
Physics 505 Fall 2005

Homework Assignment #3 — Solutions

Textbook problems: Ch. 2: 2.12, 2.13, 2.15
Ch. 3: 3.1

2.12 Starting with the series solution (2.71) for the two-dimensional potential problem with
the potential specified on the surface of a cylinder of radius b, evaluate the coefficients
formally, substitute them into the series, and sum it to obtain the potential inside the
cylinder in the form of Poisson’s integral:

Φ(ρ, φ) =
1
2π

∫ 2π

0

Φ(b, φ′)
b2 − ρ2

b2 + ρ2 − 2bρ cos(φ′ − φ)
dφ′

What modification is necessary if the potential is desired in the region of space
bounded by the cylinder and infinity?

The series solution (2.71) is given as

Φ(ρ, φ) = a0 + b0 ln ρ +
∞∑

n=1

[anρn sin(nφ + αn) + bnρ−n sin(nφ + βn)]

Since we want an inside solution, we take bn = 0 so the potential is well behaved
at ρ = 0. With some rewriting of the series, we can then turn it into the equivalent
form

Φ(ρ, φ) = 1
2c0 +

∞∑
n=1

(ρ

b

)n

[cn cos(nφ) + dn sin(nφ)] (1)

Breaking up the sin(nφ + αn) terms into sines and cosines is convenient because
we now end up with a standard Fourier series. The Fourier coefficients are

cn =
1
π

∫ 2π

0

Φ(b, φ′) cos(nφ′) dφ′

dn =
1
π

∫ 2π

0

Φ(b, φ′) sin(nφ′) dφ′

Substituting this back into (1) yields

Φ(b, φ) =
1
2π

∫ 2π

0

Φ(b, φ′)

×

[
1 + 2

∞∑
n=1

(ρ

b

)n (
cos(nφ) cos(nφ′) + sin(nφ) sin(nφ′)

)]
dφ′

=
1
2π

∫ 2π

0

Φ(b, φ′)

[
1 + 2

∞∑
n=1

(ρ

b

)n

cos n(φ′ − φ)

]
dφ′

(2)



The series in the square brackets can be summed as a geometric series

1 + 2
∞∑

n=1

(ρ

b

)n

cos n(φ′ − φ)

= <

[
1 + 2

∞∑
n=1

(ρ

b

)n

ein(φ′−φ)

]
= <

[
−1 + 2

∞∑
n=0

(ρ

b
ei(φ′−φ)

)n
]

= <
[
−1 +

2
1− ρ

b ei(φ′−φ)

]
= <

1 + ρ
b ei(φ′−φ)

1− ρ
b ei(φ′−φ)

= <

(
1 + ρ

b ei(φ′−φ)
) (

1− ρ
b e−i(φ′−φ)

)
(
1− ρ

b ei(φ′−φ)
) (

1− ρ
b e−i(φ′−φ)

)
= <1− (ρ/b)2 + 2i(ρ/b) sin(φ′ − φ)

1 + (ρ/b)2 − 2(ρ/b) cos(φ′ − φ)
=

b2 − ρ2

b2 + ρ2 − 2ρb cos(φ′ − φ)

Inserting this into (2) finally yields the result

Φ(ρ, φ) =
1
2π

∫ 2π

0

Φ(b, φ′)
b2 − ρ2

b2 + ρ2 − 2ρb cos(φ′ − φ)
dφ′ (3)

Note that this can be obtained more directly from the Cauchy integral formula
of complex analysis (Jackson problem 2.21).

For the exterior solution, we may simply take ρ/b→ b/ρ in (1). This corresponds
to making the replacement ρ ↔ b in the fraction in the integrand of (3). Since
this only affects the numerator, the simple result is that we change the sign of
Φ(ρ, φ).

2.13 a) Two halves of a long hollow conducting cylinder of inner radius b are separated
by small lengthwise gaps on each side, and are kept at different potentials V1 and
V2. Show that the potential inside is given by

Φ(ρ, φ) =
V1 + V2

2
+

V1 − V2

π
tan−1

(
2bρ

b2 − ρ2
cos φ

)
where φ is measured from a plane perpendicular to the plane through the gap.

