
Physics 505 Fall 2007

Homework Assignment #9 — Solutions

Textbook problems: Ch. 5: 5.19, 5.21, 5.22, 5.27

5.19 A magnetically “hard” material is in the shape of a right circular cylinder of length L
and radius a. The cylinder has a permanent magnetization M0, uniform throughout
its volume and parallel to its axis.

a) Determine the magnetic field ~H and magnetic induction ~B at all points on the
axis of the cylinder, both inside and outside.

We use a magnetic scalar potential and the expression

ΦM = − 1
4π

∫
V

~∇ · ~M(~x ′)
|~x− ~x ′|

d3x′ +
1

4π

∮
S

n̂′ · ~M(~x ′)
|~x− ~x ′|

da′

Orienting the cylinder along the z axis, we take a uniform magnetization ~M =
M0ẑ. In this case the volume integral drops out, and the surface integral only
picks up contributions on the endcaps. Thus

ΦM =
M0

4π

[∫
top

1
|~x− ~x ′|

da′ −
∫

bottom

1
|~x− ~x ′|

da′
]

where ‘top’ and ‘bottom’ denote z = ±L/2, and the integrals are restricted to
ρ < a. On axis (ρ = 0) we have simply

ΦM (z) =
M0

4π

∫ (
1√

ρ2 + (z − L/2)2
− 1√

ρ2 + (z + L/2)2

)
ρ dρ dφ

=
M0

4

∫ a2

0

(
1√

ρ2 + (z − L/2)2
− 1√

ρ2 + (z + L/2)2

)
dρ2

=
M0

2

[√
a2 + (z − L/2)2 −

√
a2 + (z + L/2)2 − |z − L/2|+ |z + L/2|

]
On axis, the field can only point in the z direction. It is given by

Hz = − ∂

∂z
ΦM = −M0

2

[
z − L/2√

a2 + (z − L/2)2
− z + L/2√

a2 + (z + L/2)2

− sgn(z − L/2) + sgn(z + L/2)
]

Note that the last two terms cancel when |z| > L/2, but add up to 2 inside the
magnet. Thus we may write

Hz = −M0

2

[
z − L/2√

a2 + (z − L/2)2
− z + L/2√

a2 + (z + L/2)2
+ 2 Θ(L/2− |z|)

]



where Θ(ξ) denotes the unit step function, Θ = 1 for ξ > 0 (and 0 otherwise).
The magnetic induction is obtained by rewriting the relation ~H = ~B/µ0 − ~M as
~B = µ0( ~H + ~M ). Since the magnetization is only nonzero inside the magnet [ie
Mz = M0 Θ(L/2 − |z|)], the addition ~H + ~M simply removes the step function
term. We find

Bz = µ0(Hz +Mz) = −µ0M0

2

[
z − L/2√

a2 + (z − L/2)2
− z + L/2√

a2 + (z + L/2)2

]
(1)

b) Plot the ratios ~B/µ0M0 and ~H/M0 on the axis as functions of z for L/a = 5.

The z component of the magnetic field looks like
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while the z component of the magnetic induction looks like
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Note that Bz is continuous, while Hz jumps at the ends of the magnet. This
jump may be thought of as arising from effective magnetic surface charge.

5.21 A magnetostatic field is due entirely to a localized distribution of permanent magne-
tization.

a) Show that ∫
~B · ~H d3x = 0

provided the integral is taken over all space.

So long as the magnetic field is due to a localized distribution of permanent
magnetization, and in particular not to free currents, it satisfies the curl-free



condition ~∇ × ~H = 0. As a result, we may employ a magnetic scalar potential
~H = −~∇ΦM . This allows us to write∫

~B · ~H d3x = −
∫

~B · ~∇ΦM d3x =
∫

ΦM ~∇ · ~B d3x−
∫
~∇ · (ΦM ~B) d3x

=
∫

ΦM ~∇ · ~B d3x−
∫
∞

ΦM ~B · d~a

where the surface term is taken over the ‘surface’ at infinity. So long as the
distribution of magnetization is localized, the fields will fall off sufficiently fast
at infinity so that the surface term vanishes. Finally, using Gauss’ law for mag-
netism, ~∇ · ~B = 0, gives the result∫

~B · ~H d3x = 0 (2)

Alternatively, the proof also follows from using the vector potential∫
~B · ~H d3x =

∫
~H · (~∇× ~A ) d3x =

∫
~A · (~∇× ~H) d3x+

∫
~∇ · ( ~A× ~H) d3x

=
∫

~J · ~Ad3x+
∫
∞

( ~A× ~H) · d~a

= 0

where we have dropped the term at infinity and used the fact that there are no
free currents, ~J = 0.

b) From the potential energy (5.72) of a dipole in an external field, show that for
a continuous distribution of permanent magnetization the magnetostatic energy
can be written

W =
µ0

2

∫
~H · ~H d3x = −µ0

2

∫
~M · ~H d3x

apart from an additive constant, which is independent of the orientation or posi-
tion of the various constituent magnetized bodies.

