
Physics 505 Fall 2005

Homework Assignment #2 — Solutions

Textbook problems: Ch. 2: 2.3, 2.4, 2.7, 2.10

2.3 A straight-line charge with constant linear charge density λ is located perpendicular
to the x-y plane in the first quadrant at (x0, y0). The intersecting planes x = 0, y ≥ 0
and y = 0, x ≥ 0 are conducting boundary surfaces held at zero potential. Consider
the potential, fields, and surface charges in the first quadrant.

a) The well-known potential for an isolated line charge at (x0, y0) is Φ(x, y) =
(λ/4πε0) ln(R2/r2), where r2 = (x − x0)2 + (y − y0)2 and R is a constant. De-
termine the expression for the potential of the line charge in the presence of the
intersecting planes. Verify explicitly that the potential and the tangential electric
field vanish on the boundary surfaces.

The image charges for this solution may be built up one plane at a time. If there
were only a plane at x = 0, then the line charge λ at (x0, y0) will generate an
image charge −λ at (−x0, y0).
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Adding a plane at y = 0 will then result in additional image charges for the
above two charges: an image of the original charge giving −λ at (x0,−y0) and
an image of the initial image giving λ at (−x0,−y0). The final picture is that of
four charges, one in each quadrant (one original and three images).
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Adding up the contributions of these four charges yields

Φ(x, y) =
λ

4πε0

(
ln

R2

(x− x0)2 + (y − y0)2
+ ln

R2

(x + x0)2 + (y + y0)2

− ln
R2

(x− x0)2 + (y + y0)2
− ln

R2

(x + x0)2 + (y − y0)2

)
=

λ

4πε0
ln

[(x− x0)2 + (y + y0)2][(x + x0)2 + (y − y0)2]
[(x− x0)2 + (y − y0)2][(x + x0)2 + (y + y0)2]

(1)

Note that the arbitrary constant R drops out of this expression.

We may check the validity of this solution by evaluating the potential on the
boundary surface x = 0 (y = 0 is obviously similar)

Φ(0, y) =
λ

4πε0
ln

[x2
0 + (y + y0)2][x2

0 + (y − y0)2]
[x2

0 + (y − y0)2][x2
0 + (y + y0)2]

=
λ

4πε0
ln 1 = 0

For the tangential electric field, we may compute Ey and examine its behavior
on the surface x = 0. Before setting x = 0, however, we find

Ey(x, y) = −∂yΦ(x, y) =
λ

2πε0

(
y − y0

(x− x0)2 + (y − y0)2
+

y + y0

(x + x0)2 + (y + y0)2

− y + y0

(x− x0)2 + (y + y0)2
− y − y0

(x + x0)2 + (y − y0)2

)
(2)

Finally, setting x = 0 yields

Ey(0, y) =
λ

2πε0

(
y − y0

x2
0 + (y − y0)2

+
y + y0

x2
0 + (y + y0)2

− y + y0

x2
0 + (y + y0)2

− y − y0

x2
0 + (y − y0)2

)
= 0

The result is similar for the y = 0 surface.

b) Determine the surface charge density σ on the plane y = 0, x ≥ 0. Plot σ/λ
versus x for (x0 = 2, y0 = 1), (x0 = 1, y0 = 1), and (x0 = 1, y0 = 2).

The surface charge density on the y = 0 plane is obtained from the normal
component of the electric field, σ = ε0Ey(x, 0). Setting y = 0 in (2) gives

σ =
λ

2π

(
−y0

(x− x0)2 + y2
0

+
y0

(x + x0)2 + y2
0

− y0

(x− x0)2 + y2
0

− −y0

(x + x0)2 + y2
0

)
=

λy0

π

(
1

(x + x0)2 + y2
0

− 1
(x− x0)2 + y2

0

)
= −4λx0y0

π

x

[(x− x0)2 + y2
0 ][(x + x0)2 + y2

0 ]
(3)



The expression in the last line demonstrates that the surface charge density van-
ishes (linearly with x) at the origin. This is an explicit verification of the result
for charge density at the boundary of two parallel conductors making a 90◦ angle.

