: )
we have to be careful to convert the basis vector ¢’ at the point 2’ to components
at x. (This is because the basic vectors depend on position.) A bit of geometry
gives

¢ = psin(¢ — ¢') + dpcos(¢ — ¢')
[Or, alternatively, we may choose the point = to lie at ¢ = 0, so that gg =9
and p = 2. Then it is straightforward to see that i Jcos¢’ — ising’ =

$cosd’ — psing’. Using symmetry, we can see that only the ¢ component of A
is nonvanishing, |

The integral expression for the vector potential is then
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where the integrand in the second line is to be evaluated at 2z’ = 0 and p’ = a.
We now use the cylindrical Green’s function expressed as
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Note that the integral over ¢’ picks out the m = 1 term in the sum. Furthermore,
the p component drops out because sin(¢ — ¢') is orthogonal to cos(¢ — ¢'), a
result that could have been obtained by symmetry. We end up with
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Show that an alternative expression for Ay is
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To obtain the alternative expression, we use the alternate form of the Greens’
function
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Since, for 2z’ = 0, we have 25 — 2z = |z|, it is clear that when we stick this into
(1) we end up with
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Write down integral expressions for the components of magnetic induction, using
the expressions of parts a) and b). Evaluate explicitly the components of B on
the z axis by performing the necessary integrations.

Since B =V x A and the only non-vanishing component of Ais Ay, we end up
with )
Bp = —0ZA¢, Bz = ;8p(pA¢)

The z derivative is straightforward. For the p derivative, on the other hand, we

may use the Bessel equation identity

d%Xl(z) + %Xl(z) — X(2)

where X, denotes either J,,, N,,, I,, or K,,. This gives, in particular
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Hence, for the expression of a) we find
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where the top line holds for p < a, while the bottom line holds for p > a.

Similarly, the vector potential of b) yields the magnetic induction
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The z axis corresponds to p = 0. In this case, it is easy to see that B, = 0 (a
result demanded by symmetry) follows from the result that either J;(0) = 0 or
I,(0) = 0. For the B, component, we take the representation of part b). Noting
that Jp(0) = 1, we end up with
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which agrees with the elementary result for a current loop on axis. [This integral
was performed by noting that it is a Laplace transform £{t.J; (at)}, which in turn
is the derivative —d/ds of the transform £{.J;(at)}. The Laplace transform of a
Bessel function can be looked up, with the result £{J,(at)} = a " (Vs? + a? —
$)" /v s? + a?]

5.14 A long, hollow, right circular cylinder of inner (outer) radius a (b), and of relative
permeability u,., is placed in a region of initially uniform magnetic-flux density EO at
right angles to the field. Find the flux density at all points in space, and sketch the
logarithm of the ratio of the magnitudes of B on the cylinder axis to By as a function
of logyq sy for a?/b? = 0.5, 0.1. Neglect end effects.

For a long cylinder (neglecting end effects) we may think of this as a two-
dimensional problem. Since there are no current sources, we use a magnetic scalar



potential ®,; which must be harmonic in two dimensions. Since H=-Vo M
we orient the uniform magnetic field Hy along the +z axis and write

(~Hop+ %) cosd, p>b
Carp, @) = (Bp+ %) cos o, a<p<b (2)
dp cos @, p<a

Of course, the general harmonic expansion would be of the form (A,,p™ +
Brp~™) cosme + (Crpp™ + Dpp~™) sinme. However here we have already used
the shortcut that all matching conditions for m # 1 lead to homogeneous equa-
tions admitting only a trivial (zero) solution.

The magnetostatic boundary conditions demand that Hg and B, are continu-
ous at both p = a and p = b. The magnetic field (and magnetic induction)
components are
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The resulting matching conditions at a and b are
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where p, = p/po. These equations may be solved to yield
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The magnetic scalar potential is then given by (2) with the above values of the
coefficients. We see that the magnetic induction for p < a is uniform, pointed



along the same direction as By. The other two regions contain a dipole field in
addition a uniform component.