The potential energy for a single dipole ~m in an external field ~B is given by

U = −~m · ~B

For a discrete distribution of point dipoles, the total magnetostatic energy is
obtained by building up the configuration by starting with a single dipole, then
bringing in the second one from infinity, then the third, and so on

W = −
∑
i<j

~mj · ~Bi



Here Bi is the magnetic induction caused by the i-th dipole

~Bi =
µ0

4π
3(~mi · x̂)x̂− ~mi

|~x |3

In particular, we note that ~mj · ~Bi = ~mi · ~Bj . As a result, we may write

W = −1
2

∑
i 6=j

~mj · ~Bi (3)

This expression does not include any self-energy because we only take i 6= j.

For a continuous distribution of permanent magnetization, the generalization of
(3) is evidently

W = −1
2

∫
~M · ~B d3x (4)

Unlike (3), however, this expression does include the self-energy. Nevertheless,
this self-energy may be thought of as a constant which is independent of the
orientation and position of the constituent magnetized bodies. Now, by writing
~B = µ0( ~H + ~M), we may reexpress the energy as

W = −µ0

2

∫
~M · ( ~H + ~M) d3x = W0 −

µ0

2

∫
~M · ~H d3x

where W0 = −(µ0/2)
∫
| ~M |2d3x is again an orientation and position independent

constant related to the self-energy. Finally, using ~M = 1
µ0
~B − ~H gives

W = W0 −
µ0

2

∫ (
1
µ0

~B − ~H

)
· ~H d3x = W0 +

µ0

2

∫
| ~H|2d3x

where we have used the result of part a, namely (2), to eliminate the
∫
~B · ~H d3x

term.

5.22 Show that in general a long, straight bar of uniform cross-sectional area A with uni-
form lenghwise magnetization M , when placed with its flat end against an infinitely
permeable flat surface, adheres with a force given approximately by

F ' µ0

2
AM2

Relate your discussion to the electrostatic considerations in Section 1.11.

This problem is best solved by considering an image magnet. The infinite perme-
ability of the flat surface ensures that the magnetic field must be perpendicular
to the surface. As a result, this is similar to the electrostatic case of electric field



lines being perpendicular to the surface of a perfect conductor. For magnetostat-
ics, this means that we may use a magnetic scalar potential ΦM (since there are
no free currents) subject to the condition ΦM = 0 at z = 0 (taking the surface to
lie in the x-y plane at z = 0). The image problem is then set up as follows

image z

M M

A

Fortunately we may make use of some of our previous results. Since the force
may be obtained by ~F = −~∇W , we first compute the magnetostatic energy W .
The previous problem has given various expressions for this energy. We choose
to use (4)

W = −1
2

∫
~M · ~B d3x

Here it is important to note that, while we solve this problem using an image
magnet, the only quantities that show up in this energy integral are the actual
sources of magnetization ~M and the actual magnetic induction ~B. We place the
magnet at a distance z0 from the z = 0 surface so that

~Mreal =
{
Mẑ z0 < z < z0 + L
0 otherwise

As a result

W (z0) = −M
2

∫ z0+L

z0

dz

∫
daBz(~x ) ≈ −MA

2

∫ z0+L

z0

dz Bz(z) (5)

where we have approximated that the magnetic induction is roughly uniform
across the face of the magnet.

