
Physics 505 Fall 2007

Homework Assignment #11 — Solutions

Textbook problems: Ch. 7: 7.3, 7.4, 7.6, 7.8

7.3 Two plane semi-infinite slabs of the same uniform, isotropic, nonpermeable, lossless
dielectric with index of refraction n are parallel and separated by an air gap (n = 1)
of width d. A plane electromagnetic wave of frequency ω is indicent on the gap from
one of the slabs with angle of indicence i. For linear polarization both parallel to and
perpendicular to the plane of incidence,

a) calculate the ratio of power transmitted into the second slab to the incident power
and the ratio of reflected to incident power;

We introduce (complex) electric field vectors of the form ~Eie
i~k·~x and ~Ere

i~k′·~x on
the incident side, ~E+e

i~k0·~x and ~E−e
i~k′

0·~x in the air gap, and ~Ete
i~k·(~x−~d) on the

transmitted side. (We have removed an unimportant phase from the transmitted
side by shifting ~x by the vector ~d pointing from the incident to the transmitted
side of the air gap).
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If i is the incident angle, then the angle r from the normal in the air gap is given
by Snell’s law, n sin i = sin r, and the transmitted angle is also i (because it is
the same dielectric). We see that

cos r =
√

1− sin2 r =
√

1− n2 sin2 i

and that cos r is purely imaginary in the event that i is greater than the critical
angle for total internal reflection. To obtain Et and Er in terms of Ei, we may
match the parallel components of ~E as well as the parallel components of ~H. We
consider two cases.

For ~E perpendicular to the plane of incidence, the matching becomes

first interface second interface

E‖ : Ei + Er = E+ + E−, E+e
iφ + E−e

−iφ = Et

H‖ : n(Ei − Er) cos i = (E+ − E−) cos r, (E+e
iφ − E−e−iφ) cos r = nEt cos i



where we have introduced the phase

φ = ~k0 · ~d = k0d cos r =
ωd cos r

c

The matching conditions at the first interface may be written as

E+ = 1
2Ei(1 + α) + 1

2Er(1− α)
E− = 1

2Ei(1− α) + 1
2Er(1 + α)

(1)

where we have defined

α =
n cos i
cos r

=
n cos i√

1− n2 sin2 i

Similarly, the matching conditions at the second interface yield

E+ = 1
2e
−iφEt(1 + α)

E− = 1
2e
iφEt(1− α)

(2)

Equating (1) and (2) allows us to solve for the ratios

Et
Ei

=
4α

(1 + α)2e−iφ − (1− α)2eiφ
=

2α
2α cosφ− i(1 + α2) sinφ

Er
Ei

=
(1− α2)(eiφ − e−iφ)

(1 + α)2e−iφ − (1− α)2eiφ
=

i(1− α2) sinφ
2α cosφ− i(1 + α2) sinφ

(3)

where

α =
n cos i√

1− n2 sin2 i
, φ =

ωd cos r
c

=
ωd
√

1− n2 sin2 i

c

So long as i is below the critical angle, both α and φ are real. In this case, the
transmission and reflection coefficients are

T =
∣∣∣∣EtEi

∣∣∣∣2 =
4α2

4α2 cos2 φ+ (1 + α2)2 sin2 φ
=

4α2

4α2 + (1− α2)2 sin2 φ

R =
∣∣∣∣ErEi

∣∣∣∣2 =
(1− α2)2 sin2 φ

4α2 cos2 φ+ (1 + α2)2 sin2 φ
=

(1− α2)2 sin2 φ

4α2 + (1− α2)2 sin2 φ

(4)

Note that T + R = 1, as expected. However, this exhibits a classic interference
behavior, where T oscillates between (2α/(1 + α2))2 and 1 as the number of
wavelengths in the gap vary.

