Physics 505 Fall 2005

Homework Assignment #1 — Solutions

Textbook problems: Ch. 1: 1.4, 1.5, 1.10, 1.14

1.4 Each of three charged spheres of radius a, one conducting, one having a uniform charge
density within its volume, and one having a spherically symmetric charge density that
varies radially as ™ (n > —3), has a total charge Q). Use Gauss’ theorem to obtain the
electric fields both inside and outside each sphere. Sketch the behavior of the fields
as a function of radius for the first two spheres, and for the third with n = -2, 42.

i)

iii)

Because of spherical symmetry, this may be solved by a straightforward appli-
cation of Gauss’ law. In all cases, the electric field (as a function of r) is given
by

Gene o — 1

E=k —
72 4Teq

For the conducting sphere, the charge @ resides on the surface of the sphere (the
electric field vanishes inside). Hence
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For the sphere with uniform charge density, we note that the charge enclosed

inside a radius r < a must be proportional to the volume 2773, Hence gene =

3
Q(r/a)® and we are left with

Note that the electric field is linearly proportional to 7 inside the sphere.

For the sphere with varying charge density p ~ r™ the charge enclosed is now
proportional to r™*3. Hence gene = Q(r/a)™*? and the electric field becomes
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This reduces to the previous case for n = 0. Note that the expression for gepnc
breaks down for n < —3. Furthermore, for n = —3, ¢enc = @ is constant indepen-
dent of radius r, signifying the charge is concentrated at » = 0. This accounts for

the point-charge like behavior when n = —3. Furthermore, note that in all three
cases, the field outside the sphere is identical.
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The magnitude of the electric field looks roughly as follows
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1.5 The time-averaged potential of a neutral hydrogen atom is given by

q e T ar
o= (1 —)
dmeg T + 2

where ¢ is the magnitude of the electronic charge, and a~! = ag/2, ag being the Bohr
radius. Find the distribution of charge (both continuous and discrete) that will give
this potential and interpret your result physically.

We may obtain the charge distribution by computing p = —e,V2®. However,
since ® blows up as r — 0, we must be a bit careful. We first consider » > 0
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For r =~ 0, on the other hand, we may expand
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This is the potential of a point charge ¢ at the origin. Hence the complete charge
distribution can be written as
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The first term corresponds to the proton charge, and the second to the negatively
charged electron cloud in the 1s orbital around the proton.



We can additionally verify that the hydrogen atom is indeed neutral
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1.10 Prove the mean value theorem: For charge-free space the value of the electrostatic
potential at any point is equal to the average of the potential over the surface of any
sphere centered on that point.

There are many variations on the proof. However, they all tend to involve Green’s
theorem. For example, one could begin by making the substitution ¢ = ®(Z) and
Y = 1/|% — Z’'| into Green’s theorem. Here we take a shortcut and realize that
we want to connect the value of the potential ® inside the sphere to the value on
the boundary. This is a Dirichlet problem, and we go directly to the Dirichlet
Green’s function solution
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where Gp (&, Z") vanishes for Z’ on the surface S. Taking S to be a perfect sphere
of radius R (not necessarily large) around the point Z, it is easy to see that
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satisfies the appropriate requirements. Furthermore, since we are working in
charge-free space, p = 0, and (1) reduces to
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Since 47 R? is just the area of the sphere, this proves that the value of ®(Z) is
equal to the average of ®(Z’) over any sphere centered on Z.

da’

This mean value theorem also shows up in complex analysis, where the Cauchy
Integral Formula may be used to prove that the value of an analytic function f(z)
at a point z is equal to its mean value on any circle centered at z. Of course,
analytic functions are two-dimensional versions of harmonic functions (solutions
to Laplace’s equation) and yield automatic solutions to two-dimensional elec-
trostatic problems. This is why conformal mapping is a powerful technique for
solving two-dimensional electrostatic boundary value problems. The mean value
theorem also holds for dimensions higher than two or three.



1.14 Consider the electrostatic Green functions of Section 1.10 for Dirichlet and Neumann
boundary conditions on the surface S bounding the volume V. Apply Green’s theorem
(1.35) with integration variable i and ¢ = G(Z,7), 1 = G(Z',7), with V2G(Z,7) =
—47m§(y — Z). Find an expression for the difference [G(Z,Z’) — G(Z',Z)] in terms of
an integral over the boundary surface S.

Using ¢ and v as indicated in Green’s theorem, we have
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Since V;G(Z, 1) = —4md(Z — i), the left hand side integrates to —47[G(Z, Z) —
G(Z',2)]. Dividing both sides by —4r finally gives
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a) For Dirichlet boundary conditions on the potential and the associated boundary
cond1t1on on the Green function, show that Gp(Z,Z’) must be symmetric in &
and Z'.

For the Dirichlet Green’s function, Gp(Z,y) = 0 for ¢ on the boundary S. This
means that the right hand side of (2) vanishes. Then we automatically find
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b) For Neumann boundary conditions, use the boundary condition (1.45) for G n (%, Z")
to show that G (%, z’ ) 1s not symmetric in general, but that G (Z,2') — F(&)
is symmetric in & and Z’, where
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We use the Neumann boundary condition
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for ¢ on the boundary S. This means the right hand side of (2) becomes
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where we used the definition of F'(Z¥) given in the problem. This yields
GV (2,7 )=Gn(Z,Z2") - F(Z)=Gn(Z',7) — F(T') (3)

which demonstrates that Gh" (%, Z’) is symmetric in # and &’.



¢) Show that the addition of F/(Z') to the Green function does not affect the potential
®(Z). See problem 3.26 for an example of the Neumann Green function.

What we need to do is to show that the Neumann Green’s function solution
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is unchanged when we replace Gy by GR7". If we let ®"°" denote the computation
using Gy, then
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where we used the fact that - E = —f - V& = —99 /On. A simple application
of Gauss’ law then demonstrates that ®"°" = ®. Hence we have shown that the
addition of F(&') leaves the solution unchanged. This demonstrates that we can
always make Gy symmetric by appropriate modification with F'.

Note that from (3) we could instead have defined the symmetric combination
G4(%,7") = Gn(F,7') + F(Z'). However this is a bad thing to do, as substitu-
tion of GR# into (4) will generate an incorrect solution for ®.