For the potential on the cylinder specified as

V 2 V 1

ϕ



we may write the potential as an average piece on the cylinder plus a deviation
from the average

V (φ) = 1
2 (V1 + V2) + 1

2 (V1 − V2) sgn (cos φ)

By linear superposition, the potential Φ(ρ, φ) is a sum of the constant (average)
term plus the term proportional to V1 − V2. Using (3), we have

Φ(ρ, φ) =
V1 + V2

2
+

V1 − V2

4π

∫ 2π

0

sgn (cos φ′)
b2 − ρ2

b2 + ρ2 − 2ρb cos(φ′ − φ)
dφ′ (4)

We may break the integral up into two pieces∫ 2π

0

sgn (cos φ′) dφ′ =
∫ π/2

−π/2

dφ′ −
∫ 3π/2

π/2

dφ′

The second integral can be brought into the domain [−π/2, π/2] by the shift φ′ →
φ′ + π. This has the effect of flipping the sign of cos(φ′ − φ) in the denominator
of (4). Hence

Φ(ρ, φ) =
V1 + V2

2

+
V1 − V2

4π

∫ π/2

−π/2

[
b2 − ρ2

b2 + ρ2 − 2ρb cos(φ′ − φ)
− b2 − ρ2

b2 + ρ2 + 2ρb cos(φ′ − φ)

]
dφ′

=
V1 + V2

2
+

(V1 − V2)bρ(b2 − ρ2)
π

∫ π/2

−π/2

cos(φ′ − φ)
(b2 + ρ2)2 − 4b2ρ2 cos2(φ′ − φ)

dφ′

This can be integrated by making the substitution

u = sin(φ′ − φ) du = cos(φ′ − φ) dφ′

The result is

Φ(ρ, φ) =
V1 + V2

2
+

(V1 − V2)bρ(b2 − ρ2)
π

∫ cos φ

− cos φ

du

(b2 − ρ2)2 + 4b2ρ2u2

This can be converted into an arctan integral with the substitution

x =
2bρ

b2 − ρ2
u x0 =

2bρ

b2 − ρ2
cos φ

giving

Φ(ρ, φ) =
V1 + V2

2
+

V1 − V2

2π

∫ x0

−x0

dx

1 + x2
=

V1 + V2

2
+

V1 − V2

2π
tan−1 x0

∣∣∣x0

−x0

=
V1 + V2

2
+

V1 − V2

π
tan−1

(
2bρ

b2 − ρ2
cos φ

)



b) Calculate the surface-charge density on each half of the cylinder.

The surface charge density is given by

σ = −ε0
dΦ
dρ

∣∣∣
ρ=b

= −ε0
V1 − V2

π
∂ρ tan−1

(
2bρ

b2 − ρ2
cos φ

) ∣∣∣∣
ρ=b

= −ε0
V1 − V2

π

1

1 +
(

2bρ
b2−ρ2 cos φ

)2

2b(b2 + ρ2)
(b2 − ρ2)2

cos φ

∣∣∣∣
ρ=b

= −ε0
V1 − V2

π

2b(b2 + ρ2) cos φ

(b2 − ρ2)2 + 4b2ρ2 cos2 φ

∣∣∣∣
ρ=b

= −ε0
V1 − V2

πb cos φ

Note that we would have ran into trouble had we made the substitution ρ = b
at too early a stage. Furthermore, this expression is valid for either half of the
cylinder. However the surface charge density blows up at the boundaries between
halves (where cos φ vanishes).

