
Physics 505 Electricity and Magnetism Fall 2003
Prof. G. Raithel

Problem Set 9

Maximal score: 25 Points

1. Jackson, Problem 5.22 6 Points

Hints given: Consider the result of the previous homework problem 5.19 and the discussion in Sec. 5.14 of
Jackson to construct the magnetic field by an image method.

When calculating the force, note that Eq. 5.151 cannot be used, because the medium is nonlinear. Use a
simpler equation for the energy of an object of fixed magnetization in an external B-field.

Magnetic field. Consider two identical rods with identical, constant magnetization M = ẑM0, length L and
an arbitrary cross section in the xy-plane, one extending from z = −L to z = −0, and the other from z = +0
to z = L. By symmetry, the magnetic-field lines of the arrangement intersect the plane z = 0 at a right
angle. To see this, consider two identical magnetic dipoles, equivalent to volume elements of the magnetized
rods located at (x′, y′, z′) and (x′, y′,−z′). At any location (x, y, z = 0), the z-components of the B-fields
of these dipoles add up, while the x- and y-components cancel. Following the discussion in Sec. 5.14, the
boundary condition for the B-field outside a highly permeable medium with surface z = 0 is that Bz = 0 at
all locations (x, y, z = 0). This is exactly what the described arrangement of two rods also provides. Thus,
in the volume of interest z > 0 the B-fields of the following cases are indistinguishable:

1) µ = ∞ in the volume z < 0, µ = µ0 in the volume z ≥ 0, and one magnetized rod extending from z = 0
to z = L.

2) µ = µ0 everywhere and two magnetized rods, as described.

Force Method 1

Due to the absence of free currents, the H-field of the image problem follows from H = −∇ΦM . The
magnetic potential ΦM follows from magnetic surface charge densities σM = M0 on the end faces at z = L

and z = −0, and σM = −M0 on the end faces at z = −L and z = +0. For long, thin rods, one can neglect
the effect of the magnetic charges at ±L, leaving only the charges at z = ±0. The magnetic potential is
then analogous to the electric potential inside a plate capacitor, with σE/ε0 replaced by σM . Similarly, the
H-field is analogous to the E-field. Assuming an infinitesimally small gap 0 < z < z0 between the image rod
and the real rod, it is

H(x, y, z) =
{

ẑM0 , 0 < z < z0 and (x, y) ∈ A
0 , otherwise .

There, A stands for the surface area of the end faces in the xy-plane. Since B = µ0(H + M),
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B(x, y, z) =
{

ẑµ0M0 , ∀ z and (x, y) ∈ A
0 , otherwise .

Since an increase of z0 by dz0 implies an increase of the magnetic-field volume by the gap volume Adz0, the
magnetostatic energy W (z0) satisfies

dW (z0) = dz0A
1

2B2µ0
= dz0A

µ0M
2
0

2
.

Note that the position of the image rod remains fixed and does not vary as a function of z0. Then,

F = −ẑ
dW (z0)

dz0
= −ẑA

µ0M
2
0

2
, q.e.d.

The result is also valid for the real problem, because the real rod cannot distinguish between being attracted
by another real rod or by its image rod; note the similarity of this argument with image problems in
electrostatics. The significance of the −sign in the result is that the force pulls the rod towards the permeable
medium (as expected).

Force Method 2: We consider a rod with a circular cross section with radius a; everything else as before.
Explicit expressions for the magnetic field in the volume of interest can then be imported from Problem
5.19. To obtain the force, consider the potential energy W (z0) of the real rod in an external field presented
by the image rod.

W (z0) = −
∫

M(x) ·Bi(x)d3x = −M0

∫

Vr

Bz,i(x)d3x = −M0

∫ z0+L

z0

{∫

xy

Bz,i(x)dxdy

}
dz,

where Bi(x) is the field of the image rod at locations x in the real rod, and Vr is the volume of the real rod.
The position of the image rod is held fixed. For a long, thin rod, Bz,i(x) ≈ Bz,i(0, 0, z), and

W (z0) ≈ −M0

∫ z0+L

z0

Bz,i(0, 0, z)
{∫

xy

dxdy

}
dz = −M0A

∫ z0+L

z0

Bz,i(0, 0, z)dz

where A is the rod cross section. Thus, the adhesion force is

Fz = − dW (z0)
dz0

∣∣∣∣
z0=0

= M0A [Bz,i(0, 0, L)−Bz,i(0, 0, 0)]

By Problem 5.19, and by shifting the origin to the z = 0-end of the image rod, it is

Bz,i(0, 0, z) =
µ0M0

2


 z + L√

a2 + (z + L)2
− z√

a2 + z2




and
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Fz =
µ0M

2
0 A

2

[
2L√

a2 + 4L2
− L√

a2 + L2
− L√

a2 + L2
+ 0

]
.

