
Physics 505 Fall 2007

Homework Assignment #6 — Due Thursday, October 25

Textbook problems: Ch. 4: 4.1, 4.7, 4.8, 4.9

4.1 Calculate the multipole moments qlm of the charge distributions shown as parts a)
and b). Try to obtain results for the nonvanishing moments valid for all l, but in each
case find the first two sets of nonvanishing moments at the very least.
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The multipole moments are given by

qlm =
∫
ρ(~x )rlY ∗lm(θ, φ) d3x = qal[Y ∗lm(π2 , 0)+Y ∗lm(π2 ,

π
2 )−Y ∗lm(π2 , π)−Y ∗lm(π2 ,

3π
2 )]

This is given in terms of associated Legendre polynomials by

qlm = qal

√
2l + 1

4π
(l −m)!
(l +m)!

Pml (0)[1 + (−i)m − (−1)m − (i)m]

The moments vanish unless m is odd. Writing m = 2k + 1 gives

ql,2k+1 = 2qal[1− i(−1)k]

√
2l + 1

4π
(l − (2k + 1))!
(l + (2k + 1))!

P 2k+1
l (0)

= 2qal[1− i(−1)k]Yl,2k+1(π2 , 0)

Note that by parity this vanishes unless l is odd. Hence only the odd l and m
moments are present. The lowest non-trivial ones are

q1,1 = −q∗1,−1 = −2qa(1− i)
√

3
8π

and

q3,3 = −q∗3,−3 = −2qa3(1 + i)
1
4

√
35
4π

q3,1 = −q∗3,−1 = 2qa3(1− i)1
4

√
21
4π



b)

− a

x

y

z
q

q
a

q2

In this case, we have

qlm = qal[Y ∗lm(0, 0) + Y ∗lm(π, 0)]

for l > 0 and q00 = 0. By azimuthal symmetry, only the m = 0 moments are
non-vanishing. Hence

ql0 = qal
√

2l + 1
4π

[Pl(1) + Pl(−1)] = qal[1 + (−1)l]

√
2l + 1

4π
l > 0

We end up with even multipoles

ql0 = qal
√

2l + 1
π

l = 2, 4, 6, . . .

Explicitly

q20 = qa2

√
5
π

q40 = qa4

√
9
π

c) For the charge distribution of the second set b) write down the multipole expansion
for the potential. Keeping only the lowest-order term in the expansion, plot the
potential in the x-y plane as a function of distance from the origin for distances
greater than a.

The expansion of the potential is

Φ(~x ) =
1

4πε0

∑
l,m

4π
2l + 1

qlm
Ylm(θ, φ)
rl+1

=
1
ε0

∑
l=2,4,...

qal

2l + 1

√
2l + 1
π

Yl0(θ, φ)
rl+1

=
q

2πε0

∑
l=2,4,...

al

rl+1
Pl(cos θ) =

q

4πε0
a2

r3
(3 cos2 θ − 1) + · · ·

In the x-y plane we have cos θ = 0, so the lowest order term is

Φ = − q

4πε0a

(a
r

)3

+ · · ·



We all know what 1/r3 looks like when plotted, but here it is
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d) Calculate directly from Coulomb’s law the exact potential for b) in the x-y plane.
Plot it as a function of distance and compare with the result found in part c).

For three charges, the potential is simply the sum of three terms, one for each
charge. In the x-y plane, if r is the distance from the origin we have

Φ =
q

4πε0

(
1√

r2 + a2
− 1
r

+
1√

r2 + a2

)
= − q

2πε0r

(
1− 1√

1 + (a/r)2

)

= − q

4πε0a
2

(
1

(r/a)
− 1√

1 + (r/a)2

)
The exact potential looks like
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Divide out the asymptotic form in parts c) and d) to see the behavior at large distances
more clearly.



If we divide out by 1/r3, the approximate and exact potentials are
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where the straight line is the approximation of c) and the sloped line is the exact
result. The approximation improves as r � a.

