Physics 505 Electricity and Magnetism Fall 2003
Prof. G. Raithel

Problem Set 8

Maximal score: 25 Points

1. Jackson, Problem 5.10 9 Points

a): In cylindrical coordinates, the 3D current density of a loop current I with radius a in the plane z = 0

centered at the origin is

(Z;/‘Lﬁ(pl’z/)
I6(r' — a)d(2)

i)
with  Jy(p', 2")

(This applies because I = [j(p,2',¢’) - da’, the integral taken over a plane of constant ¢'.)

Thus, using the expansion of in Eq. 3.149 of Jackson, it is
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b): Using the expansion of Ix+ in Problem 3.16b of Jackson, it is
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Not required, but good exercise: The utilized expansion of Gee(X,x’) = is obtained as follows.
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Using completeness relations for d-functions, it is
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Also, expanding the Green’s function it is

AG

1 1
[pappawpzaiwi} / dk Z Apm (210", 2, ¢) T (kp) exp(ime)
k=

m=—0oo

/k Ak Z Hdz? - }Akm(ﬂp 2 ¢>)} (k) exp(ime)

m=—0o0

+/ dk Z { 0pp0p T (k )}Ak,m(zpﬂz’,(b’)exp(im(b) by Bessel equation

m=—0oo

/k Ak Z Hdzzk]/lk,m( 1", Z,¢)} m (kp) exp(ime) (2)

m=—0o0

Equating the terms in Egs. 1 and 2 in front of the orthogonal functions J,,(kp) exp(ime), and defining
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the equation for the reduced Green’s function gy (z,z’) is

To avoid divergence, the solution must be of the form

gi(2,7') = Cexp(hz<) exp(—kzs)

Inserting into that result into the differential equation for the reduced Green’s function and integrating over

an infinitesimal region that includes the §-inhomogeneity, it is found
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Inserting the results in reverse order, it is
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On the z-axis, it is I1 (kp<) K1 (kps>) = I1(0) K1(kp) = 0 and thus B, = 0.

Also, using L’Hopital’s rule, it is for p — 0
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and thus, using an integral table or Mathematica or equivalent, it is verified that
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On the z-axis, it is B, = 0 and, taking the limit p — 0,
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and thus, using an integral table or Mathematica or equivalent, it is verified that

mola [ nola a
B, = —k|z2|)J1(ka)kdk = —— —
=2 [ (k) (ko) RWEEr
I2
B(p:O,z):iLg
2vz% +a?



2. Jackson, Problem 5.15 8 Points

Consider first a single wire with current I = Iz along the z-axis. Through variable separation of A®y; =0
in cylindrical coordinates and subsequent consideration of the ¥ = 0 terms it is seen that the magnetic

potential is &, = —% (see Section 2.11 of Jackson). The validity of this result is verified by noting that

the correct H-field follows:

H=-Vdy =¢-—
2mp

Note that the x-axis or another plane of constant ¢ needs to be “cut out” of the volume of interest.
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Figure 1: Geometry of the problem.

Now, consider two wires parallel to the z-axis, one with current I; = Iz at (d/2,0) and one with current
I, = —Iz at (—d/2,0). Then, by superposition it is found that

I
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where the ¢; describe the azimuthal angles of the observation point with respect to the respective currents
I;. Simple geometry shows that for p > d it is ¢ — 1 = 7@ + O(;‘f—z), where p and ¢ are the coordinates

of the observation point.
Thus
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Note that in the limit p > d the magnetostatic potential is valid without restriction, because the currents

through the volume of interest are limited to a small region in the center and add up to zero.



b): Through variable separation of the Laplace equation in cylindrical coordinates (2D) it is seen that the

potentials in the regions 1, 2 and 3 can be expanded as follows:
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The boundary conditions on the interfaces are, due to the absence of free currents,
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In the given geometry and expressed with the magnetostatic potential, they are
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The resultant equations are
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Using the orthogonality of the sin(n¢) and u, = lﬁ‘—o, the resultant set of equations for the coefficients of the
(I)l' is
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This system can be solved with Kramer’s rule, Mathematica or similar. For n # 1 all coefficients are zero.

For n = 1 one finds
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Thus, the field is attenuated by the factor f, q.e.d. (No comparison with problem 5.14 required.)

c): The exact field reduction factor for p, = 200, b = 12.5mm and wall thickness ¢t = b — ¢ = 3mm is
f=4.56%. For > 1and b>t it is
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which yields f ~ 4.17%.



3. Jackson, Problem 5.19 8 Points

a): Since there is no free currents, we use the magnetostatic potential. The potential of the described object
is found from its volume magnetic charge density pp; = —V - M = 0 and its surface magnetic charge density
oy =10 -M=+M at z = £L/2, respectively:
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In the given case, on the z-axis the potentials due to the top (T) and bottom (B) surfaces are
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(upper signs for T, lower signs for B). The total potential ®,; = &7 + ® 5, which is
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On the z-axis, the only non-zero component of B is

&
I

0 , |2/>L/2
MO(Hz‘i’MOX{l , |Z‘§L/2

_MOMO Z*% _ Z+%




b):

H, in units of M,
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Figure 2: H, and B, vs. z/L for L = 5a.



