
Physics 505 Fall 2005

Homework Assignment #5 — Solutions

Textbook problems: Ch. 3: 3.14, 3.26, 3.27
Ch. 4: 4.1

3.14 A line charge of length 2d with a total charge Q has a linear charge density varying
as (d2 − z2), where z is the distance from the midpoint. A grounded, conducting,
spherical shell of inner radius b > d is centered at the midpoint of the line charge.

a) Find the potential everywhere inside the spherical shell as an expansion in Leg-
endre polynomials.

We first ought to specify the charge density ρ(~x ) corresponding to the line charge.
By symmetry, we place the line charge along the z axis. In this case, it is specified
by cos θ = ±1. As a slight subtlety, in order to get a uniform charge density in
spherical coordinates, we need to divide out by r2. Hence for charge density
varying as (d2 − z2) we end up with

ρ(~x ) =
ρ0

r2
(d2 − r2)[δ(cos θ − 1) + δ(cos θ + 1)]

with the caveat that r < d. (This can be specified with a Heaviside step function
Θ(d − r), but we will not bother with that.) The constant ρ0 is specified by
evaluating the total charge

Q =
∫

ρ(~x )d2x =
∫

ρ0

r2
(d2 − r2)[δ(cos θ − 1) + δ(cos θ + 1)]r2 dr dφ d(cos θ)

= 2π · 2 · ρ0

∫ d

0

(d2 − r2) dr =
8π

3
ρ0d

3

Thus ρ0 = 3Q/(8πd3).

Since the spherical shell is grounded, the potential inside the shell is given by

Φ(~x ) =
1

4πε0

∫
ρ(~x ′)G(~x, ~x ′) d3x′

where

G(~x, ~x ′) =
∑
l,m

4π

2l + 1
rl
<

(
1

rl+1
>

− r >l

b2l+1

)
Y ∗

lm(θ′, φ′)Ylm(θ, φ)

is the Dirichlet Green’s function inside a sphere of radius b. Because of spherical
symmetry, we see that only m = 0 terms will contribute in the integral. This



indicates that the expression for Φ(~x ) reduces to one with ordinary Legendre
polynomials

Φ(~x ) =
1

4πε0

∞∑
l=0

Pl(cos θ)
∫

ρ0

r′2
(d2 − r′2)[δ(cos θ′ − 1) + δ(cos θ′ + 1)]

× rl
<

(
1

rl+1
>

−
rl
>

b2l+1

)
Pl(cos θ′) r′2 dr′ dφ′ d(cos θ′)

=
2πρ0

4πε0

∞∑
l=0

Pl(cos θ)[Pl(1) + Pl(−1)]
∫ d

0

(d2 − r′2)rl
<

(
1

rl+1
>

−
rl
>

b2l+1

)
dr′

=
ρ0

ε0

∑
l even

Il(r)Pl(cos θ)

where

Il(r) =
∫ d

0

(d2 − r′2)rl
<

(
1

rl+1
>

−
rl
>

b2l+1

)
dr′

The reason only even values of l contribute is simply because the source is an
even parity one. We are now left with evaluating the integral Il(r). There are
two cases to consider.

Case 1: r < d. This is the more involved computation, as the integral has to be
divided into two segments

Il(r) =
(

1
rl+1

− rl

b2l+1

)∫ r

0

(d2 − r′2)r′l dr′ + rl

∫ d

r

(d2 − r′2)
(

1
r′l+1

− r′l

b2l+1

)
dr′

=
1

rl+1

(
1−

(r

b

)2l+1
)(

d2

l + 1
− r2

l + 3

)
rl+1

+ rl

[
− 1

r′l

(
d2

l
− r′2

l − 2

)
− 1

r′l

(
r′

b

)2l+1(
d2

l + 1
− r′2

l + 3

)]d

r

= d2

(
2l + 1
l(l + 1)

+
2

l(l − 2)

( r

d

)l

− 2
(l + 1)(l + 3)

( r

d

)l (d

b

)l+1
)

− r2 2l + 1
(l − 2)(l + 3)

(1)
Note that for either l = 0 or l = 2 we end up with a log

I0(r) = d2

(
1
2
− 2

3

(d

b

)
− ln

r

d

)
+

1
6
r2

I2(r) =
5
6
d2 − r2

(
7
10

+
2
15

(d

b

)2

− ln
r

d

) (2)



Case 2: r > d. In this case, since r′ < d < r there is only one integral. This is in
fact the first term of (1) with limits extended from 0 to d

Il(r) =
(

1
rl+1

− rl

b2l+1

)∫ d

0

(d2−r′2)r′ldr′ =
2d2

(l + 1)(l + 3)

(
d

r

)l+1(
1−

(r

b

)2l+1
)

(3)

The potential everywhere inside the sphere is thus given by

Φ(~x ) =
3Q

8πε0d3

∑
l even

Il(r)Pl(cos θ)

where Il(r) is given by either (1), (2) or (3) as appropriate.

b) Calculate the surface-charge density induced on the shell.