4.7 A localized distribution of charge has a charge density

ρ(~r ) =
1

64π
r2e−r sin2 θ

a) Make a multipole expansion of the potential due to this charge density and deter-
mine all the nonvanishing multipole moments. Write down the potential at large
distances as a finite expansion in Legendre polynomials.

This charge distribution is azimuthally symmetric. As a result, only m = 0
moments will be nonvanishing. Furthermore, noting that

sin2 θ = 1− cos2 θ = 2
3 [P0(cos θ)− P2(cos θ)]

we may write down the moments

ql0 =
∫
ρ(r, θ)rlY ∗l0(θ, φ) r2 dr dφ d(cos θ)

= 2π

√
2l + 1

4π

∫
ρ(r, θ)rlPl(cos θ) r2 dr d(cos θ)

=
2π
64π

2
3

√
2l + 1

4π

∫ ∞
0

rl+4e−r dr

∫ 1

−1

Pl(cos θ)[P0(cos θ)− P2(cos θ)] d(cos θ)

=
1
48

√
2l + 1

4π
Γ(l + 5)[2δl,0 − 2

5δl,2]

As a result, we read off the only nonvanishing multipole moments

q00 =

√
1

4π
, q20 = −6

√
5

4π



The multipole expansion then yields the large distance potential

Φ =
1

4πε0

∑
l,m

4π
2l + 1

qlm
Ylm(θ, φ)
rl+1

=
1

4πε0

∑
l

√
4π

2l + 1
ql0
Pl(cos θ)
rl+1

=
1

4πε0

[
1
r
− 6
r3
P2(cos θ)

]
(1)

b) Determine the potential explicitly at any point in space, and show that near the
origin, correct to r2 inclusive,

Φ(~r ) ' 1
4πε0

[
1
4
− r2

120
P2(cos θ)

]
We may use a Green’s function to obtain the potential at any point in space. In
general (since there are no boundaries, except at infinity)

G(~x, ~x ′) =
1

|~x− ~x ′|
=
∑
lm

4π
2l + 1

rl<
rl+1
>

Y ∗lm(θ′, φ′)Ylm(θ, φ)

However, for azimuthal symmetry, it is sufficient to focus on the m = 0 terms in
the expansion

G(~x, ~x ′) =
∑
l

rl<
rl+1
>

Pl(cos θ)Pl(cos θ′) + (m 6= 0)

Then

Φ(~x ) =
1

4πε0

∫
ρ(~x ′)G(~x, ~x ′) d3x′

=
1

4πε0
2π
64π

2
3

∫ ∞
0

r′4e−r
′ rl<
rl+1
>

dr′

×
∫ 1

−1

[P0(cos θ′)− P2(cos θ′)]Pl(cos θ′)Pl(cos θ) d(cos θ′)

=
1

4πε0
1
48

[
1
rl+1

∫ r

0

r′l+4e−r
′
dr′+ rl

∫ ∞
r

r′3−le−r
′
dr′
]

[2δl,0 − 2
5δl,2P2(cos θ)]

Instead of writing this out in terms of incomplete Gamma functions, it is better
just to integrate for l = 0 and l = 2. The result is

Φ =
1

4πε0
1
24

[
1
r

(
24− e−r(24 + 18r + 6r2 + r3)

)
− 1
r3
P2(cos θ)

(
144− e−r(144 + 144r + 72r2 + 24r3 + 6r4 + r5)

)]



Note that as r → ∞ the e−r factors are exponentially small. As a result, we
simply reproduce (1) in this limit. On the other hand, as r → 0, a Taylor
expansion yields

Φ =
1

4πε0

[(
1
4

+ · · ·
)
−
(
r2

120
+ · · ·

)
P2(cos θ)

]
(2)

Obtaining the correct l = 2 term involves the cancellation of the first five terms
in the Taylor expansion. Note that the leading terms in the final expression have
the ‘correct’ powers of rlPl(cos θ) in order to satisfy Laplace’s equation.

c) If there exists at the origin a nucleus with a quadrupole moment Q = 10−28 m2,
determine the magnitude of the interaction energy, assuming that the unit of
charge in ρ(~r ) above is the electronic charge and the unit of length is the hydrogen
Bohr radius a0 = 4πε0h̄2/me2 = 0.529 × 10−10 m. Express your answer as a
frequency by dividing by Planck’s constant h.

