Homework Assignment \#8 - Solutions

Textbook problems: Ch. 5: 5.10, 5.14, 5.17, 5.19
5.10 A circular current loop of radius a carrying a current I lies in the $x-y$ plane with its center at the origin.
a) Show that the only nonvanishing component of the vector potential is

$$
A_{\phi}(\rho, z)=\frac{\mu_{0} I a}{\pi} \int_{0}^{\infty} d k \cos k z I_{1}\left(k \rho_{<}\right) K_{1}\left(k \rho_{>}\right)
$$

where $\rho_{<}\left(\rho_{>}\right)$is the smaller (larger) of a and ρ.
The vector potential may be obtained by

$$
\vec{A}(\vec{x})=\frac{\mu_{0}}{4 \pi} \int \frac{\vec{J}\left(\vec{x}^{\prime}\right)}{\left|\vec{x}-\vec{x}^{\prime}\right|} d^{3} x^{\prime}
$$

where (for a circular current loop)

$$
\vec{J}\left(\vec{x}^{\prime}\right)=I \delta\left(z^{\prime}\right) \delta\left(\rho^{\prime}-a\right) \hat{\phi}^{\prime}
$$

in cylindrical coordinates. Note that to obtain the cylindrical components of $\vec{A}(\vec{x})$ we have to be careful to convert the basis vector $\hat{\phi}^{\prime}$ at the point x^{\prime} to components at x. (This is because the basic vectors depend on position.) A bit of geometry gives

$$
\hat{\phi}^{\prime}=\hat{\rho} \sin \left(\phi-\phi^{\prime}\right)+\hat{\phi} \cos \left(\phi-\phi^{\prime}\right)
$$

[Or, alternatively, we may choose the point x to lie at $\phi=0$, so that $\hat{\phi}=\hat{y}$ and $\hat{\rho}=\hat{x}$. Then it is straightforward to see that $\hat{\phi}^{\prime}=\hat{y} \cos \phi^{\prime}-\hat{x} \sin \phi^{\prime}=$ $\hat{\phi} \cos \phi^{\prime}-\hat{\rho} \sin \phi^{\prime}$. Using symmetry, we can see that only the $\hat{\phi}$ component of \vec{A} is nonvanishing.]
The integral expression for the vector potential is then

$$
\begin{align*}
\vec{A}(\vec{x}) & =\frac{\mu_{0} I}{4 \pi} \int \frac{\delta\left(z^{\prime}\right) \delta\left(\rho^{\prime}-a\right)\left[\hat{\rho} \sin \left(\phi-\phi^{\prime}\right)+\hat{\phi} \cos \left(\phi-\phi^{\prime}\right)\right]}{\left|\vec{x}-\vec{x}^{\prime}\right|} \rho^{\prime} d \rho^{\prime} d \phi^{\prime} d z^{\prime} \tag{1}\\
& =\frac{\mu_{0} I a}{4 \pi} \int_{0}^{2 \pi} \frac{\hat{\rho} \sin \left(\phi-\phi^{\prime}\right)+\hat{\phi} \cos \left(\phi-\phi^{\prime}\right)}{\left|\vec{x}-\vec{x}^{\prime}\right|} d \phi^{\prime}
\end{align*}
$$

where the integrand in the second line is to be evaluated at $z^{\prime}=0$ and $\rho^{\prime}=a$. We now use the cylindrical Green's function expressed as

$$
\begin{aligned}
& \frac{1}{\left|\vec{x}-\vec{x}^{\prime}\right|}=\frac{4}{\pi} \int_{0}^{\infty} d k \cos \left[k\left(z-z^{\prime}\right)\right]\left[\frac{1}{2} I_{0}\left(k \rho_{<}\right) K_{0}\left(k \rho_{>}\right)\right. \\
&\left.+\sum_{m=1}^{\infty} \cos \left[m\left(\phi-\phi^{\prime}\right)\right] I_{m}\left(k \rho_{<}\right) K_{m}\left(k \rho_{>}\right)\right]
\end{aligned}
$$

