Instructor: Jianming Qian

Due date: October 18, 2001
Physics 505: Solutions to Assignment #6

Problem 4.1
(a) The charge density
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The multipole moment
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Since Pj"(x) is odd if £ +m =odd, P;"(0) vanishes unless £ +m =even. Furthermore, ¢, vanishes if m is even.
Therefore, for non-vanishing gg,,, both ¢ and m must be odd. Let £ = 2§ +1 and m = 2k + 1:

2+1(—m)!

)k+1

Qe—2j1,m—2k11 = 2{1 +(— iYqa*

= — qa

L—(=1)k , [20+1(—m)! [ attm ey
20 ™ ({+m)! v=0

The first two sets of non-vanishing moments are

~ /3

1,41 = F(1F19) %qa
21

ga,1 = H(1F i)/ {5-40°

_ 35 o3
@3 = F(L£i)y/—— T6r

(b) The charge density:

p(F) = 53 {6(r —a)d(cos§ — 1) + 6(r — a)d(cos§ +1) — 6(r)}
The multipole moment
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The first two sets of non-vanishing moments are:
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(¢) The potential
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In the z — y plane, cosd = 0:
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(d) The exact potential in the (z — y) plane

agrees with the result of (c).
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The potential (in units of (¢/4mepa)) in o — y plane as functions of r/a. The dotted line is the approximation from
(¢) and the solid line is the exact calculation of (d).

Problem 4.2
The potential at ¥ due to a point dipole p' at 7p:
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where 7 is inside the volume V. Therefore, the surface integral vanishes:
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which is the potential by an effective charge density
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The energy of the dipole in an electric field:
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Again the surface integral vanishes since g € V. Therefore,
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which is the energy of a distribution of charge density
pnlF) = 7 V87— 7%)
Problem 4.10

(a) The electric fields in the two regions must be the same (otherwise, it will lead to different potential differences
between the inner and the other spheres in the two regions). Applying Gauss’s law in dielectrics on a Gaussian surface

of radius r (a < 7 < b) and noting Dis along the radial direction by symmetry
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Therefore, the electric field everywhere between the sphere is
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(b) The free surface charge densities on the inner sphere are:
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(¢) The polarization in the region with the dielectric:
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Therefore, the polarization surface charge density
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In the region without the dielectric, the polarization surface charge density oy = 0.

Problem 4.13
At equilibrium, the electrostatic force balances the gravity. For a fixed potential difference V', the electrostatic force
is given by
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where C' is the total capacitance of the section above the liquid surface:
C=C,+Cyyp,

Here C}, is the capacitance of the section with the liquid in between the two electrodes and C_}, is the capacitance of
the section above, £ is the height above the liquid surface. Note for a cylindrical capacitor in vacuum, the capacitance
per unit length is
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