
Physics 505 Fall 2007

Homework Assignment #3 — Solutions

Textbook problems: Ch. 2: 2.14, 2.15, 2.22, 2.23

2.14 A variant of the preceeding two-dimensional problem is a long hollow conducting
cylinder of radius b that is divided into equal quarters, alternate segments being held
at potential +V and −V .

a) Solve by means of the series solution (2.71) and show that the potential inside
the cylinder is

Φ(ρ, φ) =
4V
π

∞∑
n=0

(ρ
b

)4n+2 sin[(4n+ 2)φ]
2n+ 1

The general series solution for the two-dimensional problem in polar coordinates
is given by (2.71)

Φ(ρ, φ) = a0 + b0 log ρ+
∞∑
n=1

anρ
n sin(nφ+ αn) + bnρ

−n sin(nφ+ βn)

Since we are interested in the interior solution, we demand that the potential
remains finite at ρ = 0. This indicates that the bn coefficients must all vanish.
We are thus left with

Φ(ρ, φ) = a0 +
∞∑
n=1

anρ
n sin(nφ+ αn)

which we may choose to rewrite as

Φ(ρ, φ) =
A0

2
+
∞∑
k=1

[Akρk cos(kφ) +Bkρ
k sin(kφ)] (1)

This form of the series is supposed to be reminiscent of a Fourier series.

The boundary condition for this problem is that the potential at ρ = b is either
+V or −V , depending on which quadrant we are in
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This can be plotted as a function of φ
Φ
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It should be obvious that Φ(b, φ) is an odd function of φ. As a result, we im-
mediately deduce that the Ak Fourier coefficients in (1) must vanish, leaving us
with

Φ(ρ, φ) =
∞∑
k=1

Bkρ
k sin(kφ) (2)

On the interior surface of the conducting cylinder, this reads

Φ(b, φ) =
∞∑
k=1

Bkb
k sin(kφ)

where Φ(b, φ) is given by the figure above. In particular, we see that the quantities
Bkb

k are explicitly the Fourier expansion coefficients of a square wave with period
π (which is half the usual 2π period). As a result, we may simply look up the
standard Fourier expansion of the square wave and map it to this present problem.
Alternatively, it is straightforward to calculate the coefficients directly

Bkb
k =

1
π

∫ π

−π
Φ(b, φ) sin(kφ)dφ

=
V

π

(∫ −π/2
−π

−
∫ 0

−π/2
+
∫ π/2

0

−
∫ π

π/2

)
sin(kφ)dφ

=
V

kπ

(
− cos(kφ)

∣∣∣−π/2
−π

+ cos(kφ)
∣∣∣0
−π/2

− cos(kφ)
∣∣∣π/2
0
− cos(kφ)

∣∣∣π
π/2

)
=

2V
kπ

(
1− 2 cos

(kπ
2

)
+ cos(kπ)

)
=

8V
kπ

k = 2, 6, 10, 14, . . . (ie k = 4n+ 2)

Substituting Bk = 8V/kπbk into (2) and usiing k = 4n+ 2 then gives

Φ(ρ, φ) =
4V
π

∞∑
n=0

(ρ
b

)4n+2 sin[(4n+ 2)φ]
2n+ 1

(3)



b) Sum the series and show that

Φ(ρ, φ) =
2V
π

tan−1

(
2ρ2b2 sin 2φ
b4 − ρ4

)

This series is easy to sum if we work with complex variables. Since sin θ is the
imaginary part of eiθ, we write (3) as

Φ(ρ, φ) =
4V
π
=
∞∑
n=0

(ρ/b)4n+2e(4n+2)iφ

2n+ 1

=
4V
π
=
∞∑
n=0

z2n+1

2n+ 1
=

4V
π
=
(
z + 1

3z
3 + 1

5z
5 + · · ·

) (4)

where

z ≡ ρ2

b2
e2iφ (5)

Now recall that the Taylor series expansion for log(1 + z) is given by

log(1 + z) =
∞∑
k=1

(−1)k+1

k
zk = z − 1

2z
2 + 1

3z
3 − 1

4z
4 + 1

5z
5 − · · ·

We may eliminate the even powers of z by taking the difference between log(1+z)
and log(1− z). This allows us to derive the series expression

z + 1
3z

3 + 1
5z

5 + · · · = 1
2

log
1 + z

1− z

Substituting this into (4) gives

Φ(ρ, φ) =
2V
π
= log

1 + z

1− z
=

2V
π

arg
1 + z

1− z

Since arg(x+ iy) = tan−1(y/x), a bit of algebra gives

Φ(ρ, φ) =
2V
π

tan−1

(
2=z

1− |z|2

)
Using the expression for z given in (5), we finally obtain

Φ(ρ, φ) =
2V
π

tan−1

(
2(ρ2/b2) sin 2φ
1− (ρ2/b2)2

)
=

2V
π

tan−1

(
2ρ2b2 sin 2φ
b4 − ρ4

)
(6)



c) Sketch the field lines and equipotentials.