The charge density in this problem is that for the m = ±1 states of the 2p level
in hydrogen, while the quadrupole interaction is of the same order as found in
molecules.

We first note that if we put the correct units of electronic charge e and Bohr
radius a0 into the charge distribution ρ, the potential near the origin (2) becomes

Φ = − e

4πε0a0

[
1
4
− 1

120

(
r

a0

)2

P2(cos θ) + · · ·

]

where the overall minus sign is due to the negative charge of the electron. (We
take e > 0). The interaction energy is then

W =
∫
ρNΦ d3x = − e

4πε0a0

∫
ρN

[
1
4
− 1

120

(
r

a0

)2

P2(cos θ) + · · ·

]
d3x

where ρN is the charge density of the nucleus. Since
∫
ρNd

3x = Ze gives the
total charge of the nucleus, we write

W = − e2

4πε0a0

[
Z

4
− 1

240a2
0

1
e

∫
ρNr

2(3 cos2 θ − 1)d3x+ · · ·
]

where we have used P2(x) = 1
2 (3x2− 1). Using z = r cos θ, this may be rewritten

as

W = − e2

4πε0a0

[
Z

4
− 1

240a2
0

1
e

∫
ρN (3z2 − r2)d3x+ · · ·

]
= − e2

4πε0a0

[
Z

4
− Q

240a2
0

+ · · ·
]



where we have used the (classical) definition of the nuclear quadrupole moment

Q =
1
e

∫
ρN (3z2 − r2)d3x

The first term is the electrostatic interaction energy. The quadrupole interaction
energy (expressed as a frequency) is

W/h =
e2

4πε0h̄c
Qc

480πa3
0

=
αQc

480πa3
0

≈ 1 MHz

where α ≈ 1/137.036 is the fine structure constant, and where we have put in
the numerical value of Q. This nuclear quadrupole interaction with the electric
field of the electron cloud typically gives rise to radio frequency resonances (in
the low megahertz range) that may be detected using the process of nuclear
quadrupole resonance (NQR). Since NQR is sensitive to the electronic structure
(ie chemical bonds), it has seen some application towards explosives detection.
In particular, nitrogen is a common element in many explosives, and since 14N
has a non-zero quadrupole moment, NQR can be used to detect what sorts of
nitrogen compounds may be present in a sample.

4.8 A very long, right circular, cylindrical shell of dielectric constant ε/ε0 and inner and
outer radii a and b, respectively, is placed in a previously uniform electric field E0

with its axis perpendicular to the field. The medium inside and outside the cylinder
has a dielectric constant of unity.

a) Determine the potential and electric field in the three regions, neglecting end
effects.

Since the cylinder is very long, we treat this as a two-dimensional problem. In
this case, the potential admits a general expansion

Φ =
∑
m

[αmρm + βmρ
−m] cos(mφ− δm)

(where the m = 0 term should actually be α0 + β0 log ρ). Furthermore, by
orienting the electric field along the +x direction, we may use the φ ↔ −φ
symmetry of this problem to eliminate the phases δm. As a result, we are able to
write the potential as an expansion in each of the three regions

Φ =



Φ1 = A0 +
∑
m

Amρ
−m cos(mφ)− E0ρ cosφ, ρ > b

Φ2 = B0 + C0 log ρ+
∑
m

(Bmρm + Cmρ
−m) cos(mφ), a < ρ < b

Φ3 = D0 +
∑
m

Dmρ
m cos(mφ), ρ < a



For each value of m, there are four unknowns, Am, Bm, Cm and Dm. On the other
hand, there are also four matching conditions (D⊥ and E‖ both at a and at b).
Note, however, that when m 6= 1 these matching conditions yield homogeneous
equations which only admit the trivial solution