2.15 a) Show that the Green function G(x, y;x′, y′) appropriate for Dirichlet boundary
conditions for a square two-dimensional region, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, has an
expansion

G(x, y;x′, y′) = 2
∞∑

n=1

gn(y, y′) sin(nπx) sin(nπx′)

where gn(y, y′) satisfies(
∂2

∂y′2
− n2π2

)
gn(y, y′) = −4πδ(y′ − y) and gn(y, 0) = gn(y, 1) = 0

We start by recalling the the Green’s function is defined by

(∂2
x′ + ∂2

y′)G(x, y;x′, y′) = −4πδ(x′ − x)δ(y′ − y) (5)

Although this is symmetric in x′ and y′, the problem suggests that we begin by
expanding in x′ (and also x). This of course breaks the symmetry in the expanded
form of the Green’s function. Nevertheless G(x, y;x′, y′) is unique for the given
boundary conditions; it just may admit different expansions, and we are free to
choose whatever expansion is the most convenient.

Given the boundary condition that G vanishes for x′ = 0 and x′ = 1, this suggests
an expansion in a Fourier sine series

G(x, y;x′, y′) =
∞∑

n=1

fn(x, y; y′) sin(nπx′)



Substituting this into (5) then gives

∞∑
n=1

(∂2
y′ − n2π2)fn(x, y; y′) sin(nπx′) = −4πδ(x′ − x)δ(y′ − y) (6)

However this is not particularly useful (yet), since the δ(x′−x) on the right hand
side does not match with the Fourier sine series on the left. We can get around
this by invoking the completeness relation for the sine series

∞∑
n=1

sin(nπx) sin(nπx′) = 1
2δ(x− x′)

Replacing the delta function by the sum, we end up by rewriting (6) as

∞∑
n=1

(∂2
y′ − n2π2)fn(x, y; y′) sin(nπx′) = −8πδ(y′ − y)

∞∑
n=1

sin(nπx) sin(nπx′) (7)

Matching left and right sides of the Fourier sine series indicates that the x be-
havior of fn(x, y; y′) must be given by sin(nπx). Putting in a factor of two for
convenience

fn(x, y; y′) = 2gn(y, y′) sin(nπx)

finally motivates the expansion

G(x, y;x′, y′) = 2
∞∑

n=1

gn(y, y′) sin(nπx) sin(nπx′)

When this is inserted into (7), we match the x and x′ behavior perfectly, and we
are left with an equation in y′

(∂2
y′ − n2π2)gn(y, y′) = −4πδ(y′ − y) (8)

The boundary conditions are that G vanishes at y′ = 0 and y′ = 1. Hence we
must also demand gn(y, 0) = gn(y, 1) = 0.

b) Taking for gn(y, y′) appropriate linear combinations of sinh(nπy′) and cosh(nπy′)
in the two regions, y′ < y and y′ > y, in accord with the boundary conditions
and the discontinuity in slope required by the source delta function, show that
the explicit form of G is

G(x, y;x′, y′) = 8
∞∑

n=1

1
n sinh(nπ)

sin(nπx) sin(nπx′) sinh(nπy<) sinh[nπ(1− y>)]

where y<(y>) is the smaller (larger) of y and y′.



To find the Green’s function for (8), we begin with the solution to the homoge-
neous equation (∂2

y′ − n2π2)gn(y, y′) = 0. This clearly has exponential solutions
e±nπy′

, or equivalently sinh(nπy′) and cosh(nπy′). As a result, we can write the
Green’s function as

gn(y, y′) =
{

g< ≡ a< sinh(nπy′) + b< cosh(nπy′) y′ < y
g> ≡ a> sinh(nπy′) + b> cosh(nπy′) y′ > y

We wish to solve for the four constants a<, b<, a>, b> given the boundary condi-
tions gn(y, 0) = 0, gn(y, 1) = 0 and the continuity and jump conditions

g> = g< ∂y′g> = ∂y′g< − 4π when y′ = y

We start with the boundary conditions. For g< to vanish at y′ = 0 we must take
the sinh solution, while for g> to vanish at y′ = 1 we end up with a> sinh(nπ) +
b> cosh(nπ) = 0 or b> = −a> tanh(nπ). Thus

gn(y, y′) =
{

a< sinh(nπy′) y′ < y
a>[sinh(nπy′)− tanh(nπ) cosh(nπy′)] y′ > y

(9)

The continuity and jump conditions yield the system of equations(
sinh(nπy) − sinh(nπy) + tanh(nπ) cosh(nπy)
cosh(nπy) − cosh(nπy) + tanh(nπ) sinh(nπy)