For ~E parallel to the plane of incidence, we find instead the matching conditions

first interface second interface

E‖ : (Ei − Er) cos i = (E+ − E−) cos r, (E+e
iφ − E−e−iφ) cos r = Et cos i

H‖ : n(Ei + Er) = (E+ + E−), E+e
iφ − E−e−iφ = nEt



These equations have the same structure as the perpendicular case, but with
the index of refraction entering somewhat differently. We find the matching
conditions

n−1E+ = 1
2Ei(1 + β) + 1

2Er(1− β)

n−1E− = 1
2Ei(1− β) + 1

2Er(1 + β)

and
n−1E+ = 1

2e
−iφEt(1 + β)

n−1E− = 1
2e
iφEt(1− β)

where this time
β =

cos i
n cos r

=
cos i

n
√

1− n2 sin2 i

These expressions are similar to (1) and (2) above, except with the replacement
E± → n−1E± and α→ β. Hence the transmission and reflection coefficients are
given by expressions identical to (4), except with the replacement α→ β.

b) for i greater than the critical angle for total internal reflection, sketch the ratio
of transmitted power to incident power as a function of d measured in units of
wavelength in the gap.

To be concrete, consider the case for ~E perpendicular to the plane of incidence.
Since i is greater than the critical angle, both α and φ will be purely imaginary.
Whatever values they are, define

α = iγ, φ = iξ

Then the ratios Et/Ei and Er/Ei in (3) become

Et
Ei

=
2iγ

2iγ cosh ξ + (1− γ2) sinh ξ
Er
Ei

=
−(1 + γ2) sinh ξ

2iγ cosh ξ + (1− γ2) sinh ξ

so that

T =
∣∣∣∣EtEi

∣∣∣∣2 =
4γ2

4γ2 + (1 + γ2)2 sinh2 ξ

R =
∣∣∣∣ErEi

∣∣∣∣2 =
(1 + γ2)2 sinh2 ξ

4γ2 + (1 + γ2)2 sinh2 ξ

where

γ = − n cos i√
n2 sin2 i− 1

, ξ =
ωd
√
n2 sin2 i− 1
c

In this case, there is no oscillatory behavior in the transmitted power, but only
exponential suppression as the air gap is widened. It is easy to see that T → 1



when d → 0 (corresponding to ξ → 0) and that T falls exponentially to 0 when
d→∞ (which is the same as ξ →∞).

For n = 1.5 (approximately the index of refraction of glass), the critical angle for
total internal reflection is i0 ≈ 42◦. A sketch of T as a function of d looks like
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7.4 A plane-polarized electromagnetic wave of frequency ω in free space is incident nor-
mally on the flat surface of a nonpermeable medium of conductivity σ and dielectric
constant ε.

a) Calculate the amplitude and phase of the reflected wave relative to the incident
wave for arbitrary σ and ε.

A medium of dielectric constant ε and conductivity σ may be described by an
effective dielectric constant

ε = ε+ i
σ

ω

Since the medium is nonpermeable, we have µ = µ0. As a result, for normal
incidence, the ratio of the reflected to the incident electric field is

Er
Ei

=
1− n
1 + n

where

n =
√

ε

ε0
=
√

ε

ε0
+ i

σ

ε0ω

The amplitude A and phase ϕ of the reflected wave is defined by

Aeiϕ =
Er
Ei

=
1−

√
ε/ε0 + iσ/ε0ω

1 +
√
ε/ε0 + iσ/ε0ω

This expression implicitly defines A and ϕ. To be more explicit, we decompose
the complex index of refraction into a magnitude and phase

n =
√
ηeiα/2



where

η =

√(
ε

ε0

)2

+
(

σ

ε0ω

)2

, tanα =
σ

εω
(5)

The amplitude of the reflected wave is then

A =

√
(1− n)(1− n∗)
(1 + n)(1 + n∗)

=

√
1 + |n|2 − 2<n
1 + |n|2 + 2<n

=

√
1 + η − 2

√
η cos(α/2)

1 + η + 2
√
η cos(α/2)

