
Physics 505 Fall 2007

Homework Assignment #2 — Solutions

Textbook problems: Ch. 2: 2.2, 2.8, 2.10, 2.11

2.2 Using the method of images, discuss the problem of a point charge q inside a hollow,
grounded, conducting sphere of inner radius a. Find

a) the potential inside the sphere;

Recall that, if the point charge is outside a grounded conducting sphere, the
method of images gives

Φ(~x ) =
q

4πε0

(
1

|~x− ~y |
− a/y

|~x− (a/y)2~y |

)
(1)

where y = |~y |, and ~y specifies the location of the charge q. Although this expres-
sion was derived for y > a, we note that it is equally valid for y < a. After all, in
both cases, the potential satisfies the same boundary condition, Φ(|~x | = a) = 0.
Hence, for q inside the hollow sphere, the potential is also given by (1). In this
case, the physical charge is inside the sphere, while the image charge lies outside.
The image charge has the opposite sign, and in this case its magnitude is greater
than the physical charge.

b) the induced surface-charge density;

The induced surface-charge density is given by

σ = −ε0
∂Φ
∂n

∣∣∣∣
S

where in this case the unit normal is pointing into the sphere. Although we can
work out this expression with Φ given by (1), it is quicker to note that the result
must the be same (up to a sign change) as that for a point charge outside the
sphere. The difference in sign is due to the inward pointing normal in this case,
as opposed to an outward pointing normal when the point charge is outside. The
result is

σ =
q

4πa2

(
a

y

)
1− (a/y)2

(1 + (a/y)2 − 2(a/y) cos γ)3/2

where γ is the angle between ~x and ~y. Note that σ has the opposite sign as q.
This is because the numerator in the above expression is actually negative for
y < a. If desired, this sign can be made explicit by rewriting the above as

σ = − q

4πa2

1− (y/a)2

(1 + (y/a)2 − 2(y/a) cos γ)3/2



By Gauss’ law, the total charge induced on the inside surface of the conducting
sphere must be−q. This can also be seen by integrating the surface-charge density

Q =
∫
σa2dΩ = 2πa2

∫ 1

−1

σ d cos γ

= −q
2

(1− (y/a)2)
∫ 1

−1

d cos γ
(1 + (y/a)2 − 2(y/a) cos γ)3/2

= −q
2

(
a

y

)
(1− (y/a)2)

(
1

|1− y/a|
− 1
|1 + y/a|

)
= −q

where we have used the fact that 0 < y/a < 1 when simplifying the absolute
value quantities.

c) the magnitude and direction of the force acting on q.

The force acting on q is essentially the force between q and its image. Again, the
magnitude of the force is given by the familiar expression

F =
1

4πε0
q2

a2

(
a

y

)3 1
(1− (a/y)2)2

Since the charge q is attracted to its image, the direction of the force is given by
ŷ. For y < a, it is convenient to rewrite the force as

~F =
1

4πε0
q2

a3

~y

(1− (y/a)2)2

This demonstrates that, for y � a, the force is linear, ~F ∼ ~y. Because of the
positive sign, however, this is the opposite of a restoring force. This demonstrates
that the center of the conducting sphere is a point of unstable equilibrium for the
charge q.

d) Is there any change in the solution if the sphere is kept at a fixed potential V ? If
the sphere has a total charge Q on its inner and outer surfaces?

If the sphere is at a fixed potential V , the potential inside the sphere is given by
adding V to the potential Φ given in (1). The induced surface-charge density on
the inside surface and the force are unchanged.

For the case where the sphere has a total charge Q on its inner and outer surfaces,
we recall that the charge on the inner surface must still be −q by Gauss’ law.
Thus the charge on the outer surface must be Q + q. This indicates that the
potential of the sphere must be

V =
1

4πε0
Q+ q

a



As a result, the potential inside the sphere is given by adding this V to (1). The
induced surface-charge density on the inner surface and the force are unchanged.
The surface-charge density on the outer surface is

σout =
Q+ q

4πa2

2.8 A two-dimensional potential problem is defined by two straight parallel line charges
separated by a distance R with equal and opposite linear charge densities λ and −λ.

a) Show by direct construction that the surface of constant potential V is a circular
cylinder (circle in the transverse dimensions) and find the coordinates of the axis
of the cylinder and its radius in terms of R, λ, and V .