) (
a<

a>

)
=

(
0

4/n

)
which is solved by(

a<

a>

)
= − 4

n tanh(nπ)

(
sinh(nπy)− tanh(nπ) cosh(nπy)

sinh(nπy)

)
= − 4

n sinh(nπ)

(
cosh(nπ) sinh(nπy)− sinh(nπ) cosh(nπy)

cosh(nπ) sinh(nπy)

)
Inserting this into (9) gives

gn(y, y′) =
4

n sinh(nπ)

×
{

sinh(nπy′)[sinh(nπ) cosh(nπy)− cosh(nπ) sinh(nπy)] y′ < y
sinh(nπy)[sinh(nπ) cosh(nπy′)− cosh(nπ) sinh(nπy′)] y′ > y

This is simplified by noting

sinh[nπ(1− y)] = sinh(nπ) cosh(nπy)− cosh(nπ) sinh(nπy)

and by using the definition y< = min(y, y′) and y> = max(y, y′). The result is

gn(y, y′) =
4

n sinh(nπ)
sinh(nπy<) sinh[nπ(1− y>)]



which yields

G(x, y;x′, y′) =
∑

n

8
n sinh(nπ)

sin(nπx) sin(nπx′) sinh(nπy<) sinh[nπ(1− y>)]

3.1 Two concentric spheres have radii a, b (b > a) and each is divided into two hemispheres
by the same horizontal plane. The upper hemisphere of the inner sphere and the lower
hemisphere of the outer sphere are maintained at potential V . The other hemispheres
are at zero potential.

Determine the potential in the region a ≤ r ≤ b as a series in Legendre polynomials.
Include terms at least up to l = 4. Check your solution against known results in the
limiting cases b→∞, and a→ 0.

The general expansion in Legendre polynomials is of the form

Φ(r, θ) =
∑

`

[A`r
` + B`r

−`−1]P`(cos θ) (10)

Since we are working in the region between spheres, neither A` nor B` can be
assumed to vanish. To solve for both A` and B` we will need to consider boundary
conditions at r = a and r = b

Φ(a, θ) =
∑

`

[A`a
` + B`a

−`−1]P`(cos θ) = V for cos θ ≥ 0

Φ(b, θ) =
∑

`

[A`b
` + B`b

−`−1]P`(cos θ) = V for cos θ ≤ 0

Using orthogonality of the Legendre polynomials, we may write

A`a
` + B`a

−`−1 =
2` + 1

2
V

∫ 1

0

P`(x) dx

A`b
` + B`b

−`−1 =
2` + 1

2
V

∫ 0

−1

P`(x) dx =
2` + 1

2
V (−)`

∫ 1

0

P`(x) dx

where in the last expression we used the fact that P`(−x) = (−)`P`(x). Since the
integral is only over half of the standard interval, it does not yield a particularly
simple result. For now, we define

N` =
∫ 1

0

P`(x) dx (11)

As a result, we have the system of equations(
a` a−`−1

b` b−`−1

) (
A`

B`

)
=

2` + 1
2

V N`

(
1

(−)`

)



which may be solved to give(
A`

B`

)
=

2` + 1
2

V N`
1

b2`+1 − a2`+1

(
(−)`b`+1 − a`+1

(ab)`+1(b` + (−)`+1a`)

)
Inserting this into (10) gives

Φ(r, θ) = 1
2V

∑
`

(2` + 1)N`

1−
(

a
b

)2`+1

[
(−)`

(
1 + (−)`+1

(a

b

)`+1
) (r

b

)`

+
(

1 + (−)`+1
(a

b

)`
) (a

r

)`+1
]
P`(cos θ)

(12)
We now examine the integral (11). First note that for even ` we may actually
extend the region of integration

N2j =
∫ 1

0

P2j(x) dx = 1
2

∫ 1

−1

P2j(x) dx = 1
2

∫ 1

−1

P0(x)P2j(x) dx = δj,0

This demonstrates that the only contribution from even ` is for ` = 0, corre-
sponding to the average potential. Using this fact, the potential (12) reduces
to

Φ(r, θ) =
V

2
+

V

2

∞∑
j=1

(4j − 1)N2j−1

1−
(

a
b

)4j−1

[
−

(
1 +

(a

b

)2j
) (r

b

)2j−1

+
(

1 +
(a

b

)2j−1
) (a

r

)2j
]
P2j−1(cos θ)

Physically, once the average V/2 is removed, the remaining potential is odd under
the flip z → −z or cos θ → − cos θ. This is why only odd Legendre polynomials
may contribute.