For the surface-charge density, we need to know Φ(~x ) near r = b. This falls into
Case 2 above, which gives

Φ(~x ) =
3Q

4πε0d

∑
l even

Pl(cos θ)
(l + 1)(l + 3)

(
d

r

)l+1(
1−

(r

b

)2l+1
)

(4)

The surface charge density is then given by

σ = ε0E⊥ = ε0
∂Φ
∂r

∣∣∣
r=b

= − 3Q

4πb2

∑
l even

(2l + 1)Pl(cos θ)
(l + 1)(l + 3)

(
d

b

)l

= − Q

4πb2
+ · · · (5)

Only the l = 0 term contributes to the total charge on the shell. Thus integrating
σ over the entire area (4πb2) demonstrates that there is a total charge of −Q on
the shell.

c) Discuss your answers to parts a) and b) in the limit that d � b.

In this limit, the line charge shrinks to a point compared with the sphere. Thus
we assume d � r as well as d � b when examining the resulting limit. By
rewriting (4), we have

Φ(~x ) =
3Q

4πε0b

∑
l even

Pl(cos θ)
(l + 1)(l + 3)

(
b

r

(d

r

)l

−
(r

b

)l (d

b

)l
)

(6)

Because of the d/r and d/b factors, only the l = 0 term is important in this limit.
The result is

Φ(~x ) =
Q

4πε0

(
1
r
− 1

b

)
which is the potential of a point charge surrounded by a grounded conducting
sphere. Similarly, taking the limit d/b → 0 in (5) yields

σ = − Q

4πb2
(7)



which is the expected uniform induced charge.

Note that if we did not assume r � d (but still take d/b → 0) only the second
term in (6) would disappear for l > 0. This more general limit gives a multipole
expansion

Φ(~x ) =
Q

4πε0

(
−1

b
+
∑

l even

3Pl(cos θ)
(l + 1)(l + 3)

dl

rl+1

)
while the induced charge on the sphere is still uniform, and is given by (7).

3.26 Consider the Green function appropriate for Neumann boundary conditions for the
volume V between the concentric spherical surfaces defined by r = a and r = b, a < b.
To be able to use (1.46) for the potential, impose the simple constraint (1.45). Use
an expansion in spherical harmonics of the form

G(~x, ~x ′) =
∞∑

l=0

gl(r, r′)Pl(cos γ)

where gl(r, r′) = rl
</rl+1

> + fl(r, r′).

a) Show that for l > 0, the radial Green function has the symmetric form

gl(r, r′) =
rl
<

rl+1
>

+

1
(b2l+1 − a2l+1)

[
l + 1

l
(rr′)l +

l

l + 1
(ab)2l+1

(rr′)l+1
+ a2l+1

(
rl

r′l+1
+

r′l

rl+1

)]
There are several approaches to this problem. However, we first consider the
Neumann boundary condition (1.45)

∂G(~x~x ′)
∂n′

∣∣∣∣
bndy

= −4π

S

For this problem with two boundaries, the surface area S must be the area of both
boundaries (ie it is the total area surrounding the volume). Hence S = 4π(a2+b2),
and in particular this is uniform (constant) in the angles. As a result, this will
only contribute to the l = 0 term in the expansion of the Green’s function. More
precisely, we could write

∂G(~x~x ′)
∂n′

∣∣∣∣
bndy

=
∑

l

∂gl(r, r′)
∂n′

Pl(cos γ)

∣∣∣∣∣
bndy

= − 1
a2 + b2

P0(cos γ)

Since the Legendre polynomials are orthogonal, this implies that

∂gl(r, r′)
∂n′

∣∣∣∣
bndy

= − 1
a2 + b2

δl,0



Noting that the outward normal is either in the −r̂′ or the r̂′ direction for the
sphere at a or b, respectively, we end up with two boundary condition equations

∂gl(r, r′)
∂r′

∣∣∣∣
a

=
1

a2 + b2
δl,0

∂gl(r, r′)
∂r′

∣∣∣∣
b

= − 1
a2 + b2

δl,0 (8)

