
Problem 3.1

Two concentric spheres have radii a; b (b > a) and each is divided into two hemispheres
by the same horizontal plane. The upper hemisphere of the inner sphere and the lower
hemisphere of the outer sphere are maintained at potential V . The other hemispheres are
at zero potential.
Determine the potential in the region a � r � b as a series in Legendre polynomials. Include
terms at least up to l = 4. Check your solution against known results in the limiting cases
b!1 and a! 0.
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The terms up to l = 4 (i.e., l = 0; 1; 3) are:
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For the limit as a! 0:
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1 Problem 3.3

A thin, at, conducting, circular disc of radius R is located in the x-y plane with its center
at the origin, and is maintained at a �xed potential V . With the information that the charge

density on a disc at �xed potential is proportional to (R2 � �2)
�1=2

, where � is the distance
from the center of the disc:
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Plugging � into � and plugging that into �:
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We know that the general solution for azimuthal symmetry is:
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The general solution must agree with equation (1.1) along the z axis. To do this, we set
� = 0 (and Pl(cos(0)) = Pl(1) = 1):
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Using an integral table, we �nd that
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1.2 Find the potential for r < R

At the boundary, �(~r) for r > R and r < R must be equal. Hence:
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1.3 Find the capacitance of the disk

In part 1, we found that:
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