(6)

while the phase is

ϕ = arg
1− n
1 + n

= arg
(1− n)(1 + n∗)
(1 + n)(1 + n∗)

= tan−1 −2=n
1− |n|2

= tan−1 −2
√
η sin(α/2)
1− η

(7)
Note that some care must be taken when extracting the phase. In particular, for
ϕ = tan−1(y/x), we must ensure that the angle ϕ lies in the proper quadrant
defined by the point (x, y). This is why we choose to keep the minus sign in the
numerator inside the arctan. Since the numerator is always negative, ϕ must
lie in either the 3rd or the 4th quadrant. For η > 1, which is the case for all
conventional dielectrics, ϕ lies in the 3rd quadrant. To highlight this, we may
write

ϕ = π + tan−1 2
√
η sin(α/2)
η − 1

(8)

b) Discuss the limiting cases of a very poor and a very good conductor, and show
that for a good conductor the reflection coefficient (ratio of reflected to incident
intensity) is approximately

R ≈ 1− 2
ω

c
δ

where δ is the skin depth.

We begin with the case of a very poor conductor, σ � εω. In this case, η and α
in (5) simplify to

η ≈ ε

ε0
, α ≈ σ

εω

where we have kept only linear terms in σ. Substituting this into (6) and (8)
gives

A ≈
∣∣∣∣1−√η1 +

√
η

∣∣∣∣ =
∣∣∣∣1− n̄1 + n̄

∣∣∣∣
ϕ ≈ π +

√
η

η − 1
σ

εω
= π +

n̄

n̄2 − 1
σ

εω

where n̄ =
√
ε/ε0. Here we have assumed that n̄ > 1 and that σ/εω � n̄− 1.

For a very good conductor, we take the opposite limit, σ � εω. In this case

η ≈ σ

ε0ω
� 1, α ≈ π

2



Inserting this into (6) and (8) gives

A ≈

√
η −
√

2η + 1
η +
√

2η + 1
≈

(
1−

√
2/η

1 +
√

2/η

)1/2

≈ 1−
√

2
η

= 1−
√

2ε0ω
σ

ϕ ≈ π + tan−1

√
2η

η − 1
≈ π + tan−1

√
2
η
≈ π

The amplitude A may be rewritten in terms of the skin depth δ =
√

2/µ0σω

A ≈ 1− ωδ√µ0ε0 = 1− ω

c
δ

This gives the reflection coefficient

R = A2 ≈ 1− 2
ω

c
δ (9)

7.6 A plane wave of frequency ω is incident normally from vacuum on a semi-infinite slab
of material with a complex index of refraction n(ω) [n2(ω) = ε(ω)/ε0].

a) Show that the ratio of reflected power to incident power is

R =
∣∣∣∣1− n(ω)
1 + n(ω)

∣∣∣∣2
while the ratio of power transmitted into the medium to the incident power is

T =
4<n(ω)
|1 + n(ω)|2

While this problem involves a complex dielectric constant ε(ω), we note that
the matching conditions for incident and reflected waves at an interface hold
for arbitrary (including complex) values of µ and ε. For normal incidence, the
expressions are simply

Er
Ei

=
1− n(ω)
1 + n(ω)

,
Et
Ei

=
2

1 + n(ω)

where we have furthermore assumed that the material is non-permeable so that
µ = µ0. For harmonic waves, the power is obtained from the real part of the
Poynting vector

~S =
1
2
~E × ~H∗ =

1
2

√
ε∗

µ∗
| ~E|2n̂ (10)



The reflection coefficient is then straightforward

R =
<(n̂ · ~Sr)
<(n̂ · ~Si)

=
∣∣∣∣ErEi

∣∣∣∣2 =
∣∣∣∣1− n(ω)
1 + n(ω)

∣∣∣∣2
For the transmission coefficient, we also have to account for the different material

T =
<(n̂ · ~St)
<(n̂ · ~Si)

= <

√
ε(ω)∗

ε0

∣∣∣∣EtEi
∣∣∣∣2 =

4<[n(ω)]
|1 + n(ω)|2

b) Evaluate <[iω( ~E · ~D∗ − ~B · ~H∗)/2] as a function of (x, y, z). Show that this rate
of change of energy per unit volume accounts for the relative transmitted power
T .