Using the image magnet setup, there are two sources of magnetic induction

~B(z) = ~Breal(z) + ~Bimage(z)

Using (1) we see that

~Breal(z) = −µ0M

2

[
z − z0 − L√

a2 + (z − z0 − L)2
− z − z0√

a2 + (z − z0)2

]
ẑ

and

~Bimage(z) = −µ0M

2

[
z + z0√

a2 + (z + z0)2
− z + z0 + L√

a2 + (z + z0 + L)2

]
ẑ (6)



Here we have shifted the coordinates such that the real magnet lies between z0 and
z0 +L and the image magnet lies between z = −z0−L and z = −z0. In principle,
we may insert these expressions into (5) to compute the magnetostatic energy.
However, as a simplification, we note that the integral of ~M · ~Breal gives a position
independent (ie z0 independent) self energy. Hence this will not contribute to the
force. As a result, we only need to insert ~Bimage into (5). This gives us

W (z0) ≈ µ0M
2A

4

∫ z0+L

z0

[
z + z0√

a2 + (z + z0)2
− z + z0 + L√

a2 + (z + z0 + L)2

]
dz

=
µ0M

2A

4

[√
a2 + (z + z0)2 −

√
a2 + (z + z0 + L)2

]z0+L
z0

=
µ0M

2A

4

[
2
√
a2 + 4(z0 + L/2)2 −

√
a2 + 4(z0)2 −

√
a2 + 4(z0 + L)2

]
The force is then

Fz = − ∂W

∂z0

∣∣∣∣
z0=0

≈ −µ0M
2A

[
2z0 + L√

a2 + 4(z0 + L/2)2
− z0√

a2 + 4(z0)2

− z0 + L√
a2 + 4(z0 + L)2

]
z0=0

= −µ0M
2A

[
L√

a2 + L2
− L√

a2 + 4L2

]
≈ −µ0M

2A

2

where in the last line we used L � a (a condition that we needed anyway to
ensure that Bz is nearly uniform on the endcaps).

Note that we could have alternatively used the result of Problem 5.20

~F = −
∫
V

(~∇ · ~M) ~Be d3x+
∫
S

( ~M · ~n ) ~Be da

where the applied magnetic induction ~Be is given by ~Bimage in (6) with z0 = 0.
Since the magnetization is uniform, the force arises entirely from the surface term

~F =
∫
S

( ~M · n̂) ~Be da = ẑM

∫
[−Bz(0) +Bz(L)] da

≈ ẑMA[Bz(L)−Bz(0)] = ẑ
µ0M

2A

2

[
2L√

a2 + 4L2
− L√

a2 + L2
− L√

a2 + L2

]
≈ −ẑ µ0M

2A

2



What we have done here is to calculate the force through the magnetostatic
energy

~F = −~∇W (~x )

where ~x denotes the position of the bar magnet. This is the magnetostatic equiv-
alent of the force discussion in Section 1.11, which states that “Forces acting
between charged bodies can be obtained by calculating the change in the total
electrostatic energy of the system under small virtual displacements.” In fact,
this statement is true in general, provided we use the complete (electrostatic plus
magnetostatic) energy of the system. Curiously, a conductor with surface-charge
density σ feels an outward force of the form

F ≈ σ2A

2ε0

which is roughly the electrostatic equivalent of

F ≈ −µ0M
2A

2

found here.

5.27 A circuit consists of a long thin conducting shell of radius a and a parallel return wire
of radius b on axis inside. If the current is assumed distributed uniformly throughout
the cross section of the wire, calculate the self-inductance per unit length. What is
the self-inductance if the inner conductor is a thin hollow tube?

For a uniformly distributed current I in a wire of radius b, the current density is
given by

~J =
{

(I/πb2)ẑ ρ < b
0 otherwise

where we have taken the wire to be oriented along the z axis. By elementary
application of Ampère’s law, the magnetic induction is then

~B =


µIρ

2πb2
φ̂ ρ < b

µ0I

2πρ
φ̂ b < ρ < a

0 ρ > a

where we have allowed the wire to have a different permeability µ. The energy
per unit length is then

W/` =
1
2

∫ a

0

~B · ~H 2πρdρ =
I2

4π

[
µ

∫ b

0

ρ3

b4
dρ+ µ0

∫ a

b

1
ρ
dρ

]

=
I2

4π

[µ
4

+ µ0 log
a

b

]



Setting the energy equal to 1
2LI

2 gives an inductance per unit length of

L/` =
µ0

4π

[
µr
2

+ log
a2

b2

]
where µr = µ/µ0 is the relative permeability. Note that, if the inner conductor
is a thin hollow tube, then all the current resides at ρ = b. In this case, the
magnetic induction is

~B =


µ0I

2πρ
φ̂ b < ρ < a

0 otherwise

and hence

W/` =
µ0I

2

4π
log

a

b
⇒ L/` =

µ0

4π
log

a2

b2