For a ¿ L

Fz = −µ0M
2
0 A

2
q.e.d.

The result also holds for long, thin shapes with arbitrary cross sections, because one can consider them as
superpositions of sub-portions that have cylindrical cross sections.
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2. 7 Points

An infinitely long cylindrical region with radius a and constant permeability µ À µ0 carries a volume current
density

jz(ρ, φ) = ẑ j0 cos φJ1(
x12

a
ρ) .

(J1 is a Bessel function and x12 one of its roots; notation as usual).

a) Based on the discussion in Sec. 5.14 of the textbook, specify a Poisson-like equation with Dirichlet
boundary conditions suitable to find the vector potential in the region ρ < a.

b) Find an eigenfunction expansion for the corresponding two-dimensional Green’s function G(ρ, ρ′, φ, φ′).

c) Using the previous result, calculate the vector potential.

d) Find the magnetic field in the region ρ < a.

a): The vector potential can be chosen such that it only has a z-component Az(ρ, φ). The equation to solve
and the appropriate boundary condition then are:

∆Az(ρ, φ) = −µjz(ρ, φ) Boundary condition : Az(a, φ) = 0

b): Eigenfunctions and eigenvalues. We separate ψ(ρ, φ) = R(ρ)Φ(φ) to obtain Bessel’s differential equation
for R(ρ):

(∆ + λ)ψ(ρ, φ) = 0(
1
ρ

∂

∂ρ
ρ

∂

∂ρ
+

1
ρ2

∂2

∂φ2
+ λ

)
R(ρ)Φ(φ) = 0

(
ρ

R(ρ)
d

dρ
ρ

d

dρ
R(ρ) + λρ2

)
+

(
1

Φ(φ)
d2

dφ2
Φ(φ)

)
= 0 (1)

A single-valued vector potential requires

1
Φ(φ)

d2

dφ2
Φ(φ) = −m2

with integer m; the solution is Φ(φ) = exp(imφ).

The radial equation then is

[
1
ρ

d

dρ
ρ

d

dρ
R(ρ) +

(
λ− m2

ρ2

)]
R(ρ) = 0

The solutions that are regular at ρ = 0 are Jm(
√

λρ). To match the boundary condition R(a) = 0, we set
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√
λa = xmn

From Eq. 3.95 it follows that the normalized eigenfunctions are

ψmn(ρ, φ) =
1

a
√

π
J|m|+1(xmn)J|m|

(xmn

a
ρ
)

exp(imφ) ; (2)

the eigenvalues are λmn =
(

xmn

a

)2. Note x|m|n = xmn.

Using Eq. 3.160, the eigenfunction expansion of the Green’s function is

G(x,x′) = 4π

∞∑
m=−∞

∞∑
n=1

1
π x2

mn J2
|m|+1(xmn)

exp(im(φ− φ′)) J|m|
(xmn

a
ρ
)

J|m|
(xmn

a
ρ′

)

c): In analogy with the solution of the Poisson equation with Dirichlet boundary conditions, it is

Az(ρ, φ) =
µ

4π

∫

V

G(ρ, φ, ρ′, φ′)jz(ρ, φ)ρ′dρ′dφ′ − 1
4π

∫

∂V

Az(a, φ′)
∂

∂ρ′
G(ρ, φ, ρ′, φ′)|ρ′=a adφ′

Since the potential is zero on the boundary, the surface term vanishes, and

Az(ρ, φ) = µ j0

∞∑
m=−∞

∞∑
n=1

1
π x2

mn J2
|m|+1(xmn)

exp(imφ)J|m|
(xmn

a
ρ
) ∫

V

exp(−imφ′) J|m|
(xmn

a
ρ′

)
cosφ′ J1(

x12

a
ρ′)ρ′dρ′dφ′

The integral equals

1
2

(∫ 2π

0

(exp(iφ′) + exp(−iφ′)) exp(−imφ′)dφ′
) (∫ a

0

J|m|
(xmn

a
ρ′

)
J1(

x12

a
ρ′)ρ′dρ′

)

