
Physics 505 Fall 2005

Homework Assignment #7 — Solutions

Textbook problems: Ch. 4: 4.10
Ch. 5: 5.3, 5.6, 5.7

4.10 Two concentric conducting spheres of inner and outer radii a and b, respectively, carry
charges ±Q. The empty space between the spheres is half-filled by a hemispherical
shell of dielectric (of dielectric constant ε/ε00, as shown in the figure.

aQ−

Q+

b

a) Find the electric field everywhere between the spheres.

This is a somewhat curious problem. It should be obvious that without any
dielectric the electric field between the spheres would be radial

~E =
Q

4πε0

r̂

r2

We cannot expect this to be unmodified by the dielectric. However, we note that
the radial electric field is tangential to the interface between the dielectric and
empty region. Thus the tangential matching condition E

‖
1 = E

‖
2 is automatically

satisfied. At the same time there is no perpendicular component to the interface,
so there is nothing to worry about for the D⊥

1 = D⊥
2 matching condition. This

suggests that we guess a solution of the radial form

~E = A
r̂

r2

where A is a constant to be determined. This guess is perhaps not completely
obvious because one may have expected the field lines to bend into or out of the
dielectric region. However, we could also recall that parallel fields do not get bent
across the dielectric interface.

We may use the integral form of Gauss’ law in a medium to determine the above
constant A ∮

~D · n̂ da = Q ⇒ ε0A

r2
(2πr2) +

εA

r2
(2πr2) = Q



or A = Q/2π(ε + ε0). Hence

~E =
Q

2π(ε + ε0)
r̂

r2

Note that 1
2 (ε + ε0) may be viewed as the average permittivity in the volume

between the spheres.

b) Calculate the surface-charge distribution on the inner sphere.

The surface-charge density is given by σ = D⊥
∣∣
r=a

where either D⊥ = ε0E
⊥ or

D⊥ = εE⊥ depending on region. This gives

σ =


ε

ε + ε0

Q

2πa2
; dielectric side

ε0
ε + ε0

Q

2πa2
; empty side

(1)

Note that the total charge obtained by integrating σ over the surface of the inner
sphere gives Q as expected.

c) Calculate the polarization-charge density induced on the surface of the dielectric
at r = a.

The polarization charge density is given by

ρpol = −∇ · ~P

where ~P = ε0χe
~E = (ε − ε0) ~E. Since the surface of the dielectric at r = a is

against the inner sphere, we can take the polarization to be zero inside the metal
(‘outside’ the dielectric). Gauss’ law in this case gives

σpol = −P⊥∣∣
r=a

= −(ε− ε0)E⊥∣∣
r=a

= −ε− ε0
ε + ε0

Q

2πa2

Note that when this is combined with (1), the total (free and polarization) charge
density is

σtot = σ + σpol =
ε0

ε + ε0

Q

2πa2

on either half of the sphere. Since this is uniform, this is why the resulting electric
field is radially symmetric.

5.3 A right-circular solenoid of finite length L and radius a has N turns per unit length
and carries a current I. Show that the magnetic induction on the cylinder axis in the
limit NL →∞ is

Bz =
µ0NI

2
(cos θ1 + cos θ2)



where the angles are defined in the figure.

21θ θ

We start by computing the magnetic field on axis for a single loop of wire carrying
a current I. This may be done by an elementary application of the Biot-Savart
law.

dl

α
B

R
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By symmetry, only the z component contributes

Bz =
µ0I

4π

∫
[d~̀× ~R ]z

R3
=

µ0I

4π

∫
d` R sinα

R3
=

µ0I

4π
2πa

a

R3
=

µ0Ia2

2R3

Substituting in R2 = a2 + z2 yields

Bz =
µ0Ia2

2(a2 + z2)3/2
(2)

We now use linear superposition to obtain the field of the solenoid. Defining z1

and z2 as follows
2

1θ θ 2

z− 1 z

(where z1 + z2 = L) we have

Bz =
µ0Ia2

2

∫ z2

−z1

N dz

(a2 + z2)3/2

A simple trig substitution z = a tanα converts this integral to

Bz =
µ0NI

2

∫ tan−1(z2/a)