Note that the integral over ϕ^{\prime} picks out the $m=1$ term in the sum. Furthermore, the $\hat{\rho}$ component drops out because $\sin \left(\phi-\phi^{\prime}\right)$ is orthogonal to $\cos \left(\phi-\phi^{\prime}\right)$, a result that could have been obtained by symmetry. We end up with

$$
\begin{aligned}
\vec{A}(\vec{x}) & =\frac{\mu_{0} I a}{4 \pi} \frac{4}{\pi} \pi \hat{\phi} \int_{0}^{\infty} d k \cos (k z) I_{1}\left(k \rho_{<}\right) K_{1}\left(k \rho_{>}\right) \\
& =\frac{\mu_{0} I a}{\pi} \hat{\phi} \int_{0}^{\infty} d k \cos (k z) I_{1}\left(k \rho_{<}\right) K_{1}\left(k \rho_{>}\right)
\end{aligned}
$$

b) Show that an alternative expression for A_{ϕ} is

$$
A_{\phi}(\rho, z)=\frac{\mu_{0} I a}{2} \int_{0}^{\infty} d k e^{-k|z|} J_{1}(k a) J_{1}(k \rho)
$$

To obtain the alternative expression, we use the alternate form of the Greens' function

$$
\begin{aligned}
& \frac{1}{\left|\vec{x}-\vec{x}^{\prime}\right|}=2 \int_{0}^{\infty} d k e^{-k\left(z_{>}-z_{<}\right)}\left[\frac{1}{2} J_{0}(k \rho) J_{0}\left(k \rho^{\prime}\right)\right. \\
&\left.+\sum_{m=1}^{\infty} \cos \left[m\left(\phi-\phi^{\prime}\right)\right] J_{m}(k \rho) J_{m}\left(k \rho^{\prime}\right)\right]
\end{aligned}
$$

Since, for $z^{\prime}=0$, we have $z_{>}-z_{<}=|z|$, it is clear that when we stick this into (1) we end up with

$$
\vec{A}(\vec{x})=\frac{\mu_{0} I a}{2} \hat{\phi} \int_{0}^{\infty} d k e^{-k|z|} J_{1}(k \rho) J_{1}(k a)
$$

c) Write down integral expressions for the components of magnetic induction, using the expressions of parts a) and b). Evaluate explicitly the components of \vec{B} on the z axis by performing the necessary integrations.
Since $\vec{B}=\vec{\nabla} \times \vec{A}$ and the only non-vanishing component of \vec{A} is A_{ϕ}, we end up with

$$
B_{\rho}=-\partial_{z} A_{\phi}, \quad B_{z}=\frac{1}{\rho} \partial_{\rho}\left(\rho A_{\phi}\right)
$$

The z derivative is straightforward. For the ρ derivative, on the other hand, we may use the Bessel equation identity

$$
\frac{d}{d z} X_{1}(z)+\frac{1}{z} X_{1}(z)=X_{0}(z)
$$

where X_{m} denotes either J_{m}, N_{m}, I_{m} or K_{m}. This gives, in particular

$$
\frac{1}{\rho} \partial_{\rho}\left[\rho X_{1}(k \rho)\right]=k X_{0}(k \rho)
$$

Hence, for the expression of a) we find

$$
B_{\rho}=\frac{\mu_{0} I a}{\pi} \int_{0}^{\infty} d k k \sin (k z) I_{1}\left(k \rho_{<}\right) K_{1}\left(k \rho_{>}\right)
$$

and

$$
B_{z}=\frac{\mu_{0} I a}{\pi} \int_{0}^{\infty} d k k \cos (k z)\left\{\begin{array}{c}
I_{0}(k \rho) K_{1}(k a) \\
I_{1}(k a) K_{0}(k \rho)
\end{array}\right\}
$$

where the top line holds for $\rho<a$, while the bottom line holds for $\rho>a$.
Similarly, the vector potential of b) yields the magnetic induction

$$
B_{\rho}=-\frac{\mu_{0} I a}{2} \operatorname{sgn}(\mathrm{z}) \int_{0}^{\infty} d k k e^{-k|z|} J_{1}(k \rho) J_{1}(k a)
$$

and

$$
B_{z}=\frac{\mu_{0} I a}{2} \int_{0}^{\infty} d k k e^{-k|z|} J_{0}(k \rho) J_{1}(k a)
$$