The plots of σ/λ are as follows
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Note that, at a fixed x0 position (x0 = 1) the magnitude of the induced charge
density is greater when the charge is closer to the conductor (y0 = 1 instead of
2). This is of course expected. The magnitude is reduced, however, as the charge
is brought closer to the second conductor (x0 = 1 instead of 2 for fixed y0 = 1).
The reason for this is that in this case more of the induced charge gets spread
into the second conductor.

c) Show that the total charge (per unit length in z) on the plane y = 0, x ≥ 0 is

Qx = − 2
π

λ tan−1

(
x0

y0

)
What is the total charge on the plane x = 0?

The total charge is obtained by integrating the surface charge density (3)

Qx =
∫ ∞

0

σ(x) dx =
λy0

π

∫ ∞

0

(
1

(x + x0)2 + y2
0

− 1
(x− x0)2 + y2

0

)
dx

=
λ

π

[
tan−1 x + x0

y0
− tan−1 x− x0

y0

]∞
0

= −2λ

π
tan−1 x0

y0

The total charge Qy on the plane x = 0 is given by x → y interchange symmetry

Qy = −2λ

π
tan−1 y0

x0

Hence the combined total charge is

Qtot = Qx + Qy = −2λ

π

(
tan−1 x0

y0
+ tan−1 y0

x0

)
= −λ

This is of course equivalent to the sum of the charges of the three image charges.

d) Show that far from the origin [ ρ � ρ0, where ρ =
√

( x2 + y2 ) and
ρ0 =

√
( x2

0 + y2
0 ) ] the leading term in the potential is

Φ → Φasym =
4λ

πε0

(x0y0)(xy)
ρ4



Interpret.

Here we simply need to Taylor expand the expression in (1). We start by expand-
ing the squares and dividing out by ρ2 to obtain

Φ =
λ

4πε0
ln

[1− 2xx0
ρ2 + 2yy0

ρ2 + ρ2
0

ρ2 ][1 + 2xx0
ρ2 − 2yy0

ρ2 + ρ2
0

ρ2 ]

[1− 2xx0
ρ2 − 2yy0

ρ2 + ρ2
0

ρ2 ][1 + 2xx0
ρ2 + 2yy0

ρ2 + ρ2
0

ρ2 ]

Assuming x and y are both of O(ρ) and x0 and y0 are of O(ρ0), we see that
xx0/ρ2 and yy0/ρ2 are of O(ρ0/rho). This lets us keep track of the expansion in
orders of ρ0/rho. Expanding up to second order gives

Φ =
λ

4πε0
ln

1 + 2ρ2
0

ρ2 − 4x2x2
0

ρ4 − 4y2y2
0

ρ4 + 8xyx0y0
ρ4 +O(ρ4

0
ρ4 )

1 + 2ρ2
0

ρ2 −
4x2x2

0
ρ4 − 4y2y2

0
ρ4 − 8xyx0y0

ρ4 +O(ρ4
0

ρ4 )

=
λ

4πε0
ln

(
1 +

16xyx0y0

ρ4
+ · · ·

)
≈ 4λxyx0y0

πε0ρ4

This is basically a two-dimensional quadrupole potential, which is not too sur-
prising as the space is divided into four quadrants (with alternating positive and
negative (image) charges). Going to polar coordinates (x, y) = ρ(cos ϕ, sinϕ), we
have

Φ ≈ 2λx0y0

πε0

sin 2ϕ

ρ2

Note that 4λx0y0 is essentially the quadrupole moment (charge times area) and
that the sin 2ϕ angular behavior is obviously quadrupolar (angular momentum
l = 2).

2.4 A point charge is placed a distance d > R from the center of an equally charged,
isolated, conducting sphere of radius R.

a) Inside of what distance from the surface of the sphere is the point charge attracted
rather than repelled by the charged sphere?

The potential for a point charge in the presence of a charged conducting sphere
is given by

Φ = kq

(
1

|~x− ~y |
− R/d

|~x− (R/d)2~y |
+

λ + R/d

|~x |

)
where we have changed the notation to conform to this problem. Note that we
take the charge of the sphere to be Q = λq. Here λ = 1, but in part c) below we
will take λ = 2 and λ = 1/2 as well.

