1 Problem 4.9

1.1

Figure 1: Setup for problem 4.9
Using the fact that we have azimuthal symmetry, we have inside the sphere:

$$
\begin{equation*}
\Phi_{\text {in }}(\vec{r})=\sum_{l=0}^{\infty} A_{l} r^{l} P_{l}(\cos \theta) \tag{1}
\end{equation*}
$$

And outside the sphere:

$$
\Phi_{\text {out }}(\vec{r})=\Phi_{q}+\sum_{l=0}^{\infty} B_{l} r^{-(l+1)} P_{l}(\cos \theta)
$$

where Φ_{q} is the potential due to the charge q.

$$
\Phi_{q}=\frac{q}{4 \pi \varepsilon_{0}} \frac{1}{\left|\vec{r}-\vec{r}^{l}\right|}=\frac{q}{4 \pi \varepsilon_{0}} \sum_{l=0}^{\infty} \frac{r_{<}^{l}}{r_{>}^{l+1}} P_{l}(\cos \gamma)
$$

Because r^{\prime} only points to the single point charge along the z-axis, $\gamma=\theta$. Therefore:

$$
\begin{equation*}
\Phi_{\text {out }}(\vec{r})=\sum_{l=0}^{\infty}\left(\frac{q}{4 \pi \varepsilon_{0}} \frac{r_{<}^{l}}{r_{>}^{l+1}}+B_{l} r^{-(l+1)}\right) P_{l}(\cos \theta) \tag{2}
\end{equation*}
$$

Now, we need to apply the following boundary conditions:

$$
\begin{align*}
-\left.\frac{1}{a} \frac{\partial \Phi_{\text {in }}}{\partial \theta}\right|_{r=a} & =-\left.\frac{1}{a} \frac{\partial \Phi_{\text {out }}}{\partial \theta}\right|_{r=a} \tag{3}\\
-\left.\varepsilon \frac{\partial \Phi_{\text {in }}}{\partial r}\right|_{r=a} & =-\left.\varepsilon_{0} \frac{\partial \Phi_{\text {out }}}{\partial r}\right|_{r=a} \tag{4}
\end{align*}
$$

Applying eqation (3) yields:

$$
\begin{align*}
-\left.\frac{1}{a} \sum_{l=0}^{\infty} A_{l} r^{l} \dot{P}_{l}(\cos \theta)(-\sin \theta)\right|_{r=a} & =-\left.\frac{1}{a} \sum_{l=0}^{\infty}\left(\frac{q}{4 \pi \varepsilon_{0}} \frac{r_{<}^{l}}{r_{>}^{l+1}}+B_{l} r^{-(l+1)}\right) \dot{P}_{l}(\cos \theta)(-\sin \theta)\right|_{r=a} \\
\sum_{l=0}^{\infty} A_{l} a^{l} & =\sum_{l=0}^{\infty}\left(\frac{q}{4 \pi \varepsilon_{0}} \frac{a^{l}}{d^{l+1}}+B_{l} a^{-(l+1)}\right) \\
A_{l} & =\frac{q}{4 \pi \varepsilon_{0}} d^{-(l+1)}+B_{l} a^{-(2 l+1)} \tag{5}
\end{align*}
$$

Applying eqation (4) yields:

$$
\begin{align*}
-\left.\varepsilon \sum_{l=0}^{\infty} A_{l} l r^{l-1} P_{l}(\cos \theta)\right|_{r=a} & =-\left.\varepsilon_{0} \sum_{l=0}^{\infty}\left(\frac{q}{4 \pi \varepsilon_{0}} \frac{l r^{l-1}}{d^{l+1}}+B_{l}(-l-1) r^{-(l+2)}\right) P_{l}(\cos \theta)\right|_{r=a} \\
\varepsilon \sum_{l=0}^{\infty} A_{l} l a^{l-1} & =\varepsilon_{0} \sum_{l=0}^{\infty}\left(\frac{q}{4 \pi \varepsilon_{0}} \frac{l a^{l-1}}{d^{l+1}}+B_{l}(-l-1) a^{-(l+2)}\right) \\
A_{l} & =\frac{q}{4 \pi \varepsilon} d^{-(l+1)}-\frac{\varepsilon_{0}}{\varepsilon} B_{l} \frac{l+1}{l} a^{-(2 l+1)} \tag{6}
\end{align*}
$$

