
Physics 505 Fall 2007

Homework Assignment #10 — Due Thursday, November 29

Textbook problems: Ch. 6: 6.1, 6.4, 6.13, 6.18

6.1 In three dimensions the solution to the wave equation (6.32) for a point source in
space and time (a light flash at t′ = 0, ~x ′ = 0) is a spherical shell disturbance of radius
R = ct, namely the Green function G(+) (6.44). It may be initially surprising that in
one or two dimensions, the disturbance possesses a “wake”, even though the source
is a “point” in space and time. The solutions for fewer dimensions than three can be
found by superposition in the superfluous dimension(s), to eliminate dependence on
such variable(s). For example, a flashing line source of uniform amplitude is equivalent
to a point source in two dimensions.

a) Starting with the retarded solution to the three-dimensional wave equation (6.47),
show that the source f(~x ′, t) = δ(x′)δ(y′)δ(t′), equivalent to a t = 0 point source
at the origin in two spatial dimensions, produces a two-dimensional wave

Ψ(x, y, t) =
2cΘ(ct− ρ)√
c2t2 − ρ2

where ρ2 = x2 + y2 and Θ(ξ) is the unit step function [Θ(ξ) = 0 (1) if ξ < (>) 0.]

b) Show that a “sheet” source, equivalent to a point pulsed source at the origin in
one space dimension, produces a one-dimensional wave proportional to

ψ(x, t) = 2πcΘ(ct− |x|)

6.4 A uniformly magnetized and conducting sphere of radius R and total magnetic mo-
ment m = 4πMR3/3 rotates about its magnetization axis with angular speed ω. In
the steady state no current flows in the conductor. The motion is nonrelativistic; the
sphere has no excess charge on it.

a) By considering Ohm’s law in the moving conductor, show that the motion induces
an electric field and a uniform volume charge density in the conductor, ρ =
−mω/πc2R3.

b) Because the sphere is electrically neutral, there is no monopole electric field out-
side. Use symmetry arguments to show that the lowest possible electric multipo-
larity is quadrupole. Show that only a quadrupole field exists outside and that the
quadrupole moment tensor has nonvanishing components, Q33 = −4mωR2/3c2,
Q11 = Q22 = −Q33/2.

c) By considering the radial electric fields inside and outside the sphere, show that
the necessary surface-chrage density σ(θ) is

σ(θ) =
1

4πR2

4mω
3c2

[
1− 5

2
P2(cos θ)

]



d) The rotating sphere serves as a unipolar induction device if a stationary circuit
is attached by a slip ring to the pole and a sliding contact to the equator. Show
that the line integral of the electric field from the equator contact to the pole
contact (by any path) is E = µ0mω/4πR.

6.13 A parallel plate capacitor is formed of two flat rectangular perfectly conducting sheets
of dimensions a and b separated by a distance d small compared to a or b. Current is
fed in and taken out uniformly along the adjacent edges of length b. With the input
current and voltage defined at this end of the capacitor, calculate the input impedance
or admittance using the field concepts of Section 6.9.

a) Calculate the electric and magnetic fields in the capacitor correct to second order
in powers of the frequency, but neglecting fringing fields.

b) Show that the expansion of the reactance (6.140) in powers of the frequency to
an appropriate order is the same as that obtained for a lumped circuit consisting
of a capacitance C = ε0ab/d in series with an inductance L = µ0ad/3b.

6.18 Consider the Dirac expression

~A(~x ) =
g

4π

∫
L

d~l ′ × (~x− ~x ′)
|~x− ~x ′|3

for the vector potential of a magnetic monopole and its associated string L. Suppose
for definiteness that the monopole is located at the origin and the string along the
negative z axis.

a) Calculate ~A explicitly and show that in spherical coordinates it has components

Ar = 0, Aθ = 0, Aφ =
g(1− cos θ)

4πr sin θ
=
( g

4πr

)
tan

θ

2

b) Verify that ~B = ~∇× ~A is the Coulomb-like field of a point charge, except perhaps
at θ = π.

c) With the ~B determined in part b, evaluate the total magnetic flux passing through
the circular loop of radius R sin θ shown in the figure. Consider θ < π/2 and
θ > π/2 separately, but always calculate the upward flux.

d) From
∮
~A · d~l around the loop, determine the total magnetic flux through the

loop. Compare the result with that found in part c. Show that they are equal
for 0 < θ < π/2, but have a constant difference for π/2 < θ < π. Interpret this
difference.