The force is simply computed from Coulomb’s law between the charge q and the
two images

F = kq2

(
− R/d

d2(1− (R/d)2)2
+

1 + R/d

d2

)



(in the radial direction). If we let ξ = R/d (always less than 1) we may rewrite
the above as

F =
kq2

R2

ξ2(λ− 2λξ2 − 2ξ3 + λξ4 + ξ5)
(1− ξ2)2

(4)

Far away from the sphere (ξ → 0) the force limits to

F ≈ kq2

R2
λξ2 =

kqQ

d2

which is the expected result. This is repulsive for like sign charges. On the
other hand, as ξ → 1 (near the surface of the sphere) the force always becomes
attractive. The neutral position between attraction and repulsion is reached when
the force becomes zero, or

λ− 2λξ2 − 2ξ3 + λξ4 + ξ5 = 0 (5)

In general, this can only be solved numerically. However note that for λ = 1
(equal charges), this factors as

(1− ξ − ξ2)(1 + ξ − ξ3) = 0

Only the first factor changes sign. Solving the quadratic equation gives ξ =
(
√

5− 1)/2 or
d

R
= 1 +

√
5− 1
2

= 1 + 0.618 . . .

b) What is the limiting value of the force of attraction when the point charge is
located a distance a (= d−R) from the surface of the sphere, if a � R?

We may approach this problem by taking ξ = 1− a/R and letting a � R so that
ξ → 1. Taking this limit in (4) will yield the correct result. However it is easier
to see that for a � R the radius of curvature of the sphere can be ignored, and
this problem is similar to a point charge near a conducting plane. The image
charge is then −q located a distance a behind the surface, and the Coulomb force
is simply

F = − kq2

(2a)2

c) What are the results for parts a) and b) if the charge on the sphere is twice (half)
as large as the point charge, but still the same sign?

The result of part b) is independent of the charge on the sphere, and remains
unchanged. On the other hand, the neutral position is given by solving (5)
numerically. For λ = 2 (sphere is twice the charge) and λ = 1/2 (half the charge)
we find

λ = 2 :
d

R
= 1 + 0.428 . . .

λ = 1
2 :

d

R
= 1 + 0.882 . . .



2.7 Consider a potential problem in the half-space defined by z ≥ 0, with Dirichlet bound-
ary conditions on the plane z = 0 (and at infinity).

a) Write down the appropriate Green function G(~x, ~x ′).

The Green’s function can be obtained by adding an image charge behind the
z = 0 plane

GD(~x, ~x ′) =
1

|~x− ~x ′|
− 1
|~x− P~x ′|

where P : (x, y, z) → (x, y,−z) is the mirror reflection operator. In particular

GD(~x, ~x ′) =
1

[(x− x′)2 + (y − y′)2 + (z − z′)2]1/2

− 1
[(x− x′)2 + (y − y′)2 + (z + z′)2]1/2

or, in cylindrical coordinates

GD(~x, ~x ′) =
1

[ρ2 + ρ′2 − 2ρρ′ cos(φ− φ′) + (z − z′)2]1/2

− 1
[ρ2 + ρ′2 − 2ρρ′ cos(φ− φ′) + (z + z′)2]1/2

b) If the potential on the plane z = 0 is specified to be Φ = V inside a circle of radius
a centered at the origin, and Φ = 0 outside that circle, find an integral expres-
sion for the potential at the point P specified in terms of cylindrical coordinates
(ρ, φ, z).

We first note that the Dirichlet problem has solution

Φ(~x ) = − 1
4π

∫
z=0

Φ(~x ′)
∂GD(~x, ~x ′)

∂n′
da′ (6)

(the surface at infinity may be ignored since we are assuming Φ falls to zero
there). We first compute the normal derivative of GD, noting that the normal
vector points in the −ẑ direction

∂GD

∂n′
= −∂z′GD(~x, ~x ′)|z′=0 =

[
z′ − z

[ρ2 + ρ′2 − 2ρρ′ cos(φ− φ′) + (z − z′)2]3/2

− z′ + z

[ρ2 + ρ′2 − 2ρρ′ cos(φ− φ′) + (z + z′)2]3/2

]
z′=0

=
−2z

[ρ2 + ρ′2 − 2ρρ′ cos(φ− φ′) + z2]3/2

Substituting this into (6) yields

Φ(ρ, φ, z) =
z

2π

∫
Φ(ρ′, φ′, 0)