We write the electric and magnetic fields inside the material as

~E = ~Ete
ikn̂·~x, ~B =

√
µ0ε0n(ω)n̂× ~Ete

ikn̂·~x

where the complex wavenumber k is given by

k(ω) =
ωn(ω)
c

In this case, the power per unit volume expression becomes

<
[
iω

2
( ~E · ~D∗ − ~B · ~H∗)

]
= <

[
iω

2

(
ε(ω)∗| ~E|2 − 1

µ0
| ~B|2

)]
= <

[
iω

2
(ε(ω)∗ − ε0|n(ω)|2)| ~Et|2e−2=[k(ω)]n̂·~x

]
= <

[
iε0ω

2
(n(ω)2 ∗ − |n(ω)|2)| ~Et|2e−2=[k(ω)]n̂·~x

]
=
ε0ω=[n(ω)2]

2
| ~Et|2e−2=[k(ω)]n̂·~x

= ε0ω<[n(ω)]=[n(ω)]| ~Et|2e−2=[k(ω)]n̂·~x

=
√
ε0
µ0
<[n(ω)]=[k(ω)]| ~Et|2e−2=[k(ω)]n̂·~x

(11)

The power per area transmitted into the material may then be calculated as

Pt/A =
∫ ∞

0

<
[
iω

2
( ~E · ~D∗ − ~B · ~H∗)

]
dz

=
√
ε0
µ0
<[n(ω)]=[k(ω)]| ~Et|2

∫ ∞
0

e−2=[k(ω)]zdz

=
1
2

√
ε0
µ0
<[n(ω)]| ~Et|2



On the other hand, the incident power per area may be obtained from (10)

Pi/A =
1
2

√
ε0
µ0
| ~Ei|2 (12)

This gives
Pt
Pi

= <[n(ω)]
∣∣∣∣EtEi

∣∣∣∣2 = <[n(ω)]× 4
|1 + n(ω)|2

which agrees with the above calculation of the transmission coefficient.

Note that the complex Poynting vector inside the material is

~S =
1
2

√
ε0
µ0
n(ω)∗| ~Et|2e−2=[k(ω)]n̂·~xn̂

Hence

<(~∇ · ~S ) = −
√
ε0
µ0
<[n(ω)]=[k(ω)]| ~Et|2e−2=[k(ω)]n̂·~x (13)

Comparing this with (11) demonstrates that the real part of the complex Poynt-
ing’s theorem holds

~∇ · ~S +
iω

2
( ~E · ~D∗ − ~B · ~H∗) +

1
2
~J∗ · ~E = 0

so long as we take ~J = 0 (ie no free currents).

c) For a conductor, with n2 = 1 + i(σ/ωε0), σ real, write out the results of parts
a and b in the limit ε0ω � σ. Express your answer in terms of δ as much as
possible. Calculate 1

2<( ~J∗ · ~E) and compare with the result of part b. Do both
enter the complex form of Poynting’s theorem?

For a conductor with σ � ωε0, we make the approximation

n =
√

1 + i
σ

ωε0
≈ (1 + i)

√
σ

2ωε0
= (1 + i)

c

ωδ

where we have introduced the skin depth δ =
√

2/µ0σω. In this case, the reflec-
tion coefficient is approximately

R =
∣∣∣∣1− n1 + n

∣∣∣∣2 =
∣∣∣∣1− n−1

1 + n−1

∣∣∣∣2 ≈ ∣∣∣∣1− (1− i)ωδ/2c
1 + (1− i)ωδ/2c

∣∣∣∣2 ≈ ∣∣∣∣1− (1− i)ωδ
c

∣∣∣∣2
≈
∣∣∣∣1− 2(1− i)ωδ

c

∣∣∣∣ =
∣∣∣∣(1− 2

ωδ

c

)
+ 2i

ωδ

c

∣∣∣∣ ≈ 1− 2
ωδ

c

Not surprisingly, this is the same result as (9). The transmission coefficient is
approximately

