
1 Problem 4.9
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Figure 1: Setup for problem 4.9

Using the fact that we have azimuthal symmetry, we have inside the sphere:
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where �q is the potential due to the charge q.
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Because r0 only points to the single point charge along the z-axis,  = �. Therefore:

�out(~r) =
1X
l=0

�
q

4�"0

rl<
rl+1
>

+Blr
�(l+1)

�
Pl(cos �) (2)

Now, we need to apply the following boundary conditions:
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Applying eqation (3) yields:
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Applying eqation (4) yields:
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Equating equations (5) and (6):
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Plugging Bl into equation (5):
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Plugging these expressions for Al and Bl into equations (1) and (2):
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1.2

For r=d� 1, l � 2 terms are negligible. Thus, �in(~r) becomes:
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Our solution for �in in part a is:
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For "="0 !1, all the terms in the series go to zero, except for the l = 0 term:

�in =
q

4�"0d

For "="0 !1, our solution for �out in part a becomes:
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Note that the extra term out front comes due to the fact that "0=" doesn't vanish when it
multiplies l when l = 0. However, "0=" vanishes for all other terms in the series.
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�out(~r) agrees with equation 2.8 in Jackson. Note that we have �in(a) = �out(a), as ex-
pected, and �in(~r) is constant, as expected, since the potential must remain constant inside
a conductor. Hence, our solution for part a reduces to that of a conducting sphere in the
limit "="0 !1.

2 Problem 5.3
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Figure 2: Single loop

Starting with the Biot-Savart Law for a loop with radius a and current I:
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For N loops squished together, B just becomes:
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To account for the rings to the left of the observation point, we integrate from 0 to c:
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Figure 3:

Using the substitution b = a tan �, db = a sec2 �d�:
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To account for the rings to the right of the observation point, we integrate from 0 to d:
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Finally, B = Bleft +Bright:
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3 Problem 5.6

J

�Jd

b

a

~r ~r0

Figure 4: Setup for problem 5.6

We will consider two di�erent systems and superimpose them (see �gure 4).

1. A cylinder of radius a with current density Jẑ.

2. A cylinder of radius b with current density �Jẑ.
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Superimposing these two systems yields ~B = ~B1 + ~B2:
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