
Physics 505 Fall 2005

Practice Final — Solutions

The final will be a 180 minute open book, open notes exam. Do all four problems.

1. A point electric dipole with dipole moment ~p is located at the center of a spherical
hole of radius a inside a dielectric medium of infinite extent and dielectric constant
ε/ε0.

a) Find the electric field everywhere.

We first recall that the electric potential for a dipole in isolation is given by
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where we have chosen to orient the dipole along the z axis. This problem is then a
standard matching problem, where we may introduce Φin for the potential inside
the hole (r < a) and Φout outside. Because of axisymmetry, we write
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]
where we have already anticipated that the result will be proportional to the
dipole moment p (although the constants can be chosen in any arbitrary man-
ner). At r = a, we must match both D⊥ and E‖. For the spherical hole, the
former corresponds to the r direction while the latter the θ direction. Based on
orthogonality of the Legendre polynomials, the matching must be done for each
l. In this case, we see that there are two equations for two unknowns, Al and Bl.
The l 6= 1 terms are homogeneous, yielding only the trivial solution (Al = Bl = 0
for l 6= 1). Thus we only need to focus on l = 1
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The matching conditions are then
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This gives a system of linear equations(
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which may be solved to give
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where εr = ε/ε0. Inserting this in to the potential gives
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which indicates that the field inside the hole is a dipole field superimposed on a
uniform field, while the field outside is a pure dipole.

b) What is the bound charge density on the surface of the dielectric?

We may relate the bound charge density to the polarization

σpol = −(~P2 − ~P1) · n̂

where n̂ points from region 1 to region 2 and where the polarization is given by

~P1 = (ε1 − ε0) ~E1, ~P2 = (ε2 − ε0) ~E2

We take region 1 to be inside the hole and region 2 to be the surrounding dielectric.
In this case, we have

n̂ = r̂, ε1 = ε0, ε2 = ε

This automatically gives ~P1 = 0, so that

σpol = −r̂ · ~P2 = −(ε− ε0)r̂ · ~Eout = (ε− ε0)
∂Φout
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Working this out yields
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The bound charge is distributed in a dipole pattern, which is perhaps not so
surprising after all.



2. A long straight wire carrying a current I is located in vacuum parallel to and a distance
d away from a semi-infinite slab of permeability µr.

a) Find the magnetic induction everywhere.

The magnetic induction is a vector quantity. So, to be precise, we take a coor-
dinate system with the interface between dielectrics lying in the x-z plane (at
y = 0). The y axis is thus normal to the surface of the slab, and we take y < 0
to be the material of relative permeability µr. The wire is located at x = 0 and
y = d, and carries current in the +z direction. According to Jackson Problem
5.17 (and being careful to switch coordinate systems from 5.17, which had the
interface lying in the x-y plane), if we are on the right side, then the original
current I gives rise to an image current I ′ = [(µr − 1)/(µr + 1)]I also flowing in
the +z direction, but located at x = 0 and y = −d. Now, elementary considera-
tions tells us that the magnetic induction due to an infinite straight wire can be
written as

~B =
µ0I

2πR
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µ0I

2πR2
ẑ × ~R

where ~R is the perpendicular distance vector from the wire to the observation
point P . More precisely, if ~R is the vector from the real current I to P and ~R′ is
the vector from the image current I ′ to P , we have

~R = (x, y − d, 0), ~R′ = (x, y + d, 0)

For y > 0, this yields the magnetic induction
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µ0I

2πR2
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For y < 0, on the other hand, there is no image, and instead the original current I
may be replaced by a modified current I ′′ = [2µr/(µr + 1)]I at the same location
x = 0, y = d. This gives
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b) What is the force per unit length on the wire (magnitude and direction)?

A straightforward method to obtain the force is to realize that it is due to the
current I of the actual wire interacting with the magnetic induction ~B′ created
by its image I ′. The magnetic induction from the image is given in (1) as

~B =
µ0I

2π
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R′2

]



Hence the force per unit length is

~F/L = Iẑ × ~B =
µ0I

2
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ẑ × (ẑ × ~R′)
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This, of course, is evaluated at the location of the wire, so that ~R′ = (0, 2d, 0) =
2dŷ. The result is then

~F/L = −µ0I
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The wire is attracted towards its image (the semi-image slab).

3. A rectangular parallel plate capacitor is formed of two flat rectangular conducting
sheets of dimensions a and b separated by a distance d. A sinusoidal current I(t) =
I0e

−iωt is applied uniformly along the adjacent edges of length b. By orienting the
plates so that they lie parallel to the x-y plane with the edge of length b parallel to the
y axis, the electric field between the plates can be approximated by ~E = Ez(x)ẑe−iωt.

a) Given the above electric field, show that the magnetic induction between the
plates can only have a single component ~B = By(x)ŷe−iωt.

For harmonic fields in a source-free region (between the plates of the capacitor),
Maxwell’s equations are

~∇ · ~E = 0, ~∇× ~E − iω ~B = 0

~∇ · ~B = 0, ~∇× ~B +
iω

c2
~E = 0

In particular, we may solve Faraday’s law for the magnetic field

~B = − i

ω
~∇× ~E

For ~E = Ez(x)ẑ (we hide the harmonic time dependence), this gives simply

~B =
i

ω
E′

z(x)ŷ (2)

where the prime denotes an x derivative, d/dx. This clearly shows that the
magnetic field only has a y component

By(x) =
i

ω
E′

z(x)

b) Obtain exact expressions for Ez(x) and By(x) between the plates. Give your
result in terms of Q, the maximum total charge on one plate.