1
[ρ2 + ρ′2 − 2ρρ′ cos(φ− φ′) + z2]3/2

ρ′dρ′ dφ′

=
V z

2π

∫ 2π

0

dφ′
∫ a

0

ρ′dρ′
1

[ρ2 + ρ′2 − 2ρρ′ cos(φ− φ′) + z2]3/2



Note that the boundary conditions are azimuthally symmetric. Hence the φ
dependence can be eliminated by taking φ′ → φ′ + φ. This results in

Φ(ρ, z) =
V z

2π

∫ 2π

0

dφ′
∫ a

0

ρ′dρ′
1

[ρ2 + ρ′2 − 2ρρ′ cos φ′ + z2]3/2
(7)

c) Show that, along the axis of the circle (ρ = 0), the potential is given by

Φ = V

(
1− z√

a2 + z2

)
The integral expression (7) simplifies for ρ = 0

Φ(0, z) =
V z

2π

∫ 2π

0

dφ′
∫ a

0

ρ′dρ′
1

(ρ′2 + z2)3/2

= V z

∫ a2

0

1
2dρ′2(ρ′2 + z2)−3/2 = −V z(ρ′2 + z2)−1/2

∣∣∣a2

0

= V

(
1− z

(z2 + a2)1/2

) (8)

d) Show that at large distances (ρ2 + z2 � a2) the potential can be expanded in a
power series in (ρ2 + z2)−1, and that the leading terms are

Φ =
V a2

2
z

(ρ2 + z2)3/2

[
1− 3a2

4(ρ2 + z2)
+

5(3ρ2a2 + a4)
8(ρ2 + z2)2

+ · · ·
]

Verify that the results of parts c) and d) are consistent with each other in their
common range of validity.

Returning to expression (7), we may pull out the factor r2 = ρ2 + z2 and expand
the denominator

Φ =
V z

2πr3

∫ 2π

0

dφ′
∫ a

0

ρ′dρ′
[
1− 2ρρ′

r2
cos φ′ +

ρ′2

r2

]−3/2

=
V z

2πr3

∫ 2π

0

dφ′
∫ a

0

ρ′dρ′
[
1− 3

2r−2(ρ′2 − 2ρρ′ cos φ′)

+ 15
8 r−4(ρ′2 − 2ρρ′ cos φ′)2 + · · ·

]
The φ′ integral is now trivial (since it is over a complete period) and pulls out
terms with even powers of cos φ′. The resulting integral is

Φ(ρ, z) =
V z

r3

∫ a2

0

1
2dρ′2[1− 3

2r−2ρ′2 + 15
8 r−4(ρ′4 + 2ρ2ρ′2) + · · ·]

=
V z

2r3
[a2 − 3

4r2a4 + 15
8 r−4( 1

3a6 + ρ2a4) + · · ·]

=
V a2

2
z

(ρ2 + z2)3/2

[
1−

3
4a2

ρ2 + z2
+

5
8a2(3ρ2 + a2)

(ρ2 + z2)2
+ · · ·

]



Setting ρ = 0 in this series gives

Φ(0, z) =
V a2

2z2

[
1− 3

4
a2

z2
+

5
8

a4

z4
+ · · ·

]
(9)

On the other hand, the exact potential on axis, (8), may be expanded

Φ(0, z) = V

[
1−

(
1 +

a2

z2

)−1/2
]

= V

[
1−

(
1− 1

2
a2

z2
+

3
8

a4

z4
− 5

16
a6

z6
+ · · ·

)]
=

V a2

2z2

[
1− 3

4
a2

z2
+

5
8

a4

z4
+ · · ·

]
This agrees with the series (9).

2.10 A large parallel plate capacitor is made up of two plane conducting sheets with sepa-
ration D, one of which has a small hemispherical boss of radius a on its inner surface
(D � a). The conductor with the boss is kept at zero potential, and the other con-
ductor is at a potential such that far from the boss the electric field between the plates
is E0.

a) Calculate the surface-charge densities at an arbitrary point on the plane and on
the boss, and sketch their behavior as a function of distance (or angle).

The way to approach this problem is to realize that the second conductor (the
one without the boss) is kept far away from the region of interest (which is near
the boss). As a result its only real purpose is to complete the capacitor and create
a nearly uniform electric field E0. As a result, this problem reduces to that of
a conductor with a hemispherical boss in a uniform electric field. This, in turn,
can be seen to be equivalent to half of the space of the conducting sphere in a
uniform electric field setup.

