Physics 505 Electricity and Magnetism Fall 2003
Prof. G. Raithel

Problem Set 4

Problem 2.13 5 Points

a): First, note that due to the the superposition principle the problem is equivalent to the sum of a constant

% and @ Thus, we only

VotV
2

potential % and a problem of two half-cylinders on opposite potentials
need to consider the case of two half-cylinders on opposite potentials V' = % and -V = . Assuming
that ¢ = 0 corresponds to the middle of the half-cylinder on potential V', dropping diverging terms, and

considering the symmetry of the problem, for our case Eq. 2.71 reads

9) =3 aup" cos(no) 1)

n=1

To obtain the coefficients a,,, we write the potential on the surface p = b, multiply with cos(n’¢) and integrate

over ¢:
21 21 (o)
/ V() cos(n'¢)d¢ = Z anb™ / cos(ng) cos(n'¢)dp = Y anb™ w0 = apb™ (2)
0 n=1
Thus,
v /2 (3m)/2 4V . nm 4V 0 , neven
T b </7r/2 coslng)dé - / cos(no)de | = o sin(50) = 5o { (=372 nodd
0 , neven
an = { —ibfﬂ:ni" , mnodd ®
and:

I

D(p,¢) = —ig 1 (g)ni” cos(ng) = —1— <1Im Z Z") with Z =irexp(ip) and r =

n odd nodd

—~

1)

1zn_ 11n1+Z

Following the elaborations on p.74f of the textbook, it is Y ° p =,

and Im (1n 1+Z> equals

the phase of 2. Since we find £ = %Tm with 0 < r < 1, the phase has a range [—7/2,7/2]

and is equal to tan~! (%) =tan~! (2’)&%‘32({@). Thus,



@@@)iéf(imm1<%wm“@)>Zan1<%ﬁm%@) : (5)

2 b2 — p2 T b2 — p2

Using V = % and the superposition explained at the beginning, it is

B(p, 6) = Vi+Va n Vi—Vo tan—1 <2pbcos(¢)> qeed.

2 T b2 — p?

(6)

It is noted that the result has the correct limit for p — b: Writing p = b—e with € > 0, it is tan™! (%‘ig‘ﬁ)) =
tan—! (M) = I x Sign(cos ¢), and

€

Vi4+Vs Vi—Vsa T ™
VidVe | isVa ), for —T << T
®(p, ¢) = { VIEVQ _ vlgvz Y for §2< o 3773 andp —b . (7)
b): The charge density is 0 = ¢, = —60% = +60%|p:b. Thus,
i—V, 1 (b2 — p?)2bcos ¢ + 4p?bcos ¢
o(¢) = e - - p B2 — p2)2 o=
1+ (2e2) ,

Vi—-V, 2b cos ¢(b? + p?)

T (b2 — p?)2 + 4p2b2 cos? ¢ lo=b
i—-Ve 1

™ bcoso




Problem 2.23

5 Points

a): To simplify the calculation, we choose the origin such that the upper and lower walls are at z = +a/2,

and the other four are at x = 0 or @ and y = 0 or a. We transform into the frame of the problem statement

after the calculation.

For the given boundary conditions, the potential is of the form

z,Y, 2 Z Ap sin( ) n(m7r

n,m=1

y) cosh(vpmz) wherev,, = il vV n? +m?2
a

Thus, on the upper and lower surface it is

/ / sin( sm(m 7ry) dxdy =
a

- Z Anmcosh(%mf) / / sin(272) sin(27) sin(272) sin( Y deedy
27 Jo Jo a a a

n,m=1 a
and
a? n'rxl? m'my]? a. a?
o 77 | €08 Ccos = Apm COSh(7n 'm! S )*
m“n'm a g a |, 27 4
16V
A B e cosh (& VT ) , nandmbothodd
nm - .
0 , otherwise

and, after transformation into the frame specified in the problem,

oo

16V nmwT mmy T a
o = E i ' h(Z\/n2 2(, ¢
(2:9,2) m2nm cosh (5v/n? + m?) sin( a Jsin a ) cos (a e+ ma(z 2 ))

n,m odd

b): At the center of the cube

(2,00 = f: LoV sin("") sin( ")
27272 e m*nmcosh (3vn? + m?) 2 2
> 16V (— 1)1+

S m(20+1)(25 + 1) cosh(g 2i+ 12 (2j+1)2)

(10)

(13)



To achieve an accuracy of three significant digits, it is:

. 71)i+j R
(hJ) 72(2i41)(2j+1) coih(%\/(2i+1)2+(2j+1)2) Multiplicity
(0,0) +0.21438 x1 required
(0,1) -0.00464 X2 required
(1,1) 0.00028 x1 required
(2,0) 0.00013 X2 required
(2,1) -0.000007 X2 not required
(3,0) -0.000004 X2 not required
not required

and ®(%,5,5) = 152‘,/ x 0.20564 = 0.333371V. According to Problem 2.28, the exact result must be

