Instructor: Jianming Qian

Due date: November 1, 2001
Physics 505: Solutions to Assignment #7

Problem 5.6
Using the principle of superposition, the magnetic field at # in the cavity is equal to that of a conductor without the
hole minus that of a smaller conductor filling the hole with the same volume current densities, i.e.:

Bcavity (F) - Bnohole (F) - Bhole (7?)
In the polar coordinate system with the z—axis along the cylinder axis, Enohole can be calculated from Ampere’s law:
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where (;AS is the unit vector along the ¢—direction and J is the volume current density. Similarly, we have
P
Bhole(T) = §M0JP (b

where p’ and ¢’ are measured with respect to the axis of the hole. Therefore,
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Bcavity (7?) - §M0J(P¢ - P,(b’)

Let d be the vector from the cylinder axis to the hole axis, we have:
p-p=d
Cross multiplying the above equation with £ (the unit vector along the z—direction) and noting z x p = (;AS, we get:
po—p'¢' =2xd
Consequently, the field inside the cavity:
gcavity (¥) = %MOJ2 xd

The field is uniform and in the direction perpendicular to the line joinning the axes of the cylinder and the hole. In
terms of the current I on the cylinder:

I = /L()I

J=—5—51 = Beavi(?) = (@ =5~ d

Problem 5.13
The rotating surface charges result surface currents. In the spherical coordinate system with the z—axis along the
rotation axis, the surface current density

K(F) = o0(F) = owasin 6

where (;AS is the unit vector along the ¢—direction. Therefore, the vector potential
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To carry out the above integral, we project ¢§’ along fixed z— and y—directions and expand 1/|7 — 7:7| in spherical
harmonics.

¢ = —sin@'a + cos @'y
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where 7~ = min(a, ) and r~ = max(a,r). The vector potential is therefore:

¢
A(R) = uowaaBZ %_‘_ i Zil Yo, (6 /ng (0',¢")(—sin 0’ sin ¢’ + sin @' cos ¢'G)dY’

Note that sin 6’ sin ¢’ and sin 6’ cos ¢’ can be written in terms of Y7 1:

Yi1(0,0) = —4/ 8% sinfe’; = sin®'sing’ = —/ 8?WIWL{YLl(H’,(b’)}; sin @' cos ¢’ = —4/ 8?WRe{YLl(H’,(b’)}

and the integrals can be carried out using the orthogonality properties of spherical harmonics:

Yo (0 /Yém ,¢')sin @’ sin ¢'dQ’ = \/8;Im{ng /Yém (0',0")Y1 1(0',0")dY } = sinf@sin ¢y 10, 1

Yo (0 /Yém (', ¢")sin 6’ cos ¢'dQY = —4/ 8?WRe {ng /Yém (', 9" Y11(6',¢")a } = sin 0 cos ¢z 10, 1

As results of the above, the vector potential is
ff(f) = powoa’ Z ; T—<6g 10, 1 8in 0(—sin ¢F + cos ¢pg) = l/LOWUOL sin 9 (b
£l 2+ 1l 3
Inside the sphere, ro = r and r~ = a:
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The field inside the sphere is uniform and point to z—direction. Outside the sphere, 7. = a and r~ = r:
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This is the field due to a magnetic dipole
4
m= §7m3(0a o)

Problem 5.18
(a) From the result of Prob. 5.17, the magnetic field at the current loop can be calculated by replacing the medium
with an image current of magnitude

= H"Ho,
B o
In a spherical coordinate system with its  — y plane defined by the imagine current loop, its origin at the center of

the loop and its z—axis pointing to the current loop I, the magnetic field due to the imagine current is given by Eq.
(5.48) and (5.49). At the location of the current loop,



Therefore,
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Be = _i“‘)[,“;) 2(n+ 1) (a2 + 4d2)n+3/2
The force on the current loop:
F= }[fx Bdt = j{ﬂz} x (B,# 4 Byf)dt = j{(IBré — IBy#)dt
Note that both B, and By are constants of the integration and that
jfédz = —sin ozjfdﬁ = —2masin 02, jffdz = cos ozjfdﬁ = 2ma cos 03
The force acting on the loop:
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(¢) For d >>» a, the force is dominated by the n = 0 term:
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The force is attractive. Alternatively, for d >> a, both current loops can be approximated as point dipoles with dipole
moments

m=I(ra%)3 m =I'(ra?3

The magnetic field at m due to m's

where 2 = v/a? + 4d? is the separation between the two dipoles. Consequently, the potential energy:
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and the force
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agrees with the result from (a).

Problem 5.19

There is no free current. Therefore, the scalar potential approach is applicable.
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The effective magnetic volume charge ppy = —V - M =0. In the cylindrical coordinate system with its origin at the
center of the cylinder and its z—axis along the axis of the cylinder in the magnetization direction,
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Along the z— axis,
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Therefore,

The auxiliary fields along the z—axis:
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H(z) = %gz (2)
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The magnetic fields along the z—axis:
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