Am = Bm = Cm = Dm = 0 m 6= 1

(Although the m = 0 case has to be treated separately, it is easy to see that
C0 = 0. The remaining constants must satisfy A0 = B0 = D0, and may be taken
to vanish, since an overall constant added to the potential is unphysical.) Thus
we may focus on m = 1 and write

Φ =

Φ1 = (Aρ−1 − E0ρ) cosφ, ρ > b
Φ2 = (Bρ+ Cρ−1) cosφ, a < ρ < b
Φ3 = Dρ cosφ, ρ < a

(3)

We may obtain the electric field by taking a gradient

Eρ = −∂Φ
∂ρ

=


E1
ρ = (Aρ−2 + E0) cosφ, ρ > b

E2
ρ = (−B + Cρ−2) cosφ, a < ρ < b

E3
ρ = −D cosφ, ρ < a

Eφ = −1
ρ

∂Φ
∂φ

=


E1
φ = (Aρ−2 − E0) sinφ, ρ > b

E2
φ = (B + Cρ−2) sinφ, a < ρ < b

E3
φ = D sinφ, ρ < a

(4)

The matching at ρ = a is

ε0E
3
ρ = εE2

ρ

∣∣∣
ρ=a

, E3
φ = E2

φ

∣∣∣
ρ=a

or
(ε0/ε)D −B + Ca−2 = 0, D −B − Ca−2 = 0

This may be solved for C and D in terms of B

C =
1− ε0/ε
1 + ε0/ε

Ba2, D =
2

1 + ε0/ε
B (5)

Similarly, the matching at ρ = b is

εE2
ρ = ε0E

1
ρ

∣∣∣
ρ=b

, E2
φ = E1

φ

∣∣∣
ρ=b

or
(ε0/ε)Ab−2 +B − Cb−2 = −(ε0/ε)E0, Ab−2 −B − Cb−2 = E0



Eliminating C using (5) gives rise to the simultaneous equations(
b−2 −1− 1−ε0/ε

1+ε0/ε

(
a
b

)2
(ε0/ε)b−2 1− 1−ε0/ε

1+ε0/ε

(
a
b

)2
)(

A

B

)
= E0

(
1

−ε0/ε

)

This yields a solution

A = E0∆−1(1− ε0/ε)
(

1−
(a
b

)2
)
b2

B = −E0∆−1(2ε0/ε)

where

∆ = (1 + ε0/ε)

(
1−

(
1− ε0/ε
1 + ε0/ε

a

b

)2
)

is b2 times the determinant of the above matrix. Substituting B into (5) then
gives the remaining coefficients

C = −E0∆−1 (1− ε0/ε)2ε0/ε
1 + ε0/ε

a2

D = −E0∆−1 4ε0/ε
1 + ε0/ε

These expressions may be simplified to read

A = E0b
2 (ε2 − ε20)(b2 − a2)

(ε+ ε0)2b2 − (ε− ε0)2a2

B = −2E0
ε0(ε+ ε0)b2

(ε+ ε0)2b2 − (ε− ε0)2a2

C = −2E0a
2 ε0(ε− ε0)b2

(ε+ ε0)2b2 − (ε− ε0)2a2

D = −4E0
εε0b

2

(ε+ ε0)2b2 − (ε− ε0)2a2

(6)

The potential and electric field are obtained by substituting these coefficients into
(3) and (4). For the potential, we have

b < ρ : Φ1 = E0

[
(ε2 − ε20)(b2 − a2)

(ε+ ε0)2b2 − (ε− ε0)2a2

b2

ρ
− ρ
]

cosφ

a < ρ < b : Φ2 = −2E0
ε0b

2[(ε+ ε0)ρ+ (ε− ε0)a2/ρ]
(ε+ ε0)2b2 − (ε− ε0)2a2

cosφ

ρ < a : Φ3 = −4E0
εε0b

2ρ

(ε+ ε0)2b2 − (ε− ε0)2a2
cosφ

(7)



b) Sketch the lines of force for a typical case of b ' 2a.