= π(δm,1 + δm,−1)
(∫ a

0

J1

(x1n

a
ρ′

)
J1(

x12

a
ρ′)ρ′dρ′

)

=
a2π

2
(δm,1 + δm,−1)δn,2J

2
2 (x12)

which, when inserted into the previous equation, yields

Az(ρ, φ) =
a2π µ j0

2
1

π x2
mn J2

2 (x12)
J2

2 (x12)
[
exp(iφ)J1

(x12

a
ρ
)

+ exp(−iφ)J|−1|
(x12

a
ρ
)]

Az(ρ, φ) =
a2 µ j0

x2
12

J1

(x12

a
ρ
)

cosφ (3)

As a test, one may insert the solution into the equation ∆Az(ρ, φ) = −µjz(ρ, φ) and verify its validity. It is
also, as required, Az(a, φ) = 0.
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Note: (Unnormalized) eigenfunctions equivalent to Eq. 2 are

ψmn1(ρ, φ) = Jm

(xmn

a
ρ
)

sin(mφ) and ψmn2(ρ, φ) = Jm

(xmn

a
ρ
)

cos(mφ) ,

where m = 0, 1, 2, .. and n = 1, 2, ... It may thus be noted that the specified current distribution is an
eigenfunction of ∆. Insertion of Az(ρ, φ) = αψ122(ρ, φ) then quickly leads to the result:

∆Az(ρ, φ) = −µjz(ρ, φ)

α∆ψ122(ρ, φ) = −µ j0 cosφJ1(
x12

a
) = −µ j0ψ122

α
(x12

a

)2

ψ122(ρ, φ) = µ j0∆ψ122(ρ, φ)

α = µ j0

(
a

x12

)2

Az(ρ, φ) =
(

a2 µ j0
x2

12

)
J1(

x12

a
) cos φ (4)

d): Since A only has a z-component, it is

B(ρ, φ) = ∇×A

= ρ̂
1
ρ

∂Az(ρ, φ)
∂φ

− φ̂
∂Az(ρ, φ)

∂ρ

= −a2 µ j0
x2

12

{
ρ̂

[
1
ρ
J1

(x12

a
ρ
)

sin φ

]
+ φ̂

[x12

a
J ′1

(x12

a
ρ
)

cosφ
]}

(5)

For ρ = a, this field only has a φ-component and therefore is parallel to the surface, as required by the
boundary condition inside highly permeable media.

Note: In the geometry considered, the B-lines are parallel to contour lines of Az. Also, the density of
contour lines of Az is proportional to |B(ρ, φ)|. Thus, field line plots are most easily obtained by plotting
contour lines of Az:
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x/a

y/a

x/a

y/a

Figure 1: Left: Current density (black=0, blue=out of page, red = into page). Right: Magnetic-field lines.
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3. Jackson, Problem 6.1 6 Points

a): Under absence of sources other than the specified “flash” on the z-axis at time t′ = 0, the retarded
solution is

ψ(x, t) = ψ+(x, t) =
∫

V

∫ ∞

t′=−∞
f(x′, t′)

δ(t′ − [
t− R

c

]
)

R
d3x′dt′

ψ(x, t) =
∫

V

∫ ∞

t′=−∞
δ(x′)δ(y′)δ(t′)

δ(t′ − [
t− R

c

]
)

R
d3x′dt′

=
∫ δ

(
t−

√
x2 + y2 + (z − z′)2/c

)
√

x2 + y2 + (z − z′)2
dz′

Case
√

x2 + y2 > ct: The argument of the δ-function is always zero, and

ψ(x, t <

√
x2 + y2

c
) = 0 .

This corresponds to the case that no part of signal flash has arrived yet.

