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Problem Set 4

Problem 2.13 5 Points

a): First, note that due to the the superposition principle the problem is equivalent to the sum of a constant
potential V1+V2

2 and a problem of two half-cylinders on opposite potentials V1−V2
2 and V2−V1

2 . Thus, we only
need to consider the case of two half-cylinders on opposite potentials V = V1−V2

2 and −V = V2+V1
2 . Assuming

that φ = 0 corresponds to the middle of the half-cylinder on potential V , dropping diverging terms, and
considering the symmetry of the problem, for our case Eq. 2.71 reads

Φ(ρ, φ) =
∞∑

n=1

anρn cos(nφ) (1)

To obtain the coefficients an, we write the potential on the surface ρ = b, multiply with cos(n′φ) and integrate
over φ:

∫ 2π

0

V (φ) cos(n′φ)dφ =
∞∑

n=1

anbn

∫ 2π

0

cos(nφ) cos(n′φ)dφ =
∞∑

n=1

anbnπδn,n′ = an′b
n′π (2)

Thus,

an =
V

bnπn

(∫ π/2

−π/2

cos(nφ)dφ−
∫ (3π)/2

π/2

cos(nφ)dφ

)
=

4V

bnπn
sin(

nπ

2
) =

4V

bnπn

{
0 , n even

(−1)(n+3)/2 , n odd

an =
{

0 , n even
−i 4V

bnπn in , n odd (3)

and:

Φ(ρ, φ) = −i
4V

π

∞∑

n odd

1
n

(ρ

a

)n

in cos(nφ) = −i
4V

π

(
i Im

∞∑

n odd

1
n

Zn

)
with Z = ir exp(iφ) and r =

ρ

a

(4)

Following the elaborations on p.74f of the textbook, it is
∑∞

n odd
1
nZn = 1

2 ln 1+Z
1−Z , and Im

(
ln 1+Z

1−Z

)
equals

the phase of 1+Z
1−Z . Since we find 1+Z

1−Z = 1−r2+i2r cos(φ)
1+r2+2r sin(φ) with 0 ≤ r ≤ 1, the phase has a range [−π/2, π/2]

and is equal to tan−1
(

2r cos(φ)
1−r2

)
= tan−1

(
2ρb cos(φ)

b2−ρ2

)
. Thus,



Φ(ρ, φ) = −i
4V

π

(
i
2

tan−1

(
2ρb cos(φ)
b2 − ρ2

))
=

2V

π
tan−1

(
2ρb cos(φ)
b2 − ρ2

)
. (5)

Using V = V1−V2
2 and the superposition explained at the beginning, it is

Φ(ρ, φ) =
V1 + V2

2
+

V1 − V2

π
tan−1

(
2ρb cos(φ)
b2 − ρ2

)
, q.e.d. (6)

It is noted that the result has the correct limit for ρ → b: Writing ρ = b−ε with ε > 0, it is tan−1
(

2ρb cos(φ)
b2−ρ2

)
=

tan−1
(

b cos(φ)
ε

)
= π

2 × Sign(cosφ), and

Φ(ρ, φ) =
{

V1+V2
2 + V1−V2

2 = V1 for −π
2 < φ < π

2
V1+V2

2 − V1−V2
2 = V2 for π

2 < φ < 3π
2

}
and ρ → b . (7)

b): The charge density is σ = ε0E⊥ = −ε0
∂Φ
∂n = +ε0

∂Φ
∂ρ |ρ=b. Thus,

σ(φ) = ε0
V1 − V2

π

1

1 +
(

2ρb cos φ
b2−ρ2

)2

(b2 − ρ2)2b cos φ + 4ρ2b cosφ

(b2 − ρ2)2
|ρ=b

= ε0
V1 − V2

π

2b cos φ(b2 + ρ2)
(b2 − ρ2)2 + 4ρ2b2 cos2 φ

|ρ=b

= ε0
V1 − V2

π

1
b cosφ

(8)



Problem 2.23 5 Points

a): To simplify the calculation, we choose the origin such that the upper and lower walls are at z = ±a/2,
and the other four are at x = 0 or a and y = 0 or a. We transform into the frame of the problem statement
after the calculation.