Now that we have written down the boundary conditions for gl(r, r′), we proceed
to obtain its explicit form. The suggestion of the problem is to write

gl(r, r′) =
rl
<

rl+1
>

+ fl(r, r′)

Since
1

|~x− ~x ′|
=
∑

l

rl
<

rl+1
>

Pl(cos γ)

we see that the first term in gl(r, r′) is designed to give the singular source delta
function. The remaining term

F (~x, ~x ′) =
∑

l

fl(r, r′)Pl(cos γ)

then solves the homogeneous equation ∇2
x′F (~x, ~x ′) = 0. But we know how to

solve Laplace’s equation in spherical coordinates, and the result is that the radial
function must be of the form

fl(r, r′) = Alr
′l + Bl

1
r′l+1

Note that we are taking the Green’s function equation to act on the ~x ′ variable,
where ~x may be thought of as a parameter (constant) giving the location of the
delta function source. We thus have

gl(r, r′) =
rl
<

rl+1
>

+ Alr
′l + Bl

1
r′l+1

(9)

All that remains is to use the boundary conditions (8) to solve for Al and Bl. For
the inside sphere (at a), we have

l
al−1

rl+1
+ lAla

l−1 − (l + 1)Bl
1

al+2
=

δl,0

a2 + b2
(10)

while for the outside sphere we have

−(l + 1)
rl

bl+2
+ lAlb

l−1 − (l + 1)Bl
1

bl+2
= − δl,0

a2 + b2
(11)



For l 6= 0 we rewrite these equations as(
la2l+1 −(l + 1)
lb2l+1 −(l + 1)

)(
Al

Bl

)
=
(
−la2l+1/rl+1

(l + 1)rl

)
which may be solved to give(

Al

Bl

)
=

1
l(l + 1)(b2l+1 − a2l+1)

(
−(l + 1) (l + 1)
−lb2l+1 la2l+1

)(
−la2l+1/rl+1

(l + 1)rl

)
=

rl

b2l+1 − a2l+1

(
(a/r)2l+1 + (l + 1)/l

a2l+1 + l/(l + 1)(ab/r)2l+1

)
Inserting this into (9) yields

gl(r, r′) =
rl
<

rl+1
>

+
rl

b2l+1 − a2l+1

[((a

r

)2l+1

+
l + 1

l

)
r′l

+
(

a2l+1 +
l

l + 1

(ab

r

)2l+1
)

1
r′l+1

]
=

rl
<

rl+1
>

+
1

b2l+1 − a2l+1

[
l + 1

l
(rr′)l +

l

l + 1
(ab)2l+1

(rr′)l+1
+ a2l+1

(
r′l

rl+1
+

rl

r′l+1

)]
=

1
b2l+1 − a2l+1

[
l + 1

l
(r<r>)l +

l

l + 1
(ab)2l+1

(r<r>)l+1

+ b2l+1 rl
<

rl+1
>

+ a2l+1 rl
>

r2l+1
<

]
=

l + 1
l(b2l+1 − a2l+1)

(
rl
< +

l

l + 1
a2l+1

rl+1
<

)(
rl
> +

l

l + 1
b2l+1

rl+1
>

)
(10)

which is valid for l 6= 0. Note that in the last few lines we have been able to
rewrite the Green’s function in terms of a product of u(r<) and v(r>) where u
and v satisfies Neumann boundary conditions at r = a and r = b, respectively.
This is related to another possible method of solving this problem. Using the
Legendre identity

∞∑
l=0

2l + 1
4π

Pl(cos γ) = δ(φ− φ′)δ(cos θ − cos θ′)

the Green’s function equation may be reduced to the one-dimensional problem[
d

dr′
r′2

d

dr′
− l(l + 1)

]
gl(r, r′) = −(2l + 1)δ(r − r′)



Using the general method for the Sturm-Liouville problem, the Green’s function
is given by

gl(r, r′) = −2l + 1
Al

ul(r<)vl(r>) (12)

where u(r′) and v(r′) solve the homogeneous equation and the constant Al is
fixed by the Wronskian, W (u, v) = Al/r′2. For l 6= 0 the boundary conditions (8)
are homogeneous

u′(r′)
∣∣
r′=a

= 0 v′(r′)
∣∣
r′=b

= 0

It is easy to see that these are satisfied by

u(r′) = r′l +
l

l + 1
a2l+1

r′l+1
v(r′) = r′l +

l

l + 1
b2l+1

r′l+1

Computing the Wronskian gives∣∣∣∣ u v
u′ v′

∣∣∣∣ = l(2l + 1)(a2l+1 − b2l+1)
(l + 1)r′2

which allows us to identify

Al = −(2l + 1)
l

l + 1
(b2l+1 − a2l+1)

This gives the result of the last line of (10).

b) Show that for l = 0

g0(r, r′) =
1
r>
−
(

a2

a2 + b2

)
1
r′

+ f(r)

where f(r) is arbitrary. Show explicitly in (1.46) that answers for the potential
Φ(~x ) are independent of f(r).

