Physics 505 Fall 2005

Practice Midterm — Solutions

The midterm will be a 120 minute open book, open notes exam. Do all three problems.

1. A two-dimensional problem is defined by a semi-circular wedge with 0 < ¢ < g and
a<p<hb.
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a) For the Dirichlet problem, it is possible to expand the Green’s function as
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Write down the appropriate differential equation that g, (p, p’) must satisfy.

Note that the expansion in terms of sin(mn¢/f3) is designed to satisfy Dirich-
let boundary counditions on the straight segments of the wedge. The Green’s
function equation we wish to solve is
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By completeness, we have
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Using the polar coordinate expression for the Laplacian, we find
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Comparing this with (1) yields the ODE
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which may be converted into Sturm-Liouville form by multiplying by p’
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b) Solve the Green’s function equation for g,,(p, p’) subject to Dirichlet boundary
conditions and write down the result for G(p, ¢; p’, ¢').

The Dirichlet boundary conditions are that g,,(p, p’) vanish when p’ = a or b,
namely ¢, (p,a) = gm(p,b) = 0. For these homogeneous boundary conditions,
the Green’s function takes the form
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where u(p’) and v(p’) are solutions to the homogeneous equation satisfying bound-
ary conditions u(a) = v(b) = 0, and A is related to the Wronskian by W (u,v) =
—A/p’. Noting that the solution to the homogeneous radial equation has the
form

Gm(p, p') ~ p=m/P

it is easy to write down the appropriate u(p’) and v(p’)
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Computing the Wronskian yields

As a result
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Combining this with the angular functions yields the final result
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Note that this has the expected behavior as either a — 0 or b — oo.

2. A conducting spherical shell of inner radius a is held at zero potential. The interior
of the shell is filled with electric charge of a volume density

p(7) = po (%)2 sin? 6

a) Find the potential everywhere inside the shell. To obtain the potential, we make
use of the Green’s function for the interior of a conducting sphere
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Actually, because of azimuthal symmetry, we only need the m = 0 components
of the Green’s function expansion
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Although the charge density is specified in terms of sin? @, this can be converted
into Legendre polynomials. Since sin?f = 1 — cos?, and since P;(cosf) is of
degree (cosf)!, we see that sin” § has to be a linear combination of Py and P,. It
is not too hard to see that

sin® 0 = 2[Py(cos 0) — Ps(cos0)]

We now note that since the surface is held at zero potential the solution in the
interior is given by
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By orthogonality of Legendre polynomials, this becomes
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Inserting the expressions for Legendre polynomials, this becomes
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b) What is the surface charge density on the inside surface of the shell?
The surface charge density is given by
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Note that only the | = 0 term contributes to the total charge induced on the
shell. This is simply
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This is the negative of the charge contained in the interior
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A thin disk of radius a lies in the x-y plane with its center at the coordinate origin
The disk is uniformly charged with a surface density o



a)

Calculate the multipole moments of the charge distribution. Make sure to indicate
which moments are non-vanishing.

The volume charge density for the disk can be written as
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(provided r < a). Note that the factor of 1/r ensures uniform surface charge
density since
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and rdrd¢ is the standard area element in polar coordinates. The multipole
moments are then given by
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By azimuthal symmetry, only the m = 0 moments are non-vanishing. Integrating
the ¢ and 6 angles gives
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(Note that Y; o is independent of ¢.) Since the Legendre polynomials are even
and odd depending on [, we see that only even [ moments are non-vanishing
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Since the disk is uniformly charged, the total charge is simply ¢ = o(ma?). This
allows us to write
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The first two non-vanishing moments are
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Write down the multipole expansion for the potential in explicit form up to the
first two non-vanishing terms.
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The multipole expansion yields
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