T =
4<n
|1 + n|2

≈ 4c/ωδ
|1 + (1 + i)c/ωδ|2

≈ 4c/ωδ
|(1 + i)c/ωδ|2

=
2ωδ
c

(14)



Note that R+ T ≈ 1 as expected.

For the power per unit volume of part b, we have from (11)

<
[
iω

2
( ~E · ~D∗ − ~B · ~H∗)

]
= ε0ω<(n)=(n)| ~Et|2e−2=(k)n̂·x̂

≈ ε0ω
( c

ωδ

)2

| ~Et|2e−2n̂·x/δ

=
ε0c

2

ωδ2
| ~Et|2e−2n̂·~x/δ

Integrating this along z gives a power per area transmitted into the conductor

Pt/A =
∫ ∞

0

ε0c
2

ωδ2
| ~Et|2e−2z/δdz =

ε0c
2

2ωδ
| ~Et|2

Comparing this with the incident power per area (12) gives

Pt
Pi

=
c

ωδ

∣∣∣∣EtEi
∣∣∣∣2 =

c

ωδ

4
|1 + n|2

≈ 4c
ωδ

1
|n|2

≈ 4c
ωδ

1
|(1 + i)c/ωδ|2

=
2ωδ
c

which agrees with the transmission coefficient (14).

For the divergence of the Poynting vector, note that (13) becomes

<(~∇ · ~S) ≈ −ε0c
2

ωδ2
| ~Et|2e−2n̂·~x/δ

On the other hand, using ~J = σ ~E, we see that

<[ 1
2 ( ~J∗ · ~E)] = <[ 1

2σ| ~E|
2] = 1

2σ| ~Et|
2e−2=[k(ω)]n̂·~x =

ε0c
2

ωδ2
| ~Et|2e−2n̂·~x/δ

This expression gives the same value as the power per unit volume term <[iω( ~E ·
~D∗ − ~B · ~H∗)/2]. Hence if we include both the power per unit volume term and
the work term <[ 1

2 ( ~J∗ · ~E)] in the complex Poynting’s theorem

~∇ · ~S +
iω

2
( ~E · ~D∗ − ~B · ~H∗) +

1
2
~J∗ · ~E = 0

we would double count the contribution of the current, and this theorem would
appear to be violated. To get the correct result, we recall that we have a
choice of where the current ~J should be counted. In particular, by writing
n2 = 1 + i(σ/ωε0), we have played the trick of hiding the current ~J in the electric
displacement

~D → ~Deff = ~D +
i

ω
~J =

(
ε0 +

iσ

ω

)
~E = εeff

~E



In this case, the Ampère-Maxwell law becomes simply

~∇× ~H = −iω ~Deff

In particular, once we assume ~Deff = εeff
~E, we have set the explicit current to

zero in this equation (although it is hidden in ~Deff). In this case, the ‘correct’
complex Poynting’s theorem reads

~∇ · ~S +
iω

2
( ~E · ~D∗eff − ~B · ~H∗) = 0

where the work term is hidden in the power per unit volume term. Since ex-
pression (11) was actually calculated with ~Deff , this is the form of the Poynting’s
theorem that we have directly shown for the conductor.