0E

D

z

a

Taking the conductor to be located at z = 0, the boss to be located at the origin,
and the space between the plates to be z > 0, we end up with the (sphere in a
uniform field) potential

Φ = −E0z

(
1− a3

r3

)
0 < z < D



Of course, this result was obtained heuristically. Thus it would be useful to
verify its correctness. To do so, we may easily show that the potential satisfies
the appropriate conducting plate boundary conditions

Φ(z = 0) = 0 Φ(r = a) = 0

Of course, we should note that this is not an exact solution at the second conduc-
tor since Φ(z = D) = −E0D + (correction) is not absolutely constant. However,
this is a perfectly reasonable solution to a high level of accuracy near the con-
ductor with the boss.

Turning to the surface charge density, it is obtained by taking the normal deriva-
tive, σ = −ε0∂Φ/∂n. On the plane, the normal direction is ẑ. Hence

σplane = −ε0∂zΦ
∣∣∣
z=0

= ε0E0

[
1− a3

r3
+ z

3a3z

r5

]
z=0

= ε0E0

(
1− a3

r3

)
Note that the charge density vanishes at the locate where the boss meets the
plane (r = a).

On the boss, the normal direction is r̂. Taking z = r cos θ, we obtain

σboss = −ε0∂rΦ
∣∣∣
r=a

= ε0E0

(
1 + 2

a3

r3

)
cos θ

∣∣∣
r=a

= 3ε0E0 cos θ

Again this vanishes at the joint between the boss and the plane (this is also con-
sistent with the general theory of charge distribution near joints of conductors).
The charge density σ may be plotted in units of ε0E0
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Note the different scales along the vertical axis. The charge density at the tip of
the boss is three times that on the plate far away from the boss, and this is true
for any size boss. Of course, far away from the plate, the relation σ = ε0E0 is a
familiar one for parallel plate capacitors. In addition, however, this Gauss’ law
relation demonstrates the interesting fact that the electric field is three times as
strong at the tip of the boss.

b) Show that the total charge on the boss has the magnitude 3πε0E0a
2.

The charge on the boss is given by integrating

Qboss = a2

∫ 2π

0

dφ

∫ 1

0

d cos θ σboss = 3ε0E0a
2(2π)

∫ 1

0

d cos θ cos θ = 3πε0E0a
2



c) If, instead of the other conducting sheet at a different potential, a point charge
q is placed directly above the hemispherical boss at a distance d from its center,
show that the charge induced on the boss is

q′ = −q

[
1− d2 − a2

d
√

d2 + a2

]

Taking away the second conductor (i.e. removing the electric field) turns this into
an image charge problem for a point charge near a conducting sphere. For the
sphere by itself, a charge q at position d generates an image −q(a/d) at location
a2/d. Starting from this, we introduce the conducting plane at z = 0. This gives
additional image charges based on the reflection z → −z. The images of the
original charge and first image are thus −q and −d and q(a/d) and −a2/d. In
other words

Φ(~x ) = kq

(
1

|~x− dẑ|
− a/d

|~x− (a2/d)ẑ|
− 1
|~x + dẑ|

+
a/d

|~x + (a2/d)ẑ|

)
(10)

The surface charge on the boss is given by σ = −ε0x̂ · ~∇Φ|x=a, which has for
the most part been calculated several times before in the spherical conductor
examples. The result for (10) is

σ = −ε0kq

(
d2 − a2

a(d2 + a2 − 2ad cos θ)3/2
− d2 − a2

a(d2 + a2 + 2ad cos θ)3/2

)
= − q

4πa
(d2 − a2)

(
1

(d2 + a2 − 2ad cos θ)3/2
− 1

(d2 + a2 + 2ad cos θ)3/2

)
The total charge on the boss is given by integration

Qboss = − q

4πa
(d2 − a2)(2πa2)

∫ 1

0

d cos θ

(
1

(d2 + a2 − 2ad cos θ)3/2

− 1
(d2 + a2 + 2ad cos θ)3/2

)
= − q

2d
(d2 − a2)

[
(d2 + a2 − 2ad cos θ)−1/2 + (d2 + a2 + 2ad cos θ)1/2

]1

0

= − q

2d
(d2 − a2)

(
1

d− a
+

1
d + a

− 2
(d2 + a2)1/2

)
= −q

(
1− d2 − a2

d(d2 + a2)1/2

)