For ε/ε0 = 1.5, the ‘electric field’ lines look like

Note that we have actually plotted the electric displacement field ~D, as Gauss’
law in vacuum ~∇ · ~D = 0 ensures that the lines of electric displacement are
continuous and unbroken. The electric field lines themselves are discontinuous at
the interface between dielectrics.

c) Discuss the limiting forms of your solution appropriate for a solid dielectric cylin-
der in a uniform field, and a cylindrical cavity in a uniform dielectric.

A solid dielectric cylinder of radius b may be obtained by taking the limit a →
0. In this case the expressions (6) and (7) simplify considerably. We give the
potential

Φ =

{
Φ1 = −E0x+ E0

1−ε0/ε
1+ε0/ε

b2x
ρ2 , ρ > b

Φ2 = −E0
2ε0/ε

1+ε0/ε
x, ρ < b

(8)

where x = ρ cosφ. The potential Φ3 is irrelevant in this case. Here we see that the
potential Φ2 inside the cylinder is uniform (but corresponds to a reduced electric
field provided ε > ε0). The potential outside is that of the original uniform electric
field combined with a two-dimensional dipole.

For the opposite limit, we obtain a cylindrical cavity of radius a by taking the
limit b→∞. In this case, we end up with

Φ =

{
Φ2 = −E0

2ε0/ε
1+ε0/ε

x− E0
2ε0/ε(1−ε0/ε)

(1+ε0/ε)2
a2x
ρ2 , ρ > a

Φ3 = −E0
4ε0/ε

(1+ε0/ε)2
x, ρ < a

At first glance, this appears to be considerably different from (8). However, note
that the physical electric field we measure as ρ→∞ is Ẽ0 = E0(2ε0/ε)/(1+ε0/ε).



In terms of Ẽ0, we have

Φ =

{
Φ2 = −Ẽ0x− Ẽ0

1−ε0/ε
1+ε0/ε

a2x
ρ2 , ρ > a

Φ3 = −Ẽ0
2

1+ε0/ε
x, ρ < a

which may be rewritten as

Φ =

{
Φ2 = −Ẽ0x+ Ẽ0

1−ε/ε0
1+ε/ε0

a2x
ρ2 , ρ > a

Φ3 = −Ẽ0
2ε/ε0

1+ε/ε0
x, ρ < a

This agrees with (8) after the replacement ε↔ ε0 (and a→ b), as it must.

4.9 A point charge q is located in free space a distance d from the center of a dielectric
sphere of radius a (a < d) and dielectric constant ε/ε0.

a) Find the potential at all points in space as an expansion in spherical harmonics.

By symmetry, we may place the point charge on the z-axis at z = d. In this
case, the problem is azimuthally symmetric, and we may expand the potential
in Legendre polynomials instead of spherical harmonics. For the potential inside
the dielectric sphere, we take

Φin =
q

4πε

∑
l

αl

( r
a

)l
Pl(cos θ) (9)

where the q/4πε prefactor is taken for convenience (but can be absorbed into a
redefinition of αl if so desired). Note that we do not need any source term, since
there are no charges inside the sphere. On the other hand, the solution outside
the sphere is given by

Φout =
1

4πε0
q

|~x− dẑ|
+ Φ0

where Φ0 is a homogeneous solution to Laplace’s equation, ∇2Φ0 = 0. Expanding
in Legendre polynomials allows us to write

Φout =
q

4πε0

∑
l

[
rl<
rl+1
>

+ βl

(a
r

)l+1
]
Pl(cos θ) (10)

Note that r< = min(r, d) and r> = max(r, d). Since we must match the parallel
electric field and perpendicular electric displacement at r = a, we may take r< = r
and r> = d when using Φout in the matching equations. For the parallel electric
field, we have