The z axis corresponds to $\rho=0$. In this case, it is easy to see that $B_{\rho}=0$ (a result demanded by symmetry) follows from the result that either $J_{1}(0)=0$ or $I_{1}(0)=0$. For the B_{z} component, we take the representation of part $\left.b\right)$. Noting that $J_{0}(0)=1$, we end up with

$$
\begin{aligned}
B_{z}(\rho=0) & =\frac{\mu_{0} I a}{2} \int_{0}^{\infty} d k k e^{-k|z|} J_{1}(k a) \\
& =\frac{\mu_{0} I a}{2} \frac{a}{\left(z^{2}+a^{2}\right)^{3 / 2}} \\
& =\frac{\mu_{0} I a^{2}}{2\left(z^{2}+a^{2}\right)^{3 / 2}}
\end{aligned}
$$

which agrees with the elementary result for a current loop on axis. [This integral was performed by noting that it is a Laplace transform $\mathcal{L}\left\{t J_{1}(a t)\right\}$, which in turn is the derivative $-d / d s$ of the transform $\mathcal{L}\left\{J_{1}(a t)\right\}$. The Laplace transform of a Bessel function can be looked up, with the result $\mathcal{L}\left\{J_{n}(a t)\right\}=a^{-n}\left(\sqrt{s^{2}+a^{2}}-\right.$ $s)^{n} / \sqrt{s^{2}+a^{2}}$.]
5.14 A long, hollow, right circular cylinder of inner (outer) radius $a(b)$, and of relative permeability μ_{r}, is placed in a region of initially uniform magnetic-flux density \vec{B}_{0} at right angles to the field. Find the flux density at all points in space, and sketch the logarithm of the ratio of the magnitudes of \vec{B} on the cylinder axis to \vec{B}_{0} as a function of $\log _{10} \mu_{r}$ for $a^{2} / b^{2}=0.5,0.1$. Neglect end effects.

For a long cylinder (neglecting end effects) we may think of this as a twodimensional problem. Since there are no current sources, we use a magnetic scalar
potential Φ_{M} which must be harmonic in two dimensions. Since $\vec{H}=-\vec{\nabla} \Phi_{M}$, we orient the uniform magnetic field H_{0} along the $+x$ axis and write

$$
\Phi_{M}(\rho, \phi)= \begin{cases}\left(-H_{0} \rho+\sum \frac{\alpha}{\rho}\right) \cos \phi, & \rho>b \tag{2}\\ \left(\beta \rho+\frac{\gamma}{\rho}\right) \cos \phi, & a<\rho<b \\ \delta \rho \cos \phi, & \rho<a\end{cases}
$$

Of course, the general harmonic expansion would be of the form $\left(A_{m} \rho^{m}+\right.$ $\left.B_{m} \rho^{-m}\right) \cos m \phi+\left(C_{m} \rho^{m}+D_{m} \rho^{-m}\right) \sin m \phi$. However here we have already used the shortcut that all matching conditions for $m \neq 1$ lead to homogeneous equations admitting only a trivial (zero) solution.
The magnetostatic boundary conditions demand that H_{ϕ} and B_{ρ} are continuous at both $\rho=a$ and $\rho=b$. The magnetic field (and magnetic induction) components are

$$
H_{\phi}=-\frac{1}{\rho} \partial_{\phi} \Phi_{M}= \begin{cases}\left(-H_{0}+\frac{\alpha}{\rho^{2}}\right) \sin \phi, & \rho>b \\ \left(\beta+\frac{\gamma}{\rho^{2}}\right) \sin \phi, & a<\rho<b \\ \delta \sin \phi, & \rho, a\end{cases}
$$

and

$$
B_{\rho}=\mu \partial_{\rho} \Phi_{M}= \begin{cases}\mu_{0}\left(-H_{0}-\frac{\alpha}{\rho^{2}}\right) \cos \phi, & \rho>b \\ \mu\left(\beta-\frac{\gamma}{\rho^{2}}\right) \cos \phi, & a<\rho<b \\ \mu_{0} \delta \cos \phi, & \rho<a\end{cases}
$$

The resulting matching conditions at a and b are

$$
\begin{aligned}
-H_{0}+\frac{\alpha}{b^{2}} & =\beta+\frac{\gamma}{b^{2}}, & -H_{0}-\frac{\alpha}{b^{2}} & =\mu_{r}\left(\beta-\frac{\gamma}{b^{2}}\right) \\
\beta+\frac{\gamma}{a^{2}} & =\delta, & \beta-\frac{\gamma}{a^{2}} & =\frac{1}{\mu_{r}} \delta
\end{aligned}
$$