®(5,5,5) = %V. We see that only four terms of the expansion approach the exact result with a rela-

tive accuracy of order 104

¢): On the upper face, it is 0 = gE| = —eog—i = +eo%‘f|2:a/2, ie.
a 16eoV ad 1 . nmx, . mmy T 5 5 5 5
olwyz=5)=——— > ——sin(=—)sin(—>)tanh (5\/11 +m ) Vn2+m (14)



Problem 2.24 5 Points

The functions {Um(¢) = A, sin (mTM’)} with integer m and arbitrary non-zero constants A, form a com-
plete orthogonal set on the interval 0 < ¢ < § with Dirichlet BC. Note the analogy of these functions with

the complete set of eigenfunctions of a quantum particle in an infinitely deep square well.

Consider the expansion of a function f(¢) satisfying Dirichlet BC, f(¢) = Y. >~_, amUn(¢) with coefficients

m=1

A, multiply both sides with U,/ (¢) and integrate over ¢:

B / ot B8 ’
/0 F(®) Ay sin (mg¢> @6 = S amAndn /O (@) sin (mgqb) sin (mgd’) dp = any A2, 5
m=1
2 p N o m7r¢l /
U = m/o f(é)sm( 3 )d¢ (15)

where, for later convenience, we have switched the primes in the second line. Inserting this expression into

the expansion of f(¢),

£6) = mil {ﬂA / £(¢') sin <mg¢'> d¢’}Am sin <mg¢>

B o /
- i { Z sin <mg¢ > sin <mg¢> } f(¢")de¢' Yo

m= 1

Thus,

i %sm (mg¢/> sin <m;¢> =8¢ —¢') ,qed (16)



Problem 3.2 5 Points
In Problems 3.2 and 3.3, use of Eq. 3.70 of the textbook is recommended.

It is p(x') = #6(7” — R). Using Eq. 3.70 of the textbook, with r- = r and r~ = 7/ for the interior region,

it is
1 1
P _ / d3 /
0 = o | p<x>|xix,‘ :
— 1 / / 12 / / /
(%) m@ 21 e /5 et Vi (6,0)Yi (0, ) d cos ' dg (17)
Sine the charge density does not depend on ¢, only terms with m = 0 occur. Using Yo (0, ¢) = 23—:11]31((305 0)

and Eq. 3.28, which integrates to [ P(z)dx = Qlil (Pry1(z) — P_q(x)),

1 /r, COs &
d(x) = e Z 5 Rl-‘rlpl (cos®) /COSO:?IB(COSQ/)dCOSG/
000 = S e Aleost) g [Pnse) — P a1y
X) = _1(z
8meg R 9l +1 0 1 le=—1
Since Piy1(—1) = (—1)*1 = (=1)i~1 = P_y(~1)
D pterior (X) = @ i ! Py(cos G)L [Pry1(cosa) — P_q(cos )] e.d (19)
interior - 87T€0 < Rl+1 l 21 +1 +1 -1 , gq.e.d.
Explicit integration of the dubious case | = 0 shows that our result is correct if we define P_j(cosa) = —1.

In the exterior region, choose r- = r’ and r~ = r to find

R! 1
D oxtorior (X 87'('60 Z l+1 (cos ) —— 2l 1 [Pi1(cosa) — P_1(cosa)] . (20)

b): The interior radial field E, = —%(ID is

—Q

E
" 87T6()

l
Z s Pi(cos ) —— ST [Pl+1(cos a) — P_1(cosa)] . (21)
By symmetry, the field near the origin must point in z-direction. Therefore, the field at the origin is

E(0) = 2z lim E.(r,0 =0)

lfl l
87r60 Z R+ 21+ 1

[Piyi1(cosa) — P_i(cos )] |r—o



—Q 11 [P (cos ) — Py(cos )]

87T60 R2
,—@ 1171
= 87reo 7233 ~(3cos’a—1)—1 (22)
. QL
= Zm ST &« (23)

¢): Limit of a small cap. For « — 0 it is cosa =1 — %aQ and, in the case [ > 1,

1 1 1 1
Pra(1- 5042) —Pa(1- §a2) ~ Pa(l) - 5042Pll+1(1) - Pa(1)+ 5042101/71(1)

1
= =50 (Pla(1) = A1) = —5a’@+ DA
2041
s

where in the last step we have used Eq. 3.28 of the textbook, (21 +1)P, = P/, — P/_.