We may obtain a differential equation for Ez(x) by substituting (2) into the
Ampère-Maxwell equation

0 = ~∇× ~B +
iω

c2
~E =

i

ω
E′′

z (x)ẑ +
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c2
Ez(x)ẑ

This gives

E′′
z (x) +

ω2

c2
Ez(x) = 0

which is easily solved to yield

Ez(x) = A cos
ωx

c
+ B sin

ωx

c

We now need to make mention of boundary conditions. Although the current
feed (which we take at x = 0) is not completely symmetric, we assume that the
largest amount of charge (in magnitude) must reside closest to the x = 0 side of
the capacitor, with less charge at the x = a side (since it is furthest away from the
feed). Since charge is proportional to the electric field, we want ~E to be largest
in magnitude at x = 0. This forces the above coefficient B to vanish. To obtain
A in terms of the total charge Q, we first compute the surface charge density (on
a single plate)

σ = ε0Ez = ε0A cos
ωx

c

The total charge is then

Q =
∫

σ da = ε0Ab

∫ a

0

cos
ωx

c
dx =

ε0Abc

ω
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ωa

c

Solving this for A, and writing out the fields results in

Ez =
Q

ε0

ω

bc sinωa/c
cos

ωx

c

By = − iQ

ε0

ω

bc2 sinωa/c
sin

ωx

c

(3)

c) The resonant frequency of this circuit occurs when the magnitude of the electric
field is maximum on the side where the current is fed in and vanishing on the
opposite side. What is the resonant frequency?

As indicated, the resonant frequency occurs when the electric field vanishes at
x = a. Examining (3), this occurs when cos ωa/c = 0, or when

ωr =
π

2
c

a

Note that higher resonances are possible, but that this is the first one that occurs,
and corresponds to ωr = 1/

√
LC in terms of the equivalent circuit elements.



4. A plane polarized electromagnetic wave is incident with angle i on an interface between
two dielectrics, with permittivities ε and ε′ (take µ = µ′ = µ0). This is the basic system
investigated in section 7.3 of Jackson. The transmission and reflection coefficients are
defined by

T =
∣∣∣∣E′

0

E0

∣∣∣∣2 , R =
∣∣∣∣E′′

0

E0

∣∣∣∣2
a) Show that in general R + T 6= 1. Consider both cases, ~E perpendicular and

parallel to the plane of incidence.

Following the notation of Jackson (and taking unit relative permeability), the
transmission and reflection coefficients for the case of ~E perpendicular to the
plane of incidence may be written as

T =
(

2n cos i

n cos i + n′ cos r

)2

, R =
(

n cos i− n′ cos r

n cos i + n′ cos r

)2

(assuming all quantities are real). Noting that

R = 1− 4nn′ cos i cos r

(n cos i + n′ cos r)2

we may write

R + T = 1 +
4n cos i(n cos i− n′ cos r)

(n cos i + n′ cos r)2
= 1± 2

√
|RT |

The sign is related which one of n or n′ is greater, but it hardly matters. The
result is that so long as there is reflection and transmission, then generically
R + T 6= 1.

The case for ~E parallel to the plane of incidence is similar. We have

T =
(

2n cos i

n′ cos i + n cos r

)2

, R =
(

n′ cos i− n cos r

n′ cos i + n cos r

)2

so that

R + T = 1 +
4n cos i(n cos i− n′ cos r)

(n′ cos i + n cos r)2

This case cannot be put into as elegant a form as above. However, it should be
clear that the additional term would not in general vanish. So once again we
demonstrate that R + T 6= 1.

b) Compute the time averaged Poynting vectors for the incident, reflected and re-
fracted waves. Show that the power per unit area flowing in the direction normal
to the interface is conserved. Again consider both polarization cases.



The time averaged Poynting vector is generally written as

~S = 1
2

~E × ~H∗ =
1
2

√
ε

µ
| ~E |2k̂ =

ε

2n
| ~E |2ck̂

where k̂ corresponds to the direction of wave propagation and n is the index of
refraction. In this case, the incident, transmitted and reflected Poynting vectors
are

~S =
ε

2n
| ~E0|2ck̂

~S′ =
ε′

2n′
| ~E′

0|2ck̂′ =
ε′

2n′
T | ~E0|2ck̂′ =

ε

2n

n′

n
T | ~E0|2ck̂′

~S′′ =
ε

2n
| ~E′′

0 |2ck̂′′ =
ε

2n
R| ~E0|2ck̂′′

To proceed, we would like to insert the actual expressions (4) and (5) for T and
R into the above. We now consider these two cases in turn.

For ~E perpendicular to the plane of incidence, we use (4) to obtain

~S′ =
ε

2n

4nn′ cos2 i

(n cos i + n′ cos r)2
| ~E0|2ck̂′

~S′′ =
ε

2n

(n cos i− n′ cos r)2

(n cos i + n′ cos r)2
| ~E0|2ck̂′′

Taking the incident direction to be positive, the power flowing normal to the
interface is given by projecting the above onto the unit normal. This gives a
factor of either cos i or cos r. In particular

S⊥ =
εc

2n
| ~E0|2 cos i

S′⊥ =
εc

2n

4nn′ cos i cos r

(n cos i + n′ cos r)2
| ~E0|2 cos i

S′′⊥ = − εc
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(n cos i + n′ cos r)2
| ~E0|2 cos i

It is now easy to see that S⊥ + S′′⊥ = S′⊥.

Again, the expressions are similar for ~E parallel to the plane of incidence. Using
(5), we find

~S′ =
ε

2n

4nn′ cos2 i

(n′ cos i + n cos r)2
| ~E0|2ck̂′

~S′′ =
ε
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so that the normal components are

S⊥ =
εc

2n
| ~E0|2 cos i

S′⊥ =
εc
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The verification of S⊥ + S′′⊥ = S′⊥ is almost identical to the perpendicular case
above.