The equipotentials correspond to φ(ρ, φ) = Φ0. To see what this looks like, we
may invert (6) to solve for b as a function of φ at fixed Φ0. The result is

2ρ2b2 sin 2φ
b4 − ρ4

= tan
(
πΦ0

2V

)

⇒ (ρ/b)2 = − sin 2φ
tan(πΦ0/2V )

+

√
1 +

sin2 2φ
tan2(πΦ0/2V )

A plot of the equipotentials is given by

VV
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V

where we have also shown the electric field lines (the curves with arrows).

2.15 a) Show that the Green function G(x, y;x′, y′) appropriate for Dirichlet boundary
conditions for a square two-dimensional region, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, has an
expansion

G(x, y;x′, y′) = 2
∞∑
n=1

gn(y, y′) sin(nπx) sin(nπx′)

where gn(y, y′) satisfies(
∂2

∂y′2
− n2π2

)
gn(y, y′) = −4πδ(y′ − y) and gn(y, 0) = gn(y, 1) = 0

We start by recalling the the Green’s function is defined by

(∂2
x′ + ∂2

y′)G(x, y;x′, y′) = −4πδ(x′ − x)δ(y′ − y) (7)

Although this is symmetric in x′ and y′, the problem suggests that we begin by
expanding in x′ (and also x). This of course breaks the symmetry in the expanded
form of the Green’s function by treating x′ somewhat differently. Nevertheless
G(x, y;x′, y′) is unique for the given boundary conditions; it just may admit



different expansions, and we are free to choose whatever expansion is the most
convenient.

Given the boundary condition that G vanishes for x′ = 0 and x′ = 1, this suggests
an expansion in a Fourier sine series

G(x, y;x′, y′) =
∞∑
n=1

fn(x, y; y′) sin(nπx′)

Substituting this into (7) then gives

∞∑
n=1

(∂2
y′ − n2π2)fn(x, y; y′) sin(nπx′) = −4πδ(x′ − x)δ(y′ − y) (8)

However this is not particularly useful (yet), since the δ(x′−x) on the right hand
side does not match with the Fourier sine series on the left. We can get around
this by invoking the completeness relation for the sine series

∞∑
n=1

sin(nπx) sin(nπx′) = 1
2δ(x− x

′)

By replacing the delta function in (8) by this sum, we end up with

∞∑
n=1

(∂2
y′ − n2π2)fn(x, y; y′) sin(nπx′) = −8πδ(y′ − y)

∞∑
n=1

sin(nπx) sin(nπx′) (9)

Matching left and right sides of the Fourier sine series indicates that the x be-
havior of fn(x, y; y′) must be given by sin(nπx). Putting in a factor of two for
convenience

fn(x, y; y′) = 2gn(y, y′) sin(nπx)

finally motivates the expansion

G(x, y;x′, y′) = 2
∞∑
n=1

gn(y, y′) sin(nπx) sin(nπx′)

When this is inserted into (9), we match the x and x′ behavior perfectly, and we
are left with an equation in y′

(∂2
y′ − n2π2)gn(y, y′) = −4πδ(y′ − y) (10)

The boundary conditions are that G vanishes at y′ = 0 and y′ = 1. Hence we
must also demand gn(y, 0) = gn(y, 1) = 0.

b) Taking for gn(y, y′) appropriate linear combinations of sinh(nπy′) and cosh(nπy′)
in the two regions, y′ < y and y′ > y, in accord with the boundary conditions



and the discontinuity in slope required by the source delta function, show that
the explicit form of G is

G(x, y;x′, y′) = 8
∞∑
n=1

1
n sinh(nπ)

sin(nπx) sin(nπx′) sinh(nπy<) sinh[nπ(1− y>)]

where y<(y>) is the smaller (larger) of y and y′.