For convenience, we place the −λ line charge at the origin (in two dimensions).
We then denote the position of the +λ line charge by the vector displacement ~R

−λ
+λ

Φ(

x

R

x )

By linear superposition, the potential is

Φ(~x ) = − λ

2πε0

(
log |~x− ~R | − log |~x |

)
=

λ

2πε0
log

|~x |
|~x− ~R |

We want to identify the equipotential surfaces Φ = V , which is equivalent to

|~x |
|~x− ~R |

= exp
(

2πε0V
λ

)
To avoid lengthy expressions, we define

ζ ≡ exp
(
−2πε0V

λ

)
(2)

Then the equipotential surfaces are given by the locus of ~x such that

|~x − ~R | = ζ|~x|

To see that this defines a circle, we may square the expression to obtain

(1− ζ2)x2 − 2~x · ~R+R2 = 0



Completing the square in ~x gives∣∣∣∣∣~x− ~R

1− ζ2

∣∣∣∣∣
2

=
ζ2R2

(1− ζ2)2

This is the equation of a circle

|~x− ~x0|2 = ρ2

where ~x0 is the center and ρ is the radius. Comparing with the above, we see
that

~x0 =
~R

1− ζ2
=

~R

1− exp(−4πε0V/λ)
(3)

and
ρ =

ζR

|1− ζ2|
=

R

|ζ − 1/ζ|
=

R

2| sinh(2πε0V/λ)|
(4)

where we have substituted the expression (2) for ζ. Note that the center of the
circle is either on the ‘left’ of the negative charge (~x0 = −c ~R for c > 1) for
V < 0 or on the ‘right’ of the positive charge (~x0 = c ~R for c > 1) for V > 0.
In particular, the center is always outside of the line segment joining the two
charges.

b) Use the results of part a to show that the capacitance per unit length C of two
right-circular cylindrical conductors, with radii a and b, separated by a distance
d > a+ b, is

C =
2πε0

cosh−1

(
d2 − a2 − b2

2ab

)
The result of part a indicates that the equipotential surfaces for two line charges
are circles. In this case, we can pick two equipotential circles, and assume that
they correspond to the surfaces of two cylindrical conductors.

R

+λ−λ

a
b

Va

Vb

Since the potential Φ is unique, we are guaranteed that this analogous problem of
two infinitesimal line charges gives the correct solution for cylindrical conductors.

In order to obtain the capacitance per unit length

1
C

=
Vb − Va

λ
(5)



we need appropriate expressions relating Va/λ and Vb/λ to the geometry specified
by a, b and d. These expressions may be obtained from (3) and (4) of part a.
Starting with (3), the distance d is given by the sum of two terms

d =
R

1− exp(−4πε0Vb/λ)
− R

1− exp(−4πε0Va/λ)

= R
exp(−4πε0Vb/λ)− exp(−4πε0Va/λ)

[1− exp(−4πε0Va/λ)][1− exp(−4πε0Vb/λ)]

=
R

2
sinh(2πε0(Va − Vb))

sinh(2πε0Va/λ) sinh(2πε0Vb/λ)

where we note that Va < 0, so that both terms in the first line are in fact positive.
This may be rewritten as

sinh
(

2πε0(Va − Vb)
λ

)
=

2d
R

sinh
(

2πε0Va
λ

)
sinh

(
2πε0Vb
λ

)
(6)

Also, using (4), we find the two relations

sinh
(

2πε0Va
λ

)
= − R

2a
, sinh

(
2πε0Vb
λ

)
=
R

2b
(7)

between the potentials Va and Vb and the radii a and b. In principle, all that
remains is to solve (6) and (7) for the ratios Va/λ and Vb/λ, and to