Instructor: Jianming Qian

Due date: December 6, 2001
Physics 505: Solutions to Assignment #11

Problem 7.12
(a) The Fourier transforms for charge density p(7,t), current density J(7, ) and the electric field F(7,t) are

— 1 = iw = > —iw
p(F,w) = E/p(r,t)e tdt, p(F,t) = E/p(r,w)e tdw

L[ 5 i - 1 .
J(F,w) = E/J(F,t)elwtdt, J(F, t) = —/’J(F’w)ef’bwtdw

. 1 . . . .
E(Ff,w) = — [ E(F,t)e™dt, E(rt :—/E 7 w)e” “dw
() = o= [ F) (7.1 (7,
Taking divergence of the Ohm’s law:
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applying the Fourier transformed Gauss’s law and the continuity equation:
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To have non-vanishing charge density, we must have:
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In the approximation w,7 > 1:

Therefore,
p(F,0) = po (PO —w )+ p (Milw —w)
where p; and p_ are functions determined by initial conditions. The time-dependence of the charge density
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Therefore, any initial charge distribution will oscillate with the plasma frequency w, and decay in amplitude with a
decay constant 27.

Prob. 7.13

(a) The index of refraction of the ionosphere is
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The ratios between the amplitudes of reflected and incident wave are given by Egs. (7.39) and (7.41) for the two
polarizations. Note the Egs. (7.41) and (7.39) have different sign conventions for E(;/.
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In both cases, the amplitude of the ratio is unity when sin 6’ is imaginary. This corresponds cases that the incidence
angle (0) is greater than the critical angle 6,:
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Therefore, the reflection is partial if § < 6. and is total if 6 > 6. for w > w,,.

(b) For simplicity, treat the ionosphere and the earth as flat surfaces and assume that the amateur can only receive
distant stations when the wave is totally reflected. In this case,
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where h = 300 km is the effective height of the F' layer, d = 1000 km is the distance between the station and the
receiver and A = 21 m is the wavelength. Plugging in the numbers, we get the plasma frequency
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which corresponds to an electron density
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Note the day-night difference is due to the sunlight.

Prob. 7.28
Since the wave has a finite extent in z and y dimensions, the wave is not a plane wave. Assuming the wave is
dominated by the transverse polarization, but have a small longitudinal part, the wave can be written as
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here €1, €5, and €3 are unit vectors along £—, y— and z—axes. The wave must satisfy Maxwell’s equation
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Therefore,
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The electric field is then given by
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The magnetic field can be derived from the Maxwell’s equation:
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Since the amplitude modulation is slowly varying, 0Fy/0x and OFy/0y are generally small. Neglecting terms of
0?Eo/0x? and 62 Ey/0y?, we have
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Therefore,

R e R P R

. z{ OB, . OB, . 0B 6E1_,}
B=—— ]

0Ey, OEy

= ; {:F@Eo(.’l,‘ y)(ik)er + Fo(x,y)(ik)es + (+i % — ﬁ—y) }

_%(ik) {Eo(a: y)(&1 £iéz) + (% + 83—?) }

k = o
= Fi—F = Fi,/Juekl
w