Since H = —V®,; = —02 for p < a, the ratio of B on axis (p = 0) to By is given

by
B — 4N = — 4 — 5
By (1 +pe) (L4 pr ) + (1= ) (1 = ") (a/0)
This may be plotted as follows
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5.17 A current distribution J(&') exists in a medium of unit relative permeability adjacent
to a semi-infinite slab of material having relative permeability u, and filling the half-
space, z < 0.

a) Show that for z > 0 the magnetic induction can be calculated by replacing the
medium of permeability p, by an image current distribution, J*, with compo-

nents,
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We will end up solving parts a) and b) simultaneously. We start, however, by
defining the reflection (Parity) operator P : z — —z so that
P (.I,y72) - (muyv —Z)

On the right (z > 0), we assume the magnetic induction is generated by both
the original current J (contained entirely on the right) and an image current J*
(contained entirely on the left). Thus

i) =12 | (@) + T @) x (F =)

By changing variables 2/ — —z/ in the J* term, we may restrict this volume
integral to 2’ > 0
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On the left (z < 0), we assume the magnetic induction is generated by a current
of the same form as the original J, but with possibly modified strength (because

of the change of permeability). Given a modified current AJ and permeability pu,
we write

—
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Our aim is now to match the left and right magnetic field and magnetic induction.
More precisely, at z = 0, both H, and H, (the parallel components) must be
continuous, and B, (the perpendicular component) must also be continuous. To
perform this matching, we first note that the norms |Z — Z’| and |¥ — PZ’| are
identical at 2 = 0. (The are both equal to \/(z — /)2 + (y — y/)? + 2/2.) Thus
all denominators are the same, and we deduce that the numerators of (3) and (4)
must be matched as appropriate. For B,, we have

(Jo+ Ty —y") = (Jy + J))(x —2") = e XM Ja(y —¢') — Jy(x —2))

where any component of J* is understood to have argument Pz. For H, and H,
matching, we find

—(Jy = Jy)Z = (L. + J)(@ — 2)
(Jo + I (2 = a) + (Jo — J7)2

(=Jy2' = J(z = 2'))

A
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Since these equations hold for all values of (z,y), they separate into

ANy =Jy—J, AN, =J,+J]
AN, =J,+J; ANy =J, —J,
ATy = Jp + T prATy = Jy + J;
These equations may be solved to yield

Ti=(1=NJoy,  J=(1=NJy,  Jo=—(1=\J.

provided i, A—1=1—X, or A = 2/(u, +1). This may be given in a more concise
form using the reflection operator

pr—1 %
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Show that for z < 0 the magnetic induction appears to be due to a current
distribution [2u, /(- + 1)]J in a medium of unit relative permeability.

From the expression (4) for B L, the magnetic induction appears to be due to a
current AJ = [2/(p, + 1)]J in a medium of permeability p. This is equivalent



to having a current distribution [24,/(p, 4+ 1)]J in a medium of unit relative
permeability.

5.19 A magnetically “hard” material is in the shape of a right circular cylinder of length L
and radius a. The cylinder has a permanent magnetization M, uniform throughout
its volume and parallel to its axis.

a) Determine the magnetic field H and magnetic induction B at all points on the
axis of the cylinder, both inside and outside.

We use a magnetic scalar potential and the expression
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Orienting the cylinder along the z axis, we take a uniform magnetization M =
Myz. In this case the volume integral drops out, and the surface integral only
picks up contributions on the endcaps. Thus
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where ‘top’ and ‘bottom’ denote z = +L /2, and the integrals are restricted to
p < a. On axis (p = 0) we have simply
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On axis, the field can only point in the z direction. It is given by
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Note that the last two terms cancel when |z| > L/2, but add up to 2 inside the
magnet. Thus we may write
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where ©(§) denotes the unit step function, ©® =1 for £ > 0 (and 0 othervvlse)
The magnetlc induction is obtained by rewriting the relation H=28 /Ho — M as
B = puo(H + M). Since the magnetization is only nonzero inside the magnet [ie
M, = My©O(L/2 — |2|)], the addition H + M simply removes the step function
term. We find

oMo z—L/2 B 24 L/2
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b) Plot the ratios B/uoMo and H /My on the axis as functions of z for L/a = 5.

The z component of the magnetic field looks like

H/M,
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while the z component of the magnetic induction looks like

B/HoMg

- = : -~ z/L

Note that B, is continuous, while H, jumps at the ends of the magnet. This
jump may be thought of as arising from effective magnetic surface charge.