In the case | = 0 it is Py1(1 — 3a%) +1 = 2 — 1a? = 2 — 2Ha2 Thus, using r~ = max(R,r) and

rs = min(R,r), the potential in the interior and the exterior region is

1 2A+1 ,\ . Q 1
B(x) — 0) - LI
() 8men Z H‘l (cos 2l +1 ( 2 ¢ ) * 8mep >

l
= @ @ @Z&Pl(cose)
1

+1
dmegrs  4Ameg 4Am rd

__Q Q’r 1 (25)
dmegrs  4mey 4w |x —zR|

This is the potential of a homogeneously charged sphere (first term) plus the potential of a charge ¢ located
04271'

at the north pole of the sphere (second term). The charge ¢ equals —@Q times the ratio % between the

solid angle of the cap and the solid angle of a full sphere. This behavior in the limit of a small cap is to be

expected.
Limit of a large cap. In this case, « = m — € with € — 0. Then, cosa ~ & — 1, and for [ > 1 it is
L, 1, 1+1 L, L,
P 1) =Pz 1) = (- Byl — o) = Bi(l— 5
2 2 2 2
I+1 62 / /
~ (-1 ) (Pl+1(1) - Pz—1(1))
2041 2041
= () T RME= (- e (26)
where Eq. 3.28 of the textbook has been used. In the special case | = 0, it also is P11 (3€*—1)—P,_1(3€*—1) =

P (3¢ —1)+1=1e? = (—1)! 22HLe2. Thus, the potential in the interior and the exterior region is



Q — 1 L L2041,
® = Py(cosf) (1) =——
) 8W60;2l+1rl;1 Hcos ) (—1) =5 —¢

0 l

Q 6271' 'f'<
dmey 4w ZZ; Tl>+1 l(ﬂ' coS )

Q én 1
= . ) 27
dmey 41 |x + ZR)| 27)

This is the potential of a charge ¢ located at the south pole of the sphere. The charge g equals @ times the

ratio f—: between the solid angle of the charged area and the solid angle of a full sphere. This behavior in

the limit of a large cap is to be expected.

In both cases of small and large cap, the electric field at the origin is E(0) = i% and E(0) =
2

respectively. This result is consistent with the interpretations of the potentials.

A Qe

Z 16meg R2



Problem 3.3 5 Points

Hint: A closed expression exists for fOR \/’“% dr (you can find it with Mathematica, for instance).

a): Exterior potential (r > R). The surface charge density is o(r) = \/ﬁ for r < R and zero otherwise.

The volume charge density must be of the form p(x) = f(r)d(cosf). The function f(r) is determined by

considering the charge in a shell of radius 7 and thickness dr:

2 1
dg = o(r)2nrdr = / do dcos Or2dr f(r)6(cos 0) = 2mr? f(r)dr (28)

¢=0 cosf=—1

and thus p(r) = o(r) 0(cosB). To find A, we calculate the potential at the origin and equate the result to V:

T

r\18 Arm

o A
= = 2 = — |si -1 iy = — 2
v ‘I)(O) 47T60 A T\/R2 — 7‘2 mrdr 260 |:bln (R>:| 0 460 ( 9)

Thus, A = %, and | p(r) = Tﬁ% d(cos ) | . Using Eq. 3.70 of the textbook for the case r > R we have

rv =71 and r- =7’, and we find

1 eV 4 1 Hers 10t o1 1 N> ISR,
o(x) = PP lzrgm_’_lylm(aa@ﬁ)rlﬂ///r Ylm(é),gzﬁ)wé(mSO)r dcos ¢ dg'dr

1
_ % Z P,(cos 9)% //r’H‘lPl(COS gf)ﬁ d(cos 0/)d cos &' dr’
l

2V 1 Bt
= — —PF 0) P, (0 —dr’
w2 quriesORO) |- =
2V A 1 —)"@2n -1 Rl
= T +1P2n(cos¢9)( )" n| ) ! dr’
T n:or” 2nn! 0o VRZ—1r2

Using integral tables or software, it is found that fOR \/% dr = R?nt1 (QZEI)!U and thus

2V o (—1)" R\
b, r(x) = — Z 2(?1 +)1 (T> Py, (cosf) ,q.e.d. (30)

n=0

b): Interior potential (r < R). On the surface r = R the expansions for » > R and » < R must agree, I.e. the

respective coefficient functions B;r—'=! and A;r! of the Py(cos 0) must be equal for r = R and for all [. Thus,
the interior coefficients A; = B;R™2~1. Here, | = 2n and As, = By,R~ %! = R+t R—4n—1 = R—2n
Thus,

Brn() = L3 (=" (1)2" Pan(cosf) . (31)

With 7o = min(r, R) and r~ = maxr, R the potential in all space can be written as



WR S (—1) 2
(I)ever where\X) = < P n cos 0 . 32
ywh () T HZ:OQ’”'+1T2>”+1 2( ) ( )

c): The capacitance is C' = % From part a), we know that V = 41\77;. The total charge @ on the disk is

obtained as

R
A R
— AN — _JR2_,2
Q—/O = T227rrdr—27r)\[ R T}o =27AR . (33)

Thus, C' = % =21AR %?, and .