where $\mu_{r}=\mu / \mu_{0}$. These equations may be solved to yield

$$
\begin{aligned}
\alpha & =\Delta^{-1}\left(\mu_{r}-\mu_{r}^{-1}\right)\left(b^{2}-a^{2}\right) H_{0} \\
\beta & =-2 \Delta^{-1}\left(1+\mu_{r}^{-1}\right) H_{0} \\
\gamma & =-2 \Delta^{-1}\left(1-\mu_{r}^{-1}\right) a^{2} H_{0} \\
\delta & =-4 \Delta^{-1} H_{0}
\end{aligned}
$$

where

$$
\Delta=\left(1+\mu_{r}\right)\left(1+\mu_{r}^{-1}\right)+\left(1-\mu_{r}\right)\left(1-\mu_{r}^{-1}\right)\left(\frac{a}{b}\right)^{2}=\frac{1}{\mu_{r}}\left[\left(\mu_{r}+1\right)^{2}-\left(\mu_{r}-1\right)^{2}\left(\frac{a}{b}\right)^{2}\right]
$$

The magnetic scalar potential is then given by (2) with the above values of the coefficients. We see that the magnetic induction for $\rho<a$ is uniform, pointed
along the same direction as \vec{B}_{0}. The other two regions contain a dipole field in addition a uniform component.
Since $\vec{H}=-\vec{\nabla} \Phi_{M}=-\delta \hat{x}$ for $\rho<a$, the ratio of \vec{B} on axis $(\rho=0)$ to \vec{B}_{0} is given by

$$
\frac{B}{B_{0}}=4 \Delta^{-1}=\frac{4}{\left(1+\mu_{r}\right)\left(1+\mu_{r}^{-1}\right)+\left(1-\mu_{r}\right)\left(1-\mu_{r}^{-1}\right)(a / b)^{2}}
$$

This may be plotted as follows

5.17 A current distribution $\vec{J}(\vec{x})$ exists in a medium of unit relative permeability adjacent to a semi-infinite slab of material having relative permeability μ_{r} and filling the halfspace, $z<0$.
a) Show that for $z>0$ the magnetic induction can be calculated by replacing the medium of permeability μ_{r} by an image current distribution, \vec{J}^{*}, with components,

$$
\left(\frac{\mu_{r}-1}{\mu_{r}+1}\right) J_{x}(x, y,-z), \quad\left(\frac{\mu_{r}-1}{\mu_{r}+1}\right) J_{y}(x, y,-z), \quad-\left(\frac{\mu_{r}-1}{\mu_{r}+1}\right) J_{z}(x, y,-z)
$$

We will end up solving parts a) and b) simultaneously. We start, however, by defining the reflection (Parity) operator $P: z \rightarrow-z$ so that

$$
P:(x, y, z) \rightarrow(x, y,-z)
$$

On the right $(z>0)$, we assume the magnetic induction is generated by both the original current \vec{J} (contained entirely on the right) and an image current \vec{J}^{*} (contained entirely on the left). Thus

$$
\vec{B}_{R}(\vec{x})=\frac{\mu_{0}}{4 \pi} \int \frac{\left(\vec{J}\left(\vec{x}^{\prime}\right)+\vec{J}^{*}\left(\vec{x}^{\prime}\right)\right) \times\left(\vec{x}-\vec{x}^{\prime}\right)}{\left|\vec{x}-\vec{x}^{\prime}\right|^{3}} d^{3} x^{\prime}
$$

By changing variables $z^{\prime} \rightarrow-z^{\prime}$ in the \vec{J}^{*} term, we may restrict this volume integral to $z^{\prime}>0$

$$
\begin{equation*}
\vec{B}_{R}(\vec{x})=\frac{\mu_{0}}{4 \pi} \int_{z^{\prime}>0}\left(\frac{\vec{J}\left(\vec{x}^{\prime}\right) \times\left(\vec{x}-\vec{x}^{\prime}\right)}{\left|\vec{x}-\vec{x}^{\prime}\right|^{3}}+\frac{\vec{J}^{*}\left(P \vec{x}^{\prime}\right) \times\left(\vec{x}-P \vec{x}^{\prime}\right)}{\left|\vec{x}-P \vec{x}^{\prime}\right|^{3}}\right) d^{3} x^{\prime} \tag{3}
\end{equation*}
$$