For the given boundary conditions, the potential is of the form

Φ(x, y, z) =
∞∑

n,m=1

Anm sin(
nπx

a
) sin(

mπy

a
) cosh(γnmz) where γnm =

π

a

√
n2 + m2 (9)

Thus, on the upper and lower surface it is

V

∫ a

0

∫ a

0

sin(
n′πx

a
) sin(

m′πy

a
) dxdy =

=
∞∑

n,m=1

Anm cosh(γnm
a

2
)
∫ a

0

∫ a

0

sin(
nπx

a
) sin(

mπy

a
) sin(

n′πx

a
) sin(

m′πy

a
)dxdy (10)

and

V
a2

π2n′m′

[
cos

n′πx

a

]a

0

[
cos

m′πy

a

]a

0

= An′m′ cosh(γn′m′
a

2
)
a2

4

Anm =

{
16V

π2nm cosh(π
2

√
n2+m2) , n and m both odd

0 , otherwise
(11)

and, after transformation into the frame specified in the problem,

Φ(x, y, z) =
∞∑

n,m odd

16V

π2nm cosh
(

π
2

√
n2 + m2

) sin(
nπx

a
) sin(

mπy

a
) cosh

(π

a

√
n2 + m2(z − a

2
)
)

(12)

b): At the center of the cube

Φ(
a

2
,
a

2
,
a

2
) =

∞∑

n,m odd

16V

π2nm cosh
(

π
2

√
n2 + m2

) sin(
nπ

2
) sin(

mπ

2
)

=
∞∑

i,j=0

16V (−1)i+j

π2(2i + 1)(2j + 1) cosh
(

π
2

√
(2i + 1)2 + (2j + 1)2

) (13)



To achieve an accuracy of three significant digits, it is:

(i,j) (−1)i+j

π2(2i+1)(2j+1) cosh
(

π
2

√
(2i+1)2+(2j+1)2

) Multiplicity

(0,0) +0.21438 ×1 required
(0,1) -0.00464 ×2 required
(1,1) 0.00028 ×1 required
(2,0) 0.00013 ×2 required
(2,1) -0.000007 ×2 not required
(3,0) -0.000004 ×2 not required
... not required

and Φ(a
2 , a

2 , a
2 ) = 16V

π2 × 0.20564 = 0.333371V . According to Problem 2.28, the exact result must be
Φ(a

2 , a
2 , a

2 ) = 1
3V . We see that only four terms of the expansion approach the exact result with a rela-

tive accuracy of order 10−4.

c): On the upper face, it is σ = ε0E⊥ = −ε0
∂Φ
∂n = +ε0

∂Φ
∂z |z=a/2, i.e.

σ(x, y, z =
a

2
) =

16ε0V

aπ

∞∑

n,m odd

1
nm

sin(
nπx

a
) sin(

mπy

a
) tanh

(π

2

√
n2 + m2

)√
n2 + m2 (14)



Problem 2.24 5 Points

The functions
{

Um(φ) = Am sin
(

mπφ
β

)}
with integer m and arbitrary non-zero constants Am form a com-

plete orthogonal set on the interval 0 ≤ φ ≤ β with Dirichlet BC. Note the analogy of these functions with
the complete set of eigenfunctions of a quantum particle in an infinitely deep square well.

Consider the expansion of a function f(φ) satisfying Dirichlet BC, f(φ) =
∑∞

m=1 amUm(φ) with coefficients
am, multiply both sides with Um′(φ) and integrate over φ:

∫ β

0

f(φ)Am′ sin
(

m′πφ

β

)
dφ =

∞∑
m=1

amAmAm′

∫ β

0

f(φ) sin
(

mπφ

β

)
sin

(
m′πφ

β

)
dφ = am′A2

m′
β

2

am =
2

βAm

∫ β

0

f(φ′) sin
(

mπφ′

β

)
dφ′ (15)

where, for later convenience, we have switched the primes in the second line. Inserting this expression into
the expansion of f(φ),

f(φ) =
∞∑

m=1

{
2

βAm

∫ β

0

f(φ′) sin
(

mπφ′

β

)
dφ′

}
Am sin

(
mπφ

β

)

=
∫ β

0

{ ∞∑
m=1

2
β

sin
(

mπφ′

β

)
sin

(
mπφ

β

)}
f(φ′) dφ′ ∀φ

Thus,

∞∑
m=1

2
β

sin
(

mπφ′

β

)
sin

(
mπφ

β

)
= δ(φ− φ′) , q.e.d. (16)



Problem 3.2 5 Points

In Problems 3.2 and 3.3, use of Eq. 3.70 of the textbook is recommended.