Equating equations (5) and (6):

$$
\begin{aligned}
\frac{q}{4 \pi \varepsilon_{0}} d^{-(l+1)}+B_{l} a^{-(2 l+1)} & =\frac{q}{4 \pi \varepsilon} d^{-(l+1)}-\frac{\varepsilon_{0}}{\varepsilon} B_{l} \frac{l+1}{l} a^{-(2 l+1)} \\
B_{l} a^{-(2 l+1)}\left(1+\frac{\varepsilon_{0}}{\varepsilon} \frac{l+1}{l}\right) & =\frac{q}{4 \pi} d^{-(l+1)}\left(\frac{1}{\varepsilon}-\frac{1}{\varepsilon_{0}}\right) \\
B_{l} & =\frac{q}{4 \pi \varepsilon_{0}} \frac{a^{2 l+1}}{d^{l+1}} \frac{\left(\frac{\varepsilon_{0}}{\varepsilon}-1\right) l}{l+\frac{\varepsilon_{0}}{\varepsilon}(l+1)}
\end{aligned}
$$

Plugging B_{l} into equation (5):

$$
\begin{aligned}
& A_{l}=\frac{q}{4 \pi \varepsilon_{0}} d^{-(l+1)}+\frac{q}{4 \pi \varepsilon_{0}} d^{-(l+1)} \frac{\left(\frac{\varepsilon_{0}}{\varepsilon}-1\right) l}{l+\frac{\varepsilon_{0}}{\varepsilon}(l+1)} \\
& A_{l}=\frac{q}{4 \pi \varepsilon_{0}} d^{-(l+1)}\left[1+\frac{\left(\frac{\varepsilon_{0}}{\varepsilon}-1\right) l}{l+\frac{\varepsilon_{0}}{\varepsilon}(l+1)}\right] \\
& A_{l}=\frac{q}{4 \pi \varepsilon} d^{-(l+1)} \frac{2 l+1}{l+\frac{\varepsilon_{0}}{\varepsilon}(l+1)}
\end{aligned}
$$

Plugging these expressions for A_{l} and B_{l} into equations (1) and (2):

$$
\begin{aligned}
\Phi_{\text {in }}(\vec{r}) & =\frac{q}{4 \pi \varepsilon d} \sum_{l=0}^{\infty}\left(\frac{r}{d}\right)^{l} \frac{2 l+1}{l+\frac{\varepsilon_{0}}{\varepsilon}(l+1)} P_{l}(\cos \theta) \\
\Phi_{\text {out }}(\vec{r}) & =\frac{q}{4 \pi \varepsilon_{0}} \sum_{l=0}^{\infty}\left(\frac{r_{<}^{l}}{r_{>}^{l+1}}+\frac{a^{2 l+1}}{(r d)^{l+1}} \frac{\left(\frac{\varepsilon_{0}}{\varepsilon}-1\right) l}{l+\frac{\varepsilon_{0}}{\varepsilon}(l+1)}\right) P_{l}(\cos \theta)
\end{aligned}
$$

1.2

For $r / d \ll 1, l \geq 2$ terms are negligible. Thus, $\Phi_{\text {in }}(\vec{r})$ becomes:

$$
\begin{aligned}
\Phi_{\text {in }}(\vec{r}) & \approx \frac{q}{4 \pi \varepsilon_{0} d}+\frac{q}{4 \pi \varepsilon d^{2}} \frac{3}{1+2 \frac{\varepsilon_{0}}{\varepsilon}} \underbrace{r \cos \theta}_{z} \\
& =\frac{q}{4 \pi \varepsilon_{0} d}+\frac{q}{4 \pi \varepsilon d^{2}} \frac{3}{1+2 \frac{\varepsilon_{0}}{\varepsilon}} z
\end{aligned}
$$

Because $\vec{E}=-\nabla \Phi$:

$$
E=-\frac{q}{4 \pi \varepsilon d^{2}} \frac{3}{1+2 \frac{\varepsilon_{0}}{\varepsilon}} \hat{z}
$$

