1 Problem 5.21

1.1

$$
\begin{aligned}
\vec{B} \cdot \vec{H} d^{3} x & =(\nabla \times \vec{A}) \cdot \vec{H} d^{3} x \\
& =\int \vec{A} \cdot(\nabla \times \vec{H}) d^{3} x \\
& =\int \vec{A} \cdot \underbrace{\vec{J}}_{0} d^{3} x=0
\end{aligned}
$$

1.2

Starting from equation 5.72 in Jackson:

$$
W=U=-\vec{m} \cdot \vec{B}
$$

For a discrete number of point dipoles, we can write:

$$
W=-\sum_{i<j} \vec{m}_{i} \cdot \vec{B}_{j}=-\frac{1}{2} \sum_{i \neq j} \vec{m}_{i} \cdot \vec{B}_{j}
$$

Hence, for the continuous case, we can write:

$$
\begin{aligned}
W & =-\frac{1}{2} \int \vec{M} \cdot \vec{B} d^{3} x \\
& =-\frac{1}{2} \int \vec{M} \cdot\left[\mu_{0}(\vec{H}+\vec{M})\right] d^{3} x \\
& =-\frac{\mu_{0}}{2} \int \vec{M} \cdot \vec{H} d^{3} x-\frac{\mu_{0}}{2} \int \vec{M} \cdot \vec{M} d^{3} x
\end{aligned}
$$

Note that the second integral is a constant which is independent of the position or orientation of the magnetized bodies (since we're integrating over all space).
Plugging in $\vec{H}=\frac{1}{\mu_{0}} \vec{B}-\vec{M}$ into the above equation yields:

$$
\begin{aligned}
W & =-\frac{\mu_{0}}{2} \int \vec{M} \cdot\left(\frac{1}{\mu_{0}} \vec{B}-\vec{M}\right) d^{3} x-\frac{\mu_{0}}{2} \int \vec{M} \cdot \vec{M} d^{3} x \\
& =-\frac{1}{2} \int \vec{M} \cdot \vec{B} d^{3} x+\frac{\mu_{0}}{2} \int \vec{M} \cdot \vec{M} d^{3} x-\frac{\mu_{0}}{2} \int \vec{M} \cdot \vec{M} d^{3} x \\
& =\frac{\mu_{0}}{2} \int \vec{M} \cdot \vec{M} d^{3} x-\frac{\mu_{0}}{2} \int \vec{M} \cdot \vec{M} d^{3} x
\end{aligned}
$$

where we've used the result from the previous part to show that the integral vanishes in the second step.

2 Problem 5.27

Let's pick our orientation such that the current through the inner wire is in the \hat{z} direction:

$$
\vec{J}=\hat{z} \begin{cases}\frac{I}{\pi b^{2}} & r<b \\ 0 & r>b\end{cases}
$$

The current enclosed a loop of radius $r<b$ is:

$$
I=2 \pi \int_{0}^{r} \frac{I}{\pi b^{2}} r d r=\frac{I r^{2}}{b^{2}}
$$

Using Ampère's Law, we can find the \vec{B} field at all points in space:

$$
\vec{B}=\hat{\varphi} \begin{cases}\frac{\mu I r}{2 \pi b^{2}} & r<b \\ \frac{\mu_{0} I}{2 \pi r} & b<r<a \\ 0 & r>a\end{cases}
$$

Finally, we use equation 5.157 in Jackson to find the self inductance:

$$
\begin{aligned}
L & =\frac{1}{I^{2}} \int \frac{\vec{B} \cdot \vec{B}}{\mu} d^{3} x \\
\frac{L}{\ell} & =\frac{1}{I^{2}} 2 \pi\left[\frac{1}{\mu} \int_{r=0}^{b}\left(\frac{\mu I r}{2 \pi b^{2}}\right)^{2} r d r+\frac{1}{\mu_{0}} \int_{r=b}^{a}\left(\frac{\mu_{0} I}{2 \pi r}\right)^{2} r d r\right] \\
\frac{L}{\ell} & =\frac{1}{I^{2}} 2 \pi\left[\frac{\mu I^{2}}{4 \pi^{2} b^{4}} \frac{1}{4} b^{4}+\frac{\mu_{0} I^{2}}{4 \pi^{2}} \ln \left(\frac{a}{b}\right)\right] \\
& \frac{L}{\ell}=\frac{\mu}{8 \pi}+\frac{\mu_{0}}{2 \pi} \ln \left(\frac{a}{b}\right)
\end{aligned}
$$

If the inner conductor is a thin hollow tube, all the current will flow on the outside of the tube. Hence, there is no current (and hence no \vec{B} field) for $r<b$. That is, \vec{B} simplifies to:

$$
\vec{B}=\hat{\varphi} \begin{cases}\frac{\mu_{0} I}{2 \pi r} & b<r<a \\ 0 & \text { otherwise }\end{cases}
$$

And Equation 5.157 in Jackson becomes:

$$
\begin{aligned}
L & =\frac{1}{I^{2}} \int \frac{\vec{B} \cdot \vec{B}}{\mu} d^{3} x \\
\frac{L}{\ell} & =\frac{1}{I^{2}} 2 \pi\left[\frac{1}{\mu_{0}} \int_{r=b}^{a}\left(\frac{\mu_{0} I}{2 \pi r}\right)^{2} r d r\right]=\frac{1}{I^{2}} 2 \pi\left[\frac{\mu_{0} I^{2}}{4 \pi^{2}} \ln \left(\frac{a}{b}\right)\right] \\
& \frac{L}{\ell}=\frac{\mu_{0}}{2 \pi} \ln \left(\frac{a}{b}\right)
\end{aligned}
$$