On the left $(z<0)$, we assume the magnetic induction is generated by a current of the same form as the original \vec{J}, but with possibly modified strength (because of the change of permeability). Given a modified current $\lambda \vec{J}$ and permeability μ, we write

$$
\begin{equation*}
\vec{B}_{L}(\vec{x})=\frac{\mu \lambda}{4 \pi} \int_{z^{\prime}>0} \frac{\vec{J}\left(\vec{x}^{\prime}\right) \times\left(\vec{x}-\vec{x}^{\prime}\right)}{\left|\vec{x}-\vec{x}^{\prime}\right|^{3}} d^{3} x^{\prime} \tag{4}
\end{equation*}
$$

Our aim is now to match the left and right magnetic field and magnetic induction. More precisely, at $z=0$, both H_{x} and H_{y} (the parallel components) must be continuous, and B_{z} (the perpendicular component) must also be continuous. To perform this matching, we first note that the norms $\left|\vec{x}-\vec{x}^{\prime}\right|$ and $\left|\vec{x}-P \vec{x}^{\prime}\right|$ are identical at $z=0$. (The are both equal to $\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+z^{\prime 2}}$.) Thus all denominators are the same, and we deduce that the numerators of (3) and (4) must be matched as appropriate. For B_{z}, we have

$$
\left(J_{x}+J_{x}^{*}\right)\left(y-y^{\prime}\right)-\left(J_{y}+J_{y}^{*}\right)\left(x-x^{\prime}\right)=\mu_{r} \lambda\left(J_{x}\left(y-y^{\prime}\right)-J_{y}\left(x-x^{\prime}\right)\right)
$$

where any component of \vec{J}^{*} is understood to have argument $P \vec{x}$. For H_{x} and H_{y} matching, we find

$$
\begin{aligned}
-\left(J_{y}-J_{y}^{*}\right) z^{\prime}-\left(J_{z}+J_{z}^{*}\right)\left(x-x^{\prime}\right) & =\lambda\left(-J_{y} z^{\prime}-J_{z}\left(x-x^{\prime}\right)\right) \\
\left(J_{z}+J_{z}^{*}\right)\left(x-x^{\prime}\right)+\left(J_{x}-J_{x}^{*}\right) z^{\prime} & =\lambda\left(J_{z}\left(x-x^{\prime}\right)+J_{x} z^{\prime}\right)
\end{aligned}
$$

Since these equations hold for all values of (x, y), they separate into

$$
\begin{aligned}
\lambda J_{y} & =J_{y}-J_{y}^{*} & \lambda J_{z} & =J_{z}+J_{z}^{*} \\
\lambda J_{z} & =J_{z}+J_{z}^{*} & \lambda J_{x} & =J_{x}-J_{x}^{*} \\
\mu_{r} \lambda J_{x} & =J_{x}+J_{x}^{*} & \mu_{r} \lambda J_{y} & =J_{y}+J_{y}^{*}
\end{aligned}
$$

These equations may be solved to yield

$$
J_{x}^{*}=(1-\lambda) J_{x}, \quad J_{y}^{*}=(1-\lambda) J_{y}, \quad J_{z}=-(1-\lambda) J_{z}
$$

provided $\mu_{r} \lambda-1=1-\lambda$, or $\lambda=2 /\left(\mu_{r}+1\right)$. This may be given in a more concise form using the reflection operator

$$
\vec{J}^{*}(\vec{x})=(1-\lambda) P \vec{J}(P \vec{x})=\frac{\mu_{r}-1}{\mu_{r}+1} P \vec{J}(P \vec{x})
$$

b) Show that for $z<0$ the magnetic induction appears to be due to a current distribution $\left[2 \mu_{r} /\left(\mu_{r}+1\right)\right] \vec{J}$ in a medium of unit relative permeability.
From the expression (4) for \vec{B}_{L}, the magnetic induction appears to be due to a current $\lambda \vec{J}=\left[2 /\left(\mu_{r}+1\right)\right] \vec{J}$ in a medium of permeability μ. This is equivalent
to having a current distribution $\left[2 \mu_{r} /\left(\mu_{r}+1\right)\right] \vec{J}$ in a medium of unit relative permeability.
5.19 A magnetically "hard" material is in the shape of a right circular cylinder of length L and radius a. The cylinder has a permanent magnetization M_{0}, uniform throughout its volume and parallel to its axis.
a) Determine the magnetic field \vec{H} and magnetic induction \vec{B} at all points on the axis of the cylinder, both inside and outside.
We use a magnetic scalar potential and the expression

$$
\Phi_{M}=-\frac{1}{4 \pi} \int_{V} \frac{\vec{\nabla} \cdot \vec{M}\left(\vec{x}^{\prime}\right)}{\left|\vec{x}-\vec{x}^{\prime}\right|} d^{3} x^{\prime}+\frac{1}{4 \pi} \oint_{S} \frac{\hat{n}^{\prime} \cdot \vec{M}\left(\vec{x}^{\prime}\right)}{\left|\vec{x}-\vec{x}^{\prime}\right|} d a^{\prime}
$$

