Homework Assignment \#5 - Due Thursday, October 13

Textbook problems: Ch. 3: 3.14, 3.26, 3.27
Ch. 4: 4.1
3.14 A line charge of length $2 d$ with a total charge Q has a linear charge density varying as $\left(d^{2}-z^{2}\right)$, where z is the distance from the midpoint. A grounded, conducting, spherical shell of inner radius $b>d$ is centered at the midpoint of the line charge.
a) Find the potential everywhere inside the spherical shell as an expansion in Legendre polynomials.
b) Calculate the surface-charge density induced on the shell.
c) Discuss your answers to parts a) and b) in the limit that $d \ll b$.
3.26 Consider the Green function appropriate for Neumann boundary conditions for the volume V between the concentric spherical surfaces defined by $r=a$ and $r=b, a<b$. To be able to use (1.46) for the potential, impose the simple constraint (1.45). Use an expansion in spherical harmonics of the form

$$
G\left(\vec{x}, \vec{x}^{\prime}\right)=\sum_{l=0}^{\infty} g_{l}\left(r, r^{\prime}\right) P_{l}(\cos \gamma)
$$

where $g_{l}\left(r, r^{\prime}\right)=r_{<}^{l} / r_{>}^{l+1}+f_{l}\left(r, r^{\prime}\right)$.
a) Show that for $l>0$, the radial Green function has the symmetric form

$$
\begin{aligned}
g_{l}\left(r, r^{\prime}\right) & =\frac{r_{<}^{l}}{r_{>}^{l+1}}+ \\
& \frac{1}{\left(b^{2 l+1}-a^{2 l+1}\right)}\left[\frac{l+1}{l}\left(r r^{\prime}\right)^{l}+\frac{l}{l+1} \frac{(a b)^{2 l+1}}{\left(r r^{\prime}\right)^{l+1}}+a^{2 l+1}\left(\frac{r^{l}}{r^{l+1}}+\frac{r^{\prime l}}{r^{l+1}}\right)\right]
\end{aligned}
$$

b) Show that for $l=0$

$$
g_{0}\left(r, r^{\prime}\right)=\frac{1}{r_{>}}-\left(\frac{a^{2}}{a^{2}+b^{2}}\right) \frac{1}{r^{\prime}}+f(r)
$$

where $f(r)$ is arbitrary. Show explicitly in (1.46) that answers for the potential $\Phi(\vec{x})$ are independent of $f(r)$.
3.27 Apply the Neumann Green function of Problem 3.26 to the situation in which the normal electric field is $E_{r}=-E_{0} \cos \theta$ at the outer surface $(r=b)$ and is $E_{r}=0$ on the inner surface $(r=a)$.
a) Show that the electrostatic potential inside the volume V is

$$
\Phi(\vec{x})=E_{0} \frac{r \cos \theta}{1-p^{3}}\left(1+\frac{a^{3}}{2 r^{3}}\right)
$$

where $p=a / b$. Find the components of the electric field

$$
E_{r}(r, \theta)=-E_{0} \frac{\cos \theta}{1-p^{3}}\left(1-\frac{a^{3}}{r^{3}}\right), \quad E_{\theta}(r, \theta)=E_{0} \frac{\sin \theta}{1-p^{3}}\left(1+\frac{a^{3}}{2 r^{3}}\right)
$$

b) Calculate the Cartesian or cylindrical components of the field, E_{z} ad E_{ρ}, and make a sketch or computer plot of the lines of electric force for a typical case of $p=0.5$.
4.1 Calculate the multipole moments $q_{l m}$ of the charge distributions shown as parts a) and b). Try to obtain results for the nonvanishing moments valid for all l, but in each case find the first two sets of nonvanishing moments at the very least.
a)

b)

$c)$ For the charge distribution of the second set b) write down the multipole expansion for the potential. Keeping only the lowest-order term in the expansion, plot the potential in the $x-y$ plane as a function of distance from the origin for distances greater than a.
d) Calculate directly from Coulomb's law the exact potential for b) in the $x-y$ plane. Plot it as a function of distance and compare with the result found in part c).

Divide out the asymptotic form in parts c) and d) to see the behavior at large distances more clearly.