− tan−1(z1/a)

cos α dα =
µ0NI

2
sinα

∣∣∣tan−1(z2/a)

− tan−1(z1/a)

A bit of geometry then demonstrates that this is equivalent to

Bz =
µ0NI

2
(cos θ1 + cos θ2)



5.6 A cylindrical conductor of radius a has a hole of radius b bored parallel to, and
centered a distance d from, the cylinder axis (d + b < a). The current density is
uniform throughout the remaining metal of the cylinder and is parallel to the axis.
Use Ampère’s law and principle of linear superposition to find the magnitude and the
direction of the magnetic-flux density in the hole.

Ampère’s law in integral form states∮
V

~B · d~̀ = µ0ienc

For a cylindrically symmetric geometry this gives simply

B =
µ0ienc

2πr
=

µ0(jπr2)
2πr

=
µ0jr

2

where we have assumed a uniform current density j. The direction of the magnetic
induction is given by the right hand rule. For a conductor oriented along the z
axis (so that the current is flowing in the +ẑ direction), we may write

~B =
µ0jr

2
ẑ × r̂ =

µ0j

2
ẑ × ~r

where ~r is the vector from the center of the conductor to the position where we
are measuring the field. We now use linear superposition to start with a solid
cylindrical conductor and then subtract the ‘missing’ current from the hole

~B =
µ0j

2
ẑ × ~x− µ0j

2
ẑ × (~x− ~d ) =

µ0j

2
ẑ × ~d

Here ~d is the vector displacement of the hole from the center of the cylinder. This
somewhat remarkable result demonstrates that the magnetic induction is uniform
in the hole, and is in a direction given by the right hand rule.

If desired, we note that the total current carried by the wire is I = j(πa2 − πb2),
so we may express the magnetic induction in terms of I as

~B =
µ0I

2π(a2 − b2)
ẑ × ~d

5.7 A compact circular coil of radius a, carrying a current I (perhaps N turns, each with
current I/N), lies in the x-y plane with its center at the origin.

a) By elementary means [Eq. (5.4)] find the magnetic induction at any point on the
z axis

By appropriate integration of ~J(~x ′)/|~x−~x ′| we could find the magnetic induction
anywhere in space. However we have already computed the magnetic induction
when restricted to the z axis. The result is given by (2)

Bz =
µ0Ia2

2(a2 + z2)3/2



b) An identical coil with the same magnitude and sense of the current is located
on the same axis, parallel to, and a distance b above, the first coil. With the
coordinate origin relocated at the point midway between the centers of the two
coils, determine the magnetic induction on the axis near the origin as an expansion
in powers of z, up to z4 inclusive:

Bz =
(

µ0Ia2

d3

) [
1 +

3(b2 − a2)z2

2d4
+

15(b4 − 6b2a2 + 2a4)z4

16d8
+ · · ·

]
where d2 = a2 + b2/4.

By shifting the origin around, it should be obvious that the magnetic induction
is given exactly by

Bz =
µ0Ia2

2

(
(a2 + (z − 1

2b)2)−3/2 + (a2 + (z + 1
2b)2)−3/2

)
(3)

All we must do now is to Taylor expand the terms to order z4. Noting that we
are seeking an expansion in powers of z/d2, we may write

Bz =
µ0Ia2

2

(
(d2 − bz + z2)−3/2 + (d2 + bz + z2)−3/2

)
=

µ0Ia2

2d3

(
(1− bζ + d2ζ2)−3/2 + (1 + bζ + d2ζ2)−3/2

)
=

µ0Ia2

2d3

(
(1− bζ + (a2 + 1

4b2)ζ2)−3/2 + (1 + bζ + (a2 + 1
4b2)ζ2)−3/2

) (4)

where we have introduced ζ = z/d2. Expanding this in powers of ζ yields

Bz =
µ0Ia2

2d3

[
1 + 3

2 (b2 − a2)ζ2 + 15
16 (b4 − 6b2a2 + 2a4)ζ4 + · · ·

]
which is the desired result.