To find the Green’s function for (10), we begin with the solution to the homoge-
neous equation (∂2

y′ − n2π2)gn(y, y′) = 0. This clearly has exponential solutions
e±nπy

′
, or equivalently sinh(nπy′) and cosh(nπy′). As a result, we can write the

Green’s function as

gn(y, y′) =
{
g< ≡ a< sinh(nπy′) + b< cosh(nπy′) y′ < y
g> ≡ a> sinh(nπy′) + b> cosh(nπy′) y′ > y

(11)

We wish to solve for the four constants a<, b<, a>, b> given the boundary condi-
tions gn(y, 0) = 0, gn(y, 1) = 0 and the continuity and jump conditions

g> = g< ∂y′g> = ∂y′g< − 4π when y′ = y

We start with the boundary conditions. For g< to vanish at y′ = 0 we must take
the sinh solution, while for g> to vanish at y′ = 1 we end up with a> sinh(nπ) +
b> cosh(nπ) = 0 or b> = −a> tanh(nπ). Thus

gn(y, y′) =
{
a< sinh(nπy′) y′ < y
a>[sinh(nπy′)− tanh(nπ) cosh(nπy′)] y′ > y

(12)

The continuity and jump conditions yield the system of equations(
sinh(nπy) − sinh(nπy) + tanh(nπ) cosh(nπy)
cosh(nπy) − cosh(nπy) + tanh(nπ) sinh(nπy)

)(
a<
a>

)
=
(

0
4/n

)
which is solved by(

a<
a>

)
= − 4

n tanh(nπ)

(
sinh(nπy)− tanh(nπ) cosh(nπy)

sinh(nπy)

)
= − 4

n sinh(nπ)

(
cosh(nπ) sinh(nπy)− sinh(nπ) cosh(nπy)

cosh(nπ) sinh(nπy)

)
Inserting this into (12) gives

gn(y, y′) =
4

n sinh(nπ)

×
{

sinh(nπy′)[sinh(nπ) cosh(nπy)− cosh(nπ) sinh(nπy)] y′ < y
sinh(nπy)[sinh(nπ) cosh(nπy′)− cosh(nπ) sinh(nπy′)] y′ > y



This is simplified by noting

sinh[nπ(1− y)] = sinh(nπ) cosh(nπy)− cosh(nπ) sinh(nπy)

and by using the definition y< = min(y, y′) and y> = max(y, y′). The result is

gn(y, y′) =
4

n sinh(nπ)
sinh(nπy<) sinh[nπ(1− y>)]

which yields

G(x, y;x′, y′) =
∑
n

8
n sinh(nπ)

sin(nπx) sin(nπx′) sinh(nπy<) sinh[nπ(1− y>)]

Alternatively, instead of using (11), note that we can automatically solve the
boundary conditions gn(y, 0) = gn(y, 1) = 0 by writing

gn(y, y′) =
{
g< ≡ a< sinh(nπy′) y′ < y
g> ≡ a> sinh[nπ(1− y′)] y′ > y

Solving the continuity and jump conditions then gives directly

a< =
4
n

sinh[nπ(1− y)]
sinh(nπ)

, a> =
4
n

sinh(nπy)
sinh(nπ)

so that

gn(y, y′) =
4

n sinh(nπ)

{
sinh[nπ(1− y)] sinh(nπy′) y′ < y
sinh(nπy) sinh[nπ(1− y′)] y′ > y

which is the same result as above. Finally, we note that the one-dimensional
Green’s function gn(y, y′) can also be obtained through Sturm-Liouville theory
as

gn(y, y′) = − 1
A
u(y<)v(y>)

where u(y′) and v(y′) are solutions to the homogeneous equation satisfying bound-
ary conditions at y′ = 0 and y′ = 1, respectively. Here A is a constant given by
W (u, v) = A/p where W is the Wronskian, and the self-adjoint differential oper-
ator is

L =
d

dy′
p(y′)

d

dy′
+ q(y′)

2.22 a) For the example of oppositely charged conducting hemispherical shells separated
by a tiny gap, as shown in Figure 2.8, show that the interior potential (r < a) on
the z axis is

Φin(z) = V
a

z

[
1− (a2 − z2)

a
√
a2 + z2

]



Find the first few terms of the expansion in powers of z and show that they agree
with (2.27) with the appropriate substitutions.

As we have seen, the Green’s function for the interior conducting sphere problem is
equivalent to that for the exterior problem. The only difference we need to account
for is that, for the interior problem, the outward pointing normal indeed points
away from the center of the sphere. This indicates that the interior potential may
be expressed as

Φ(r.Ω) =
1

4π

∫
Φ(a,Ω′)

a(a2 − r2)
(r2 + a2 − 2ar cos γ)3/2

dΩ′

where
cos γ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′)

In fact, introducing the absolute value |a2−r2|, it is easy to see that the expression

Φ(r,Ω) =
a|a2 − r2|

4π

∫
Φ(a,Ω′)

(r2 + a2 − 2ar cos γ)3/2
dΩ′

is valid for both the interior and the exterior problem.