Case
√

x2 + y2 < ct:

ψ(x, t >

√
x2 + y2

c
) =

∑
z0

∫
δ(z′ − z0)

√
x2 + y2 + (z − z′)2

∣∣∣∣ d
dz′

(
t−

√
x2+y2+(z−z′)2

c

)∣∣∣∣
z′=z0

dz′

where the sum goes over the solutions of t−
√

x2+y2+(z−z0)2

c = 0, i.e. z0 = z ±
√

c2t2 − x2 − y2. Thus,

ψ(x, t) =
∑
z0

1
√

x2 + y2 + (z − z0)2
∣∣∣∣ z−z′√

x2+y2+(z−z′)2

∣∣∣∣
z′=z0

ψ(x, t) =
∑
z0

1

ct

√
c2t2−x2−y2

c2t

Since the sum has two identical terms, it is

ψ(x, t >

√
x2 + y2

c
) =

2c√
c2t2 − x2 − y2

.

Summary of cases: Using ρ =
√

x2 + y2 and Θ(x) :=
{

0 , x < 0
1 , x ≥ 0 , it is

ψ(x, t) =
2c√

c2t2 − ρ2
Θ(ct− ρ) , q.e.d.
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b):

ψ(x, t) =
∫

V

∫ ∞

t′=−∞
f(x′, t′)

δ(t′ − [
t− R

c

]
)

R
d3x′dt′

ψ(x, t) =
∫

V

∫ ∞

t′=−∞
δ(x′)δ(t′)

δ(t′ − [
t− R

c

]
)

R
d3x′dt′

=
∫

y′





∫

z′

δ
(
t−

√
x2 + (y − y′)2 + (z − z′)2/c

)
√

x2 + (y − y′)2 + (z − z′)2
dz′



 dy′

=
∫

y′

2c√
c2t2 − x2 − (y − y′)2

Θ
(
ct−

√
x2 + (y − y′)2

)
dy′

(6)

where the last line follows from part a) by substituting y with y − y′.

Case ct < |x|:

∀y′ : ct−
√

x2 + (y − y′)2 < 0

⇒ ∀y′ : Θ
(
ct−

√
x2 + (y − y′)2

)
= 0

ψ(x, t < |x|/c) = 0

Case ct > |x|:

ψ(x, t > |x|/c) =
∫

y′

2c√
c2t2 − x2 − (y − y′)2

Θ
(
ct−

√
x2 + (y − y′)2

)
dy′

=
∫ y+

√
c2t2−x2

y′=y−√c2t2−x2

2c√
c2t2 − x2 − (y − y′)2

dy′

=
∫ −√c2t2−x2

ỹ=
√

c2t2−x2

−2c√
c2t2 − x2 − ỹ2

dỹ

=
[
−2c sin−1

(
ỹ√

c2t2 − x2

)]−√c2t2−x2

√
c2t2−x2

= 2πc

Summary of cases:

ψ(x, t) = 2πc Θ(ct− |x|) , q.e.d.
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4. Jackson, Problem 6.2a+b 6 Points

a): We consider

∫

V

δ3

(
x′ − r(t− |x− x′|

c
)
)

d3x′

for a particle with trajectory r(t). We define

y′(x′) = x′ − r(t− |x− x′|
c

)

with zeros x′0 defined by y′(x′0) = 0. The observation coordinates x and t are fixed parameters of the
calculation. It is

x′0 = r(t− |x− x′0|
c

) = [r(t)]ret .

Then,

∫

V

δ3

(
x′ − r(t− |x− x′|

c
)
)

d3x′ =
∫

V

δ3(x′ − x′0)
∣∣∣∣
∂y′

∂x′

∣∣∣∣
−1

x′0

d3x′

The elements of the Jacobi matrix are

∂y′j
∂x′i

∣∣∣∣
x′0

=
∂

∂x′i

(
x′j − rj(t− |x− x′|

c
)
)∣∣∣∣

x′0

= δij −
[
drj

dt

]

ret

∂

∂x′i

(
t− |x− x′|

c

)∣∣∣∣
x′0

= δij −
[
drj

dt

]

ret

(
1
c

(xi − x′i)
|x− x′|

)∣∣∣∣
x′0

= δij − [vj(t)]ret

[(
1
c

(xi − ri(t))
|x− r(t)|

)]

ret

= δij − 1
c

[
vj(t) R̂i(x, t)

]
ret

=: δij − vj ki ,

where we use the usual notation for retarded quantities and, in the last line, define some abbreviations for
the following. The Jacobi determinant then is