It is ρ(x′) = Q
4πR2 δ(r′−R). Using Eq. 3.70 of the textbook, with r< = r and r> = r′ for the interior region,

it is

Φ(x) =
1

4πε0

∫
ρ(x′)

1
|x− x′|d

3x′

Φ(x) =
1

4πε0

∑

l,m

4π

2l + 1
Q

4πR2

∫
δ(r′ −R)

rl

r′l+1
Ylm(θ, φ)Y ∗

lm(θ′, φ′)r′2dr′d cos θ′dφ′ (17)

Sine the charge density does not depend on φ, only terms with m = 0 occur. Using Yl0(θ, φ) =
√

2l+1
4π Pl(cos θ)

and Eq. 3.28, which integrates to
∫

Pl(x)dx = 1
2l+1 (Pl+1(x)− Pl−1(x)),

Φ(x) =
1

4πε0

∞∑

l=0

Q

2
rl

Rl+1
Pl(cos θ)

∫ cos α

cos θ=−1

Pl(cos θ′)d cos θ′

Φ(x) =
Q

8πε0

∞∑

l=0

rl

Rl+1
Pl(cos θ)

1
2l + 1

[Pl+1(x)− Pl−1(x)]cos α
x=−1 (18)

Since Pl+1(−1) = (−1)l+1 = (−1)l−1 = Pl−1(−1),

Φinterior(x) =
Q

8πε0

∞∑

l=0

rl

Rl+1
Pl(cos θ)

1
2l + 1

[Pl+1(cos α)− Pl−1(cos α)] , q.e.d. (19)

Explicit integration of the dubious case l = 0 shows that our result is correct if we define P−1(cos α) = −1.
In the exterior region, choose r< = r′ and r> = r to find

Φexterior(x) =
Q

8πε0

∞∑

l=0

Rl

rl+1
Pl(cos θ)

1
2l + 1

[Pl+1(cosα)− Pl−1(cos α)] . (20)

b): The interior radial field Er = − ∂
∂r Φ is

Er =
−Q

8πε0

∞∑

l=1

rl−1

Rl+1
Pl(cos θ)

l

2l + 1
[Pl+1(cos α)− Pl−1(cos α)] . (21)

By symmetry, the field near the origin must point in z-direction. Therefore, the field at the origin is

E(0) = ẑ lim
r→0

Er(r, θ = 0)

= ẑ
−Q

8πε0

∞∑

l=1

rl−1

Rl+1

l

2l + 1
[Pl+1(cos α)− Pl−1(cos α)] |r→0



= ẑ
−Q

8πε0

1
R2

1
3

[P2(cos α)− P0(cosα)]

= ẑ
−Q

8πε0

1
R2

1
3

[
1
2
(3 cos2 α− 1)− 1

]
(22)

= ẑ
Q

16πε0R2
sin2 α (23)

c): Limit of a small cap. For α → 0 it is cos α = 1− 1
2α2 and, in the case l ≥ 1,

Pl+1(1− 1
2
α2)− Pl−1(1− 1

2
α2) ≈ Pl+1(1)− 1

2
α2P ′l+1(1)− Pl−1(1) +

1
2
α2P ′l−1(1)

= −1
2
α2(P ′l+1(1)− P ′l−1(1)) = −1

2
α2(2l + 1)Pl(1)

= −2l + 1
2

α2 , (24)

where in the last step we have used Eq. 3.28 of the textbook, (2l + 1)Pl = P ′l+1 − P ′l−1.

In the case l = 0 it is Pl+1(1 − 1
2α2) + 1 = 2 − 1

2α2 = 2 − 2l+1
2 α2. Thus, using r> = max(R, r) and

r> = min(R, r), the potential in the interior and the exterior region is

Φ(x) =
Q

8πε0

∑

l

rl
<

rl+1
>

Pl(cos θ)
1

2l + 1

(
−2l + 1

2
α2

)
+

Q

8πε0

1
r>

· 2

=
Q

4πε0r>
− Q

4πε0

α2π

4π

∑

l

rl
<

rl+1
>

Pl(cos θ)

=
Q

4πε0r>
− Q

4πε0

α2π

4π

1
|x− ẑR| . (25)

This is the potential of a homogeneously charged sphere (first term) plus the potential of a charge q located
at the north pole of the sphere (second term). The charge q equals −Q times the ratio α2π

4π between the
solid angle of the cap and the solid angle of a full sphere. This behavior in the limit of a small cap is to be
expected.

Limit of a large cap. In this case, α = π − ε with ε → 0. Then, cosα ≈ ε2

2 − 1, and for l ≥ 1 it is

Pl+1(
1
2
ε2 − 1)− Pl−1(

1
2
ε2 − 1) = (−1)l+1

[
Pl+1(1− 1

2
ε2)− Pl−1(1− 1

2
ε2)

]

≈ (−1)l+1

(
−ε2

2

) (
P ′l+1(1)− P ′l−1(1)

)

= (−1)l 2l + 1
2

Pl(1)ε2 = (−1)l 2l + 1
2

ε2 , (26)

where Eq. 3.28 of the textbook has been used. In the special case l = 0, it also is Pl+1( 1
2ε2−1)−Pl−1( 1