For the oppositely charged hemisphere problem, this integral takes the form

Φ(r,Ω) =
V a|a2 − r2|

4π

∫ 2π

0

dφ′
∫ 1

0

d(cos θ′)[
(r2 + a2 − 2ar cos γ)−3/2 − (r2 + a2 + 2ar cos γ)−3/2

]
This simplifies on the z axis, where θ = 0 implies cos γ = cos θ′. We find

Φ(z) =
V a|a2 − z2|

4π

∫ 2π

0

dφ′
∫ 1

0

d(cos θ′)[
(z2 + a2 − 2az cos θ′)−3/2 − (z2 + a2 + 2az cos θ′)−3/2

]
=
V |a2 − z2|

2z

[
(z2 + a2 − 2az cos θ′)−1/2 − (z2 + a2 + 2az cos θ′)−1/2

]1
0

=
V |a2 − z2|

2z

(
1

|z − a|
+

1
|z + a|

− 2√
z2 + a2

)
=
V

z

(
max(a, z)− |a

2 − z2|√
z2 + a2

)
(13)

For the interior, z < a, this may be rewritten as

Φin(z) = V
a

z

(
1− a2 − z2

a
√
a2 + z2

)
(14)



while for the exterior, z > a, this becomes

Φout(z) = V

(
1− z2 − a2

z
√
a2 + z2

)

The interior solution, (14), may be expanded for z ≈ 0. The result is

Φin(z) =
3V
2

(z
a

)[
1− 7

12

(z
a

)2

+
11
24

(z
a

)4

− · · ·
]

(15)

This may be compared with the exterior solution (2.27)

Φout(r, θ) =
3V
2

(a
r

)2
[
P1(cos θ)− 7

12

(a
r

)2

P3(cos θ) + · · ·
]

⇒ Φout(z) =
3V
2

(a
z

)2
[
1− 7

12

(a
z

)2

+ · · ·
]

This demonstrates that the expansion coefficients agree, and that in fact the
interior and exterior expressions are identical up to the substitution

in:
( r
a

)l
↔ out:

(a
r

)l+1

b) From the result of part a and (2.22), show that the radial electric field on the
positive z axis is

Er(z) =
V a2

(z2 + a2)3/2

(
3 +

a2

z2

)
for z > a, and

Er(z) = −V
a

[
3 + (a/z)2

(1 + (z/a)2)3/2
− a2

z2

]
for |z| < a. Show that the second form is well behaved at the origin, with the
value, Er(0) = −3V/2a. Show that at z = a (north pole inside) it has the value
−(
√

2− 1)V/a. Show that the radial field at the north pole outside has the value√
2V/a.

The radial electric field on the positive z axis is given by

Er(z) = − ∂

∂z
Φ(z)

Rewriting the potential Φ(z) in (13) as

Φ(z) = V

(
max(a/z, 1)− |a2 − z2|

z
√
z2 + a2

)



we find

Er(z) =


−V

(
− a

z2
+

a2(a2 + 3z2)
z2(z2 + a2)3/2

)
z < a

−V
(
− a2(a2 + 3z2)
z2(z2 + a2)3/2

)
z > a

This may be simplified to read

Er(z) =


−V
a

(
3 + (a/z)2

(1 + (z/a)2)3/2
− a2

z2

)
z < a

V

a

3 + (a/z)2

(1 + (z/a)2)3/2
z > a

(16)

which is the desired result. As z → 0, we may Taylor expand the interior solution
to obtain

Er(z) = −3V
2a

[
1− 7

4

(z
a

)2

+
55
24

(z
a

)4

− · · ·
]

Hence Er(0) = −3V/2a. Note that this result could have been obtained directly
by differentiating (15). Finally, the value of the radial electric field at z = a−
(immediately inside) and z = a+ (immediately outside) may be obtained from
(16)

Er(a±) =


−V
a

(
√

2− 1) z = a−

V

a

√
2 z = a+

c) Make a sketch of the electric field lines both inside and outside the conducting
hemispheres, with directions indicated. Make a plot of the radial electric field
along the z axis from z = −2a to z = +2a.