On the other hand, if we treat the current ~J as an explicit quantity, then it enters
through the work term <[ 1

2 ( ~J∗ · ~E)], but does not enter the power per unit volume
term. In this case, we return to the full Poynting’s theorem

~∇ · ~S +
iω

2
( ~E · ~D∗ − ~B · ~H∗) +

1
2
~J∗ · ~E = 0

where ~D is the ‘honest’ electric displacement, without the addition of an effective
current contribution. (For n2 = 1 + i(σ/ωε0), we have ~D = ε0 ~E). Using this
expression for ~D modifies the calculation of (11). In particular

<
[
iω

2
( ~E · ~D∗ − ~B · ~H∗)

]
= <

[
iω

2

(
ε0| ~E|2 −

1
µ0
| ~B|2

)]
= 0

since ε0 and µ0 are both real. As a result, when treating ~J explicitly, power
conservation is a balance between ~∇ · ~S and 1

2
~J∗ · ~E only.

7.8 A monochromatic plane wave of frequency ω is indicdent normally on a stack of layers
of various thicknesses tj and lossless indices of refraction nj . Inside the stack, the
wave has both forward and backward moving components. The change in the wave
through any interface and also from one side of a layer to the other can be described
by means of 2× 2 transfer matrices. If the electric field is written as

E = E+e
ikx + E−e

−ikx

in each layer, the transfer matrix equation E′ = TE is explicitly(
E′+
E′−

)
=
(
t11 t12

t21 t22

)(
E+

E−

)
a) Show that the transfer matrix for propagation inside, but across, a layer of index

of refraction nj and thickness tj is

Tlayer(nj , tj) =
(
eikjtj 0

0 e−ikjtj

)
= I cos(kjtj) + iσ3 sin(kjtj)



where kj = njω/c, I is the unit matrix, and σk are the Pauli spin matrices of
quantum mechanics. Show that the inverse matrix is T ∗.

Normal incidence makes this problem straightforward. For a right moving plane
wave of the form eikjz passing through a layer of thickness tj , one picks up a
phase eikjtj , while for a left moving wave, one picks up a phase e−ikjtj . More
precisely

E′+ = E+(z = tj) = E+(z = 0)eikjtj = E+e
ikjtj

E′− = E−(z = tj) = E−(z = 0)e−ikjtj = E−e
−ikjtj

This directly leads to the transfer matrix

Tlayer(nj , tj) =
(
eikjtj 0

0 e−ikjtj

)
where the inverse is obviously the complex conjugate.

b) Show that the transfer matrix to cross an interface from n1 (x < x0) to n2

(x > x0) is

Tinterface(2, 1) =
1
2

(
n+ 1 −(n− 1)
−(n− 1) n+ 1

)
= I

(n+ 1)
2

− σ1
(n− 1)

2

where n = n1/n2.

For the matching across layers, we take the ~E perpendicular to plane of incidence
conventions. This gives simply

E‖ : E+ + E− = E′+ + E′−

H‖ : n1(E+ − E−) = n2(E′+ − E′−)

which may be solved to give

E′+ = 1
2E+(1 + n) + 1

2E−(1− n)
E′− = 1

2E+(1− n) + 1
2E−(1 + n)

where n = n1/n2. This yields the transfer matrix

Tinterface(2, 1) =
1
2

(
n+ 1 −(n− 1)
−(n− 1) n+ 1

)

c) Show that for a complete stack, the incident, reflected, and transmitted waves
are related by

Etrans =
det(T )
t22

Einc, Erefl = − t21

t22
Einc



where tij are the elements of T , the product of the forward-going transfer ma-
trices, including from the material filling space on the incident side into the first
layer and from the last layer into the medium filling the space on the transmitted
side.

It ought to be clear that the complete effect of going through several layers is to
take a product of transfer matrices. For example

E′ = TE, where T = · · ·T (4, 3)T (n3, t3)T (3, 2)T (n2, t2)T (2, 1)

The transmitted and reflected electric fields are obtained by solving(
Et
0

)
= T

(
Ei
Er

)
=
(
t11 t12

t21 t22

)(
Ei
Er

)
This gives explicitly

Et = t11Ei + t12Er, 0 = t21Ei + t22Er

which may be solved to obtain

Er = − t21

t22
Ei, Et =

t11t22 − t12t21

t22
Ei =

det(T )
t22

Ei