1.3

Our solution for $\Phi_{\text {in }}$ in part a is:

$$
\begin{aligned}
\Phi_{\text {in }}(\vec{r}) & =\frac{q}{4 \pi \varepsilon d} \sum_{l=0}^{\infty}\left(\frac{r}{d}\right)^{l} \frac{2 l+1}{l+\frac{\varepsilon_{0}}{\varepsilon}(l+1)} P_{l}(\cos \theta) \\
& =\frac{q}{4 \pi \varepsilon_{0} d} \sum_{l=0}^{\infty}\left(\frac{r}{d}\right)^{l} \frac{2 l+1}{\frac{\varepsilon}{\varepsilon_{0}} l+(l+1)} P_{l}(\cos \theta)
\end{aligned}
$$

For $\varepsilon / \varepsilon_{0} \rightarrow \infty$, all the terms in the series go to zero, except for the $l=0$ term:

$$
\Phi_{\text {in }}=\frac{q}{4 \pi \varepsilon_{0} d}
$$

For $\varepsilon / \varepsilon_{0} \rightarrow \infty$, our solution for $\Phi_{\text {out }}$ in part a becomes:

$$
\Phi_{\text {out }}(\vec{r})=\frac{q}{4 \pi \varepsilon_{0}} \frac{a}{r d}+\frac{q}{4 \pi \varepsilon_{0}} \sum_{l=0}^{\infty}\left(\frac{r_{<}^{l}}{r_{>}^{l+1}}-\frac{a^{2 l+1}}{(r d)^{l+1}}\right) P_{l}(\cos \theta)
$$

Note that the extra term out front comes due to the fact that $\varepsilon_{0} / \varepsilon$ doesn't vanish when it multiplies l when $l=0$. However, $\varepsilon_{0} / \varepsilon$ vanishes for all other terms in the series.

$$
\begin{gathered}
\Phi_{\text {out }}(\vec{r})=\frac{q}{4 \pi \varepsilon_{0}} \frac{a}{r d}+\frac{q}{4 \pi \varepsilon_{0}} \underbrace{\sum_{l=0}^{\infty} \frac{r_{<}^{l}}{r_{>}^{l+1}} P_{l}(\cos \theta)}_{1 /|\vec{r}-d \hat{z}|}-\frac{q a}{4 \pi \varepsilon_{0}} \underbrace{\sum_{l=0}^{\infty} \frac{a^{2 l}}{(r d)^{l+1}} P_{l}(\cos \theta)}_{1 /\left|a^{2} \hat{z}-d \vec{r}\right|} \\
\Phi_{\text {out }}(\vec{r})=\frac{q}{4 \pi \varepsilon_{0}}\left[\frac{a}{r d}+\frac{1}{|\vec{r}-d \hat{z}|}-\frac{a / d}{\left|\frac{a^{2}}{d} \hat{z}-\vec{r}\right|}\right]
\end{gathered}
$$

$\Phi_{\text {out }}(\vec{r})$ agrees with equation 2.8 in Jackson. Note that we have $\Phi_{\text {in }}(a)=\Phi_{\text {out }}(a)$, as expected, and $\Phi_{\text {in }}(\vec{r})$ is constant, as expected, since the potential must remain constant inside a conductor. Hence, our solution for part a reduces to that of a conducting sphere in the limit $\varepsilon / \varepsilon_{0} \rightarrow \infty$.

2 Problem 5.3

Figure 2: Single loop
Starting with the Biot-Savart Law for a loop with radius a and current I :

$$
B=\frac{\mu_{0} I}{4 \pi} \int \frac{d \vec{l} \times \vec{R}}{|\vec{R}|^{3}}
$$

Noting that $d \vec{l} \times \vec{R}=d l R \sin \theta=d l R(a / R)=d l a$:

$$
\begin{aligned}
B & =\frac{\mu_{0} I}{4 \pi} \int \frac{a}{R^{3}} d l \\
& =\frac{\mu_{0} I}{4 \pi} \frac{a}{R^{3}}(2 \pi a) \\
& =\frac{\mu_{0} I}{2} \frac{a^{2}}{\left(a^{2}+b^{2}\right)^{3 / 2}}
\end{aligned}
$$

For N loops squished together, B just becomes:

$$
B=\frac{\mu_{0} N I}{2} \frac{a^{2}}{\left(a^{2}+b^{2}\right)^{3 / 2}}
$$

To account for the rings to the left of the observation point, we integrate from 0 to c :

$$
B_{\text {left }}=\int_{0}^{c} \frac{\mu_{0} N I}{2} \frac{a^{2}}{\left(a^{2}+b^{2}\right)^{3 / 2}} d b
$$