A rough sketch of the electric field lines is as follows



Note that the field lines are not necessarily continuous from the inside to the
outside of the hemispheres. The z component of the electric field along the z axis
is given by (16)

-2 -1 1 2

-1.5

-1

-0.5

0.5

1

z /a

/( V /a)zE

Note that Ez is positive (pointed upwards) outside the sphere, and negative
(pointed downwards) inside the sphere. By symmetry, Ez is the only non-
vanishing component of the electric field along the axis. The radial or r com-
ponent of the electric field, Er, is the same as Ez on the +z axis, but has the
opposite sign on the −z axis

-2 -1 1 2

-1.5

-1

-0.5

0.5

1

1.5

z /a

/( V /a)rE

2.23 A hollow cube has conducting walls defined by six planes x = 0, y = 0, z = 0, and
x = a, y = a, z = a. The walls z = 0 and z = a are held at a constant potential V .
The other four sides are at zero potential.

a) Find the potential Φ(x, y, z) at any point inside the cube.

The potential may be obtained by superposition

Φ = Φtop + Φbottom

where Φtop (Φbottom) is the solution for a hollow cube with the top (bottom) held
at constant potential V and all other sides at zero potential. As we have seen,
the series solution for Φtop is given by

Φtop =
∑
n,m

An,m sin
(nπx

a

)
sin
(mπx

a

)
sinh

(√n2 + n2 πz

a

)
where

An,m =
4

a2 sinh(
√
n2 +m2 π)

∫ a

0

dx

∫ a

0

dy V sin
(nπx

a

)
sin
(mπx

a

)



Noting that∫ a

0

sin
(nπx

a

)
dx = − a

nπ
cos
(nπx

a

)∣∣∣a
0

=
a

nπ
(1− (−1)n) =

2a
nπ

for n odd

we have
An,m =

16V
nmπ2 sinh(

√
n2 +m2 π)

n,m odd

and hence

Φtop =
16V
π2

∑
n,m odd

1
nm sinh(

√
n2 +m2 π)

× sin
(nπx

a

)
sin
(mπx

a

)
sinh

(√n2 + n2 πz

a

)
To obtain Φbottom, it is sufficient to realize that symmetry allows us to take
z → a− z. More precisely

Φbottom(x, y, z) = Φtop(x, y, a− z)

As a result

Φ = Φtop + Φbottom

=
16V
π2

∑
n,m odd

1
nm sinh(

√
n2 +m2 π)

sin
(nπx

a

)
sin
(mπx

a

)

×

[
sinh

(√n2 + n2 πz

a

)
+ sinh

(√n2 +m2 π(a− z)
a

)]

Note that this may be simplified using

sinh ζ + sinh(α− ζ) = 2 sinh(α/2) cosh(ζ − α/2)

to read

Φ =
16V
π2

∑
n,m odd

1
nm cosh(

√
n2 +m2 π/2)

× sin
(nπx

a

)
sin
(mπx

a

)
cosh

(√n2 +m2 π(z − a/2)
a

)
(17)

b) Evaluate the potential at the center of the cube numerically, accurate to three
significant figures. How many terms in the series is it necessary to keep in order
to attain this accuracy? Compare your numerical result with the average value
of the potential on the walls. See Problem 2.28.



At the center of the cube, (x, y, z) = (a/2, a/2, a/2), the potential from (17) reads

Φ(center) =
16V
π2

∑
n,m odd

sin(nπ/2) sin(mπ/2)
nm cosh(

√
n2 +m2 π/2)

=
16V
π2

∞∑
i,j=0

(−1)i+j

(2i+ 1)(2j + 1) cosh(
√

(2i+ 1)2 + (2j + 1)2 π/2)

Numerically, the first few terms in this series are given by
n m Φn,m/V running total
1 1 .347546 .347546
1 3 −.007524
3 1 −.007524 .332498
3 3 .000460 .332958
1 5 .000215
5 1 .000215 .333389
3 5 −.000023
5 3 −.000023 .333343

This table indicates that we need to keep at least the first four terms to achieve
accuracy to three significant figures. To this level of accuracy, we have

Φ(center) ≈ .333V

If we went to higher orders, it appears that the potential at the center is precisely

Φ(center) = 1
3V

which is the average value of the potential on the walls. In fact, we can prove (as
in Problem 2.28) that the potential at the center of a regular polyhedron is equal
to the average of the potential on the walls. Hence this value of V/3 is indeed
exact.

c) Find the surface-charge density on the surface z = a.

For the surface-charge density on the inside top surface (z = a), we use

σ = −ε0
∂Φ
∂n

∣∣∣∣
S

= ε0
∂Φ
∂z

∣∣∣∣
z=a

where the normal pointing away from the top conductor is n̂ = −ẑ. This is what
accounts for the sign flip in the above. Substituting in (17) gives

σ =
16ε0V
πa

∑
n,m odd

√
n2 +m2

nm
tanh(

√
n2 +m2 π/2) sin

(nπx
a

)
sin
(mπy

a

)