c) Show that, off-axis near the origin, the axial and radial components, correct to
second order in the coordinates, take the form

Bz = σ0 + σ2

(
z2 − ρ2

2

)
; Bρ = −σ2zρ

In principle, we may compute the vector potential or magnetic induction off-
axis through the Biot-Savart law. However, near the axis, it is perhaps more
convenient to perform a series expansion of the magnetic induction subject to the
source-free constraints ~∇ · ~B = 0 and ~∇× ~B = 0. By symmetry, we start with

Bz(0, z) = b(z), Bρ(0, z) = 0



where b(z) is the known on-axis solution of part b). We now develop a Taylor
expansion in ρ

Bz(ρ, z) = b(z) + ρb1(z) + ρ2b2(z) + · · · , Bρ(ρ, z) = ρc1(z) + ρ2c2(z) + · · ·

In cylindrical coordinates, we then have

0 = ~∇ · ~B =
1
ρ

∂

∂ρ
ρBρ +

∂

∂z
Bz = 2c1(z) + 3ρc2(z) + b′(z) + ρb′1(z) + · · ·

Since this vanishes for any value of ρ, we match powers to obtain

c1(z) = − 1
2b′(z), c2(z) = − 1

3b′1(z)

We now continue with the curl equation. The only non-trivial component is

0 = [~∇× ~B]φ =
∂

∂z
Bρ −

∂

∂ρ
Bz = ρc′1(z)− b1(z)− 2ρb2(z) + · · ·

This now gives
b1(z) = 0, b2(z) = 1

2c′1(z)

Combining this with the above gives us the solution

Bz(ρ, z) = b(z)− 1
4ρ2b′′(z) + · · · , Bρ(ρ, z) = − 1

2ρb′(z) + · · ·

valid up to and including O(ρ2). Incidentally, we have basically almost solved
problem 5.4 in this manner. The idea here is that if we know the behavior of
the field along a symmetry axis (or in a sufficiently large region of space), the
equations of motion (Maxwell’s equations in this case) allow us to extend the
solution away from the axis in a unique manner.

We now insert b(z) = σ0 + σ2z
2 to obtain

Bz(ρ, z) = σ0 + σ2(z2 − 1
2ρ2) + · · · , Bρ(ρ, z) = −σ2ρz + · · ·

d) For the two coils in part b) show that the magnetic induction on the z axis for
large |z| is given by the expansion in inverse odd powers of |z| obtained from the
small z expansion of part b) by the formal substitution d → |z|.
For large |z| we Taylor expand (3) in inverse powers of z

Bz =
µ0Ia2

2|z|3
(
(1− bz−1 + (a2 + 1

4b2)z−2)−3/2 + (1 + bz−1 + (a2 + 1
4b2)z−2)−3/2

)
Comparing this with the last line of (4) shows that the Taylor series is formally
equivalent under the substitution ζ → z−1, which may be accomplished by taking
d → |z|.



e) If b = a, the two coils are known as a pair of Helmholtz coils. For this choice of
geometry the second terms in the expansions of parts b) and d) are absent [σ2 = 0
in part c)]. The field near the origin is then very uniform. What is the maximum
permitted value of |z|/a if the axial field is to be uniform to one part in 104, one
part in 102?

For b = a the axial field is of the form

Bz =
µ0Ia2

2d3

(
1− 45

16
a4z4

d8
+ · · ·

)
=

4µ0Ia2

53/2a3

(
1− 144

125

(z

a

)4

+ · · ·
)

Taking the (|z|/a)4 term as a small correction, the field non-uniformity is

δB

B
≈ 144

125

(z

a

)4

For uniformity to one part in 104, we find |z|/a < 0.097, while for uniformity to
one part in 102, we instead obtain |z|/a < 0.305. These numbers are actually
pretty good because of the fourth power. For example, the first value indicates
we can move ≈ ±10% of the distance between the coils while maintaining field
uniformity at the level of 0.01%. Helmholtz coils are very useful in the lab for
canceling out the Earth’s magnetic field.