At this stage, we may simply perform elementary integrations to obtain the first
few terms N1, N3, etc. However, we may derive a fairly simple expression for N`

by integrating the generating function

(1− 2xt + t2)−1/2 =
∞∑

`=0

P`(x)t`

from x = 0 to 1. In other words

∞∑
`=0

N`t
` =

∫ 1

0

(1− 2xt + t2)−1/2dx = t−1(−1 + t +
√

1 + t2)



The square root yields a binomial expansion

(1+t2)1/2 = 1+ 1
2 t2+ 1

2 (− 1
2 ) 1

2! t
4+ 1

2 (− 1
2 )(− 3

2 ) 1
3! t

6+ · · · = 1+
∞∑

j=1

(−)j Γ(j − 1
2 )

Γ(− 1
2 )j!

t2j

As a result
∞∑

`=0

N`t
` = 1 +

∞∑
j=1

(−)j+1 Γ(j − 1
2 )

2
√

πj!
t2j−1

where we used the fact that Γ(− 1
2 ) = −2Γ( 1

2 ) = −2
√

π. Matching powers of t
demonstrates that all even N` terms vanish except N0 = 1 and that

N2j−1 = (−)j+1 Γ(j − 1
2 )

2
√

πj!

The final result for the potential is thus

Φ(r, θ) =
V

2
+ V

∞∑
j=1

(−)j+1(4j − 1)Γ(j − 1
2 )

4
√

πj!
(
1−

(
a
b

)4j−1
) [

−
(

1 +
(a

b

)2j
) (r

b

)2j−1

+
(

1 +
(a

b

)2j−1
) (a

r

)2j
]
P2j−1(cos θ)

=
V

2

+ V

[
3
4

(
1−

(a

b

)3)−1(
−

(
1 +

(a

b

)2) (r

b

)
+

(
1 +

(a

b

)) (a

r

)2)
P1(cos θ)

− 7
16

(
1−

(a

b

)7)−1(
−

(
1 +

(a

b

)4) (r

b

)3

+
(
1 +

(a

b

)3) (a

r

)4)
P3(cos θ)

+ · · ·
]

Taking a constant φ slice of the region between the spheres, the potential looks
somewhat like
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We note that including the higher Legendre modes improves the potential near



the surfaces of the spheres. This is very much like summing the first few terms of
a Fourier series. On the other hand, the potential midway between the spheres
is well estimated by just the first term or two in the series. This is because both
r/b and a/r are small in this region, and the series rapidly converges (assuming
a� b, that is).

In the limit when b → ∞ we may remove (a/b) and (r/b) terms. Removing
the latter corresponds to having only inverse powers of r surviving, which is the
expected case for an exterior solution. The result is

Φ(r, θ)→ V

2
+

V

2

[
3
2

(a

r

)2

P1(cos θ)− 7
8

(a

r

)4

P3(cos θ) + · · ·
]

which agrees with the exterior solution for a sphere with oppositely charged hemi-
spheres (except that here we have the average potential V/2 and that the potential
difference between northern and southern hemispheres is only half as large).

Similarly, when a → 0 we remove (a/b). But this time we get rid of the inverse
powers (a/r) instead. The result is the interior solution

Φ(r, θ)→ V

2
− V

2

[
3
2

(r

b

)
P1(cos θ)− 7

8

(r

b

)3

P3(cos θ) + · · ·
]

which is again a reasonable result (this time with the hemispheres oppositely
charged from the previous case).