The l = 0 case involves a non-homogeneous boundary condition. Hence the result
of (12) will not work. Of course, we can still work out the one-dimensional delta
function problem with matching and jump conditions at r′ = r. However it is
more direct to return to (10) and (11) and to simply solve those conditions for
l = 0. Both (10) and (11) result in

B0 = − a2

a2 + b2

while leaving A0 completely undetermined. Finally, since r is thought of as a
parameter, this indicates that A0 = f(r) can be an arbitrary function of r. The
l = 0 Green’s function is given by (9)

g0(r, r′) =
1
r>
− a2

a2 + b2

1
r′

+ f(r) (13)



Incidentally, we note that without the inhomogeneous Neumann boundary con-
dition term −4π/S there will be no solution to the system (10) and (11) for l = 0
(unless b is taken to ∞). This demonstrates the inconsistency of simply setting
∂G/∂n′ = 0 for the Neumann Green’s function.

Note that, by setting f(r) = −a2/[(a2 + b2)r] we obtain a symmetrical Green’s
function

g0(r, r′) =
1
r>
− a2

a2 + b2

(
1
r′

+
1
r

)
On the other hand, the choice of f(r) is unphysical. This arises because, for the
Neumann Green’s function, the f(r) contribution to the potential is given by

Φ(~x ) =
1

4πε0

∫
V

ρ(~x ′)f(r) d3x′ +
1
4π

∮
S

∂Φ(~x ′)
∂n′

f(r) da′

=
f(r)
4πε0

(∫
V

ρ(~x ′) d3x′ − ε0

∮
S

~E(~x ′) · dâ′
)

=
f(r)
4πε0

(
qenc − ε0

∮
S

~E(~x ′) · dâ′
)

= 0

by Gauss’ law. It is important not to mix up r and r′ in this derivation.

3.27 Apply the Neumann Green function of Problem 3.26 to the situation in which the
normal electric field is Er = −E0 cos θ at the outer surface (r = b) and is Er = 0 on
the inner surface (r = a).

a) Show that the electrostatic potential inside the volume V is

Φ(~x ) = E0
r cos θ

1− p3

(
1 +

a3

2r3

)
where p = a/b. Find the components of the electric field

Er(r, θ) = −E0
cos θ

1− p3

(
1− a3

r3

)
, Eθ(r, θ) = E0

sin θ

1− p3

(
1 +

a3

2r3

)

Since there is no charge between the spheres, the solution to be boundary value
problem is given by

Φ(~x ) =
1
4π

∮
S

∂Φ(~x ′)
∂n′

G(~x, ~x ′) da′

= − 1
4π

∫
r′=b

Er(Ω′)G(~x, ~x ′)b2 dΩ′

=
E0b

2

4π

∫
r′=b

G(~x, ~x ′)P1(cos θ′) dΩ′



By writing Pl(cos γ) in terms of spherical harmonics, and by using orthogonality
of the Ylm, we see that Φ(~x ′) has only a l = 1 component. Inserting l = 1
into (10), and making note that only Y10 =

√
3/4π cos θ is important because of

symmetry, we find

Φ(~x ) =
E0b

2

4π

∫
r′=b

[g1(r, r′) cos θ cos θ′] cos θ′dΩ′

=
E0b

2 cos θ

3
g1(r, b) =

E0b
2 cos θ

3
2

b3 − a3

(
r +

a3

2r2

)
3b

2

=
E0r cos θ

1− (a/b)3

(
1 +

a3

2r3

) (14)

This is the potential for a constant electric field combined with an electric dipole.
Defining p = a/b, the components of the electric field are

Er = −∂Φ
∂r

= −E0 cos θ

1− p3

(
1− a3

r3

)
, Eθ = −1

r

∂Φ
∂θ

=
E0 sin θ

1− p3

(
1 +

a3

2r3

)

b) Calculate the Cartesian or cylindrical components of the field, Ez and Eρ, and
make a sketch or computer plot of the lines of electric force for a typical case of
p = 0.5.