Ein
θ = −1

r

∂Φin

∂θ

∣∣∣∣
r=a

=
q

4πε

∑
l

αl
a
P ′l (cos θ) sin θ

Eout
θ = −1

r

∂Φout

∂θ

∣∣∣∣
r=a

=
q

4πε0

∑
l

[
al−1

dl+1
+
βl
a

]
P ′l (cos θ) sin θ



Matching these gives

αl =
ε

ε0

[
al

dl+1
+ βl

]
(11)

On the other hand, for the perpendicular electric displacement, we have

Din
r = −ε ∂Φin

∂r

∣∣∣∣
r=a

=
q

4π

∑
l

lαl
a
Pl(cos θ)

Dout
r = −ε0

∂Φout

∂r

∣∣∣∣
r=a

=
q

4π

∑
l

[
lal−1

dl+1
− (l + 1)βl

a

]
Pl(cos θ)

Matching gives

αl =
al

dl+1
− (l + 1)

l
βl (12)

Solving (11) and (12) yields

αl =
2l + 1

l + ε0
ε (l + 1)

al

dl+1

βl =
( ε0ε − 1)l

l + ε0
ε (l + 1)

al

dl+1

As a result, the interior and exterior potential, given by (9) and (10), has the
form

Φin =
q

4πεd

∑
l

2l + 1
l + ε0

ε (l + 1)

( r
d

)l
Pl(cos θ)

Φout =
q

4πε0

∑
l

[
rl<
rl+1
>

+
( ε0ε − 1)l

l + ε0
ε (l + 1)

a2l+1

(rd)l+1

]
Pl(cos θ)

(13)

Note that, without the dielectric sphere (so that ε = ε0), this reduces to

Φin =
q

4πε0

∑
l

rl

dl+1
Pl(cos θ)

Φout =
q

4πε0

∑
l

rl<
rl+1
>

Pl(cos θ)

which is simply the free space result

Φ =
q

4πε0|~x− dẑ|

b) Calculate the rectangular components of the electric field near the center of the
sphere.



Near the center, we may expand Φin in (13).

Φin =
q

4πεd

[
1
ε0
ε

+
3

1 + 2 ε0ε

r

d
cos θ +

5
2 + 3 ε0ε

( r
d

)2 3 cos2 θ − 1
2

+ · · ·
]

=
q

4πε0d

[
1 +

3
2 + ε

ε0

z

d
+

5
3 + 2 ε

ε0

3z2 − r2

2d2
+ · · ·

]

The electric field is then

~E = −~∇Φin =
q

4πε0d2

[
− 3

2 + ε
ε0

ẑ +
5

3 + 2 ε
ε0

xx̂+ yŷ − 2zẑ
d

+ · · ·

]

Very close to the center, the field is nearly uniform, and pointed in the −ẑ direc-
tion (assuming q > 0). The presence of the dielectric modifies the point charge
result ~E = −(q/4πε0d2)ẑ by the factor 3/(2 + ε/ε0).

c) Verify that, in the limit ε/ε0 → ∞, your result is the same as that for the
conducting sphere.

For ε/ε0 →∞, the potential (13) reduces to

Φin =
q

4πε0d

Φout =
q

4πε0

[ ∞∑
l=0

rl<
rl+1
>

−
∞∑
l=1

a2l+1

(rd)l+1

]
Pl(cos θ)

=
q(a/d)
4πε0r

+
q

4πε0

∞∑
l=0

(
rl< −

a2l+1

rl+1
<

)
1
rl+1
>

Pl(cos θ)

=
q

4πε0

[
a/d

r
+

1
|~x− dẑ|

− a/d

|~x− (a2/d)ẑ|

]
which is indeed the correct result for a conducting sphere. Note that the l = 0
term in the sum had to be treated with care when taking the limit ε/ε0 →
∞. This results in the q(a/d)/4πε0r term corresponding to an uncharged (and
ungrounded) conducting sphere having non-zero potential when the charge q is
brought near it.