2ε2−1) =
P1( 1

2ε2 − 1) + 1 = 1
2ε2 = (−1)l 2l+1

2 ε2. Thus, the potential in the interior and the exterior region is



Φ(x) =
Q

8πε0

∞∑

l=0

1
2l + 1

rl
<

rl+1
>

Pl(cos θ) (−1)l 2l + 1
2

ε2

=
Q

4πε0

ε2π

4π

∞∑

l=0

rl
<

rl+1
>

Pl(π − cos θ)

=
Q

4πε0

ε2π

4π

1
|x + ẑR| . (27)

This is the potential of a charge q located at the south pole of the sphere. The charge q equals Q times the
ratio ε2π

4π between the solid angle of the charged area and the solid angle of a full sphere. This behavior in
the limit of a large cap is to be expected.

In both cases of small and large cap, the electric field at the origin is E(0) = ẑ Qα2

16πε0R2 and E(0) =

ẑ Qε2

16πε0R2 , respectively. This result is consistent with the interpretations of the potentials.



Problem 3.3 5 Points

Hint: A closed expression exists for
∫ R

0
r2n+1√
R2−r2 dr (you can find it with Mathematica, for instance).

a): Exterior potential (r > R). The surface charge density is σ(r) = λ√
R2−r2 for r < R and zero otherwise.

The volume charge density must be of the form ρ(x) = f(r)δ(cos θ). The function f(r) is determined by
considering the charge in a shell of radius r and thickness dr:

dq = σ(r)2πrdr =
∫ 2π

φ=0

dφ

∫ 1

cos θ=−1

d cos θr2drf(r)δ(cos θ) = 2πr2f(r)dr (28)

and thus ρ(r) = σ(r)
r δ(cos θ). To find λ, we calculate the potential at the origin and equate the result to V :

V = Φ(0) =
1

4πε0

∫ R

0

λ

r
√

R2 − r2
2πrdr =

λ

2ε0

[
sin−1

( r

R

)]R

0
=

λπ

4ε0
(29)

Thus, λ = 4ε0V
π , and ρ(r) = 4ε0V

πr
√

R2−r2 δ(cos θ) . Using Eq. 3.70 of the textbook for the case r > R we have

r> = r and r< = r′, and we find

Φ(x) =
1

4πε0

4ε0V

π

∑

l,m

4π

2l + 1
Ylm(θ, φ)

1
rl+1

∫ ∫ ∫
r′lY ∗

lm(θ′, φ′)
1

r′
√

R2 − r′2
δ(cos θ′)r′2d cos θ′dφ′dr′

=
V

π2

∑

l

Pl(cos θ)
2π

rl+1

∫ ∫
r′l+1Pl(cos θ′)

1√
R2 − r′2

δ(cos θ′)d cos θ′dr′

=
2V

π

∑

l

1
rl+1

Pl(cos θ)Pl(0)
∫ R

0

r′l+1

√
R2 − r′2

dr′

=
2V

π

∞∑
n=0

1
r2n+1

P2n(cos θ)
(−1)n(2n− 1)!!

2nn!

∫ R

0

r′l+1

√
R2 − r′2

dr′ .

Using integral tables or software, it is found that
∫ R

0
rl+1√
R2−r2 dr = R2n+1 n!2n

(2n+1)!! , and thus

Φr>R(x) =
2V

π

∞∑
n=0

(−1)n

2n + 1

(
R

r

)2n+1

P2n(cos θ) , q.e.d. (30)

b): Interior potential (r < R). On the surface r = R the expansions for r > R and r < R must agree, i.e. the
respective coefficient functions Blr

−l−1 and Alr
l of the Pl(cos θ) must be equal for r = R and for all l. Thus,

the interior coefficients Al = BlR
−2l−1. Here, l = 2n and A2n = B2nR−4n−1 = R2n+1R−4n−1 = R−2n.

Thus,

Φr<R(x) =
2V

π

∞∑
n=0

(−1)n

2n + 1

( r

R

)2n

P2n(cos θ) . (31)

With r< = min(r,R) and r> = max r,R the potential in all space can be written as



Φeverywhere(x) =
2V R

π

∞∑
n=0

(−1)n

2n + 1
r2n
<

r2n+1
>

P2n(cos θ) . (32)

c): The capacitance is C = Q
V . From part a), we know that V = λπ

4ε0
. The total charge Q on the disk is

obtained as

Q =
∫ R

0

λ√
R2 − r2

2πrdr = 2πλ
[
−

√
R2 − r2

]R

0
= 2πλR . (33)

Thus, C = Q
V = 2πλR 4ε0

λπ , and C = 8Rε0 .