Orienting the cylinder along the z axis, we take a uniform magnetization $\vec{M}=$ $M_{0} \hat{z}$. In this case the volume integral drops out, and the surface integral only picks up contributions on the endcaps. Thus

$$
\Phi_{M}=\frac{M_{0}}{4 \pi}\left[\int_{\text {top }} \frac{1}{\left|\vec{x}-\vec{x}^{\prime}\right|} d a^{\prime}-\int_{\text {bottom }} \frac{1}{\left|\vec{x}-\vec{x}^{\prime}\right|} d a^{\prime}\right]
$$

where 'top' and 'bottom' denote $z= \pm L / 2$, and the integrals are restricted to $\rho<a$. On axis $(\rho=0)$ we have simply

$$
\begin{aligned}
\Phi_{M}(z) & =\frac{M_{0}}{4 \pi} \int\left(\frac{1}{\sqrt{\rho^{2}+(z-L / 2)^{2}}}-\frac{1}{\sqrt{\rho^{2}+(z+L / 2)^{2}}}\right) \rho d \rho d \phi \\
& =\frac{M_{0}}{4} \int_{0}^{a^{2}}\left(\frac{1}{\sqrt{\rho^{2}+(z-L / 2)^{2}}}-\frac{1}{\sqrt{\rho^{2}+(z+L / 2)^{2}}}\right) d \rho^{2} \\
& =\frac{M_{0}}{2}\left[\sqrt{a^{2}+(z-L / 2)^{2}}-\sqrt{a^{2}+(z+L / 2)^{2}}-|z-L / 2|+|z+L / 2|\right]
\end{aligned}
$$

On axis, the field can only point in the z direction. It is given by

$$
\begin{array}{r}
H_{z}=-\partial_{z} \Phi_{M}=-\frac{M_{0}}{2}\left[\frac{z-L / 2}{\sqrt{a^{2}+(z-L / 2)^{2}}}-\frac{z+L / 2}{\sqrt{a^{2}+(z+L / 2)^{2}}}\right. \\
-\operatorname{sgn}(z-L / 2)+\operatorname{sgn}(z+L / 2)]
\end{array}
$$

Note that the last two terms cancel when $|z|>L / 2$, but add up to 2 inside the magnet. Thus we may write

$$
H_{z}=-\frac{M_{0}}{2}\left[\frac{z-L / 2}{\sqrt{a^{2}+(z-L / 2)^{2}}}-\frac{z+L / 2}{\sqrt{a^{2}+(z+L / 2)^{2}}}+2 \Theta(L / 2-|z|)\right]
$$

where $\Theta(\xi)$ denotes the unit step function, $\Theta=1$ for $\xi>0$ (and 0 otherwise). The magnetic induction is obtained by rewriting the relation $\vec{H}=\vec{B} / \mu_{0}-\vec{M}$ as $\vec{B}=\mu_{0}(\vec{H}+\vec{M})$. Since the magnetization is only nonzero inside the magnet [ie $\left.M_{z}=M_{0} \Theta(L / 2-|z|)\right]$, the addition $\vec{H}+\vec{M}$ simply removes the step function term. We find

$$
B_{z}=\mu_{0}\left(H_{z}+M_{z}\right)=-\frac{\mu_{0} M_{0}}{2}\left[\frac{z-L / 2}{\sqrt{a^{2}+(z-L / 2)^{2}}}-\frac{z+L / 2}{\sqrt{a^{2}+(z+L / 2)^{2}}}\right]
$$

b) Plot the ratios $\vec{B} / \mu_{0} M_{0}$ and \vec{H} / M_{0} on the axis as functions of z for $L / a=5$.

The z component of the magnetic field looks like

while the z component of the magnetic induction looks like

Note that B_{z} is continuous, while H_{z} jumps at the ends of the magnet. This jump may be thought of as arising from effective magnetic surface charge.