∣∣∣∣
∂y′

∂x′

∣∣∣∣
x′0

=

∣∣∣∣∣∣

1− v1k1 −v2k1 −v3k1

−v1k2 1− v2k2 −v3k2

−v1k3 −v2k3 1− v3k3

∣∣∣∣∣∣
= 1− v · k

=

[
1− v(t) · R̂(x, t)

c

]

ret

where [v(t)]ret =
[

d

dt
r(t)

]

ret

and
[
R̂(x, t)

]
ret

=
[

x− r(t)
|x− r(t)|

]

ret

. (7)
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Thus,

∫

V

δ3

(
x′ − r(t− |x− x′|

c
)
)

d3x′ =

[
1

1− v·R̂
c

]

ret

=:
1
κ

, q.e.d.

Note that the result is a function of the observation coordinates x and t and of the (known) particle trajectory.

b): Electric field:

We insert ρ(x′, t′) = qδ3(x′ − r(t′)) and j(x′, t′) = qv(t′)δ3(x′ − r(t′)) into Eq. 6.55:

E(x, t) =
1

4πε0

∫ {
R̂
R2

q
[
δ3(x′ − r(t′))

]
ret

+
R̂
cR

[
∂

∂t′
qδ3(x′ − r(t′))

]

ret

− 1
c2R

[
∂

∂t′
qv(t′)δ3(x′ − r(t′))

]

ret

}
d3x′

=
1

4πε0

∫ {
R̂
R2

q
[
δ3(x′ − r(t′))

]
ret

+
R̂
cR

∂

∂t

[
qδ3(x′ − r(t′))

]
ret
− 1

c2R

∂

∂t

[
qv(t′)δ3(x′ − r(t′))

]
ret

}
d3x′

where we have used Eq. 6.57 of the textbook. Since before integration R = R(x,x′), before integration it is
∂
∂tR = 0. Thus, functions of R can be dragged through ∂

∂t -operators. Further, due to the time independence
of R, it is also allowed to take functions of R from outside [∗]ret to the inside. Example:

R̂
R

[
∂

∂t′
qδ3(x′ − r(t′))

]

ret

=
∂

∂t

[
R̂
R

qδ3(x′ − r(t′))

]

ret

Thus, for the E-field we can write

E(x, t) =
q

4πε0

{∫ [
R̂
R2

δ3(x′ − r(t′))

]

ret

d3x′

+
∂

∂t

∫ [
R̂
cR

δ3(x′ − r(t′))

]

ret

d3x′

− ∂

∂t

∫ [
1

c2R
v(t′)δ3(x′ − r(t′))

]

ret

d3x′
}

By the result of part a), the
∫ ∗d3x′ can be executed by multiplying with [1/κ]ret and replacing the x′ in

R = x−x′ with the location [r(t′)]ret of the particle at the retarded time. Also, v(t′) is the particle velocity
at the retarded time:

E(x, t) =
q

4πε0

{[
R̂

κR2

]

ret

+
∂

c∂t

[
R̂
κR

]

ret

− ∂

c2∂t

[ v
κR

]
ret

}
, q.e.d.

Note that after the
∫ ∗d3x′, the independent variables of R̂ have changed from (x,x′) to (x, t). In the final

result, all quantities inside the [∗]ret can be written as functions of (x, t). Any explicit calculation will require
knowledge of the particle trajectory r(t).
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Magnetic field:

From Eqs. 6.56 and 6.57 in the textbook, the time-independence of R before integration, and by virtue of
part a) it follows that

B(x, t) =
q µ0

4π

∫ {[
δ3(x′ − r(t′))v(t′)× R̂

R2

]

ret

+

[
∂

∂t′
δ3(x′ − r(t′))v(t′)× R̂

cR

]

ret

}
d3x′

=
q µ0

4π

{[
v × R̂

κR2

]

ret

+
∂

∂t

∫ [
δ3(x′ − r(t′))v(t′)× R̂

cR

]

ret

}
d3x′

=
q µ0

4π

{[
v × R̂
κR2

]

ret

+
∂

c∂t

[
v × R̂

κR

]

ret

}
, q.e.d.

Comments on the electric-field result also apply to the magnetic field.
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