Figure 3:

Using the substitution $b=a \tan \theta, d b=a \sec ^{2} \theta d \theta$:

$$
\begin{aligned}
B_{\text {left }} & =\int_{0}^{\arctan (c / a)} \frac{\mu_{0} N I}{2} \frac{a^{2}}{a^{3}(\underbrace{1+\tan ^{2} \theta}_{\sec ^{2} \theta})^{3 / 2} a \sec ^{2} \theta d \theta} \\
& =\frac{\mu_{0} N I}{2} \int_{0}^{\arctan (c / a)} \cos \theta d \theta \\
& =\frac{\mu_{0} N I}{2} \sin \left[\arctan \left(\frac{c}{a}\right)\right] \\
& =\frac{\mu_{0} N I}{2} \frac{c}{\sqrt{a^{2}+c^{2}}}=\frac{\mu_{0} N I}{2} \cos \theta_{1}
\end{aligned}
$$

To account for the rings to the right of the observation point, we integrate from 0 to d :

$$
B_{\text {left }}=\int_{0}^{d} \frac{\mu_{0} N I}{2} \frac{a^{2}}{\left(a^{2}+b^{2}\right)^{3 / 2}} d b
$$

Using the substitution $b=a \tan \theta, d b=a \sec ^{2} \theta d \theta$:

$$
\begin{aligned}
B_{\text {left }} & =\int_{0}^{\arctan (d / a)} \frac{\mu_{0} N I}{2} \frac{a^{2}}{a^{3}(\underbrace{1+\tan ^{2} \theta}_{\sec ^{2} \theta})^{3 / 2}} a \sec ^{2} \theta d \theta \\
& =\frac{\mu_{0} N I}{2} \int_{0}^{\arctan (d / a)} \cos \theta d \theta \\
& =\frac{\mu_{0} N I}{2} \sin \left[\arctan \left(\frac{d}{a}\right)\right] \\
& =\frac{\mu_{0} N I}{2} \frac{d}{\sqrt{a^{2}+d^{2}}}=\frac{\mu_{0} N I}{2} \cos \theta_{2}
\end{aligned}
$$

Finally, $B=B_{\text {left }}+B_{\text {right }}$:

$$
B=\frac{\mu_{0} N I}{2}\left(\cos \theta_{1}+\cos \theta_{2}\right)
$$

3 Problem 5.6

Figure 4: Setup for problem 5.6
We will consider two different systems and superimpose them (see figure 4).

1. A cylinder of radius a with current density $J \hat{z}$.
2. A cylinder of radius b with current density $-J \hat{z}$.

The B-field due to the cylinder in system 1 is:

$$
\begin{aligned}
\oint \vec{B} \cdot d \vec{l} & =\mu_{0} \int \vec{J} \cdot d S \\
B 2 \pi r & =\mu_{0} J \pi r^{2} \\
\vec{B}_{1} & =\frac{\mu_{0}}{2} \operatorname{Jr} \hat{\varphi} \\
& =\frac{\mu_{0}}{2} \operatorname{Jr}(\hat{z} \times \hat{r})
\end{aligned}
$$

The B-field due to the cylinder in system 2 is:

$$
\begin{aligned}
\oint \vec{B} \cdot d \vec{l} & =\mu_{0} \int \vec{J} \cdot d S \\
B 2 \pi r^{\prime} & =\mu_{0}(-J) \pi r^{\prime 2} \\
\vec{B}_{2} & =-\frac{\mu_{0}}{2} J r^{\prime} \hat{\varphi}^{\prime} \\
& =-\frac{\mu_{0}}{2} J r^{\prime}\left(\hat{z} \times \hat{r}^{\prime}\right)
\end{aligned}
$$

Superimposing these two systems yields $\vec{B}=\vec{B}_{1}+\vec{B}_{2}$:

$$
\begin{aligned}
\vec{B}= & \frac{\mu_{0}}{2} J\left(r \hat{z} \times \hat{r}-r^{\prime} \hat{z} \times \hat{r}^{\prime}\right) \\
= & \frac{\mu_{0}}{2} J \hat{z} \times \underbrace{\left(r \hat{r}-r^{\prime} \hat{r}^{\prime}\right)}_{\vec{d}} \\
& \vec{B}=\frac{\mu_{0}}{2} J \hat{z} \times \vec{d}
\end{aligned}
$$