Rewriting (14) as

Φ(~x ) =
E0

1− p3

(
z +

a3z

2r3

)
we obtain

Ez = −∂Φ
∂z

= − E0

1− p3

(
1 +

a3(1− 3ẑ)
2r3

)
Eρ = −∂Φ

∂ρ
= − E0

1− p3

(
−3a3ẑρ̂

2r3

)

4.1 Calculate the multipole moments qlm of the charge distributions shown as parts a)
and b). Try to obtain results for the nonvanishing moments valid for all l, but in each
case find the first two sets of nonvanishing moments at the very least.

a) z

a
a q

q

q

q

−
−
a

a

x

y



The multipole moments are given by

qlm =
∫

rlY ∗
lm(θ, φ)ρ(~x ) d3x = qal[Y ∗

lm(π
2 , 0)+Y ∗

lm(π
2 , π

2 )−Y ∗
lm(π

2 , π)−Y ∗
lm(π

2 , 3π
2 )]

This is given in terms of associated Legendre polynomials by

qlm = qal

√
2l + 1

4π

(l −m)!
(l + m)!

Pm
l (0)[1 + (−i)m − (−1)m − (i)m]

The moments vanish unless m is odd. Writing m = 2k + 1 gives

ql,2k+1 = 2qal[1− i(−1)k]

√
2l + 1

4π

(l − (2k + 1))!
(l + (2k + 1))!

P 2k+1
l (0)

= 2qal[1− i(−1)k]Yl,2k+1(π
2 , 0)

Note by parity this vanishes unless l is odd. Hence only the odd l and m moments
are present. The lowest non-trivial ones are

q1,1 = −q∗1,−1 = −2qa(1− i)

√
3
8π

and

q3,3 = −q∗3,−3 = −2qa3(1 + i)
1
4

√
35
4π

q3,1 = −q∗3,−1 = 2qa3(1− i)
1
4

√
21
4π

b)

− a

x

y

z
q

q
a

q2

In this case, we have

qlm = qal[Y ∗
lm(0, 0) + Y ∗

lm(π, 0)]

for l > 0 and q00 = 0. By azimuthal symmetry, only the m = 0 moments are
non-vanishing. Hence

ql0 = qal

√
2l + 1

4π
[Pl(1) + Pl(−1)] = qal[1 + (−1)l]

√
2l + 1

4π
l > 0



We end up with even multipoles

ql0 = qal

√
2l + 1

π
l = 2, 4, 6, . . .

Explicitly

q20 = qa2

√
5
π

q40 = 2qa4

√
9
π

c) For the charge distribution of the second set b) write down the multipole expansion
for the potential. Keeping only the lowest-order term in the expansion, plot the
potential in the x-y plane as a function of distance from the origin for distances
greater than a.

The expansion of the potential is

Φ(~x ) =
1

4πε0

∑
l,m

4π

2l + 1
qlm

Ylm(θ, φ)
rl+1

=
1
ε0

∑
l=2,4,...

qal

2l + 1

√
2l + 1

π

Ylm(θ, φ)
rl+1

=
q

2πε0

∑
l=2,4,...

al

rl+1
Pl(cos θ) =

q

4πε0

a2

r3
(3 cos2 θ − 1) + · · ·

In the x-y plane we have cos θ = 0, so the lowest order term is

Φ = − q

4πε0a

(a

r

)3

+ · · ·

We all know what 1/r3 looks like when plotted, but here it is
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d) Calculate directly from Coulomb’s law the exact potential for b) in the x-y plane.
Plot it as a function of distance and compare with the result found in part c).

For three charges, the potential is simply the sum of three terms, one for each
charge. In the x-y plane, if r is the distance from the origin we have

Φ =
q

4πε0

(
1√

r2 + a2
− 1

r
+

1√
r2 + a2

)
= − q

2πε0r

(
1− 1√

1 + (a/r)2

)

= − q

4πε0a
2

(
1

(r/a)
− 1√

1 + (r/a)2

)



The exact potential looks like
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Divide out the asymptotic form in parts c) and d) to see the behavior at large distances
more clearly.

If we divide out by 1/r3, the approximate and exact potentials are

1.5 2 2.5 3 3.5 4
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1

where the straight line is the approximation of c) and the sloped line is the exact
result. The approximation improves as r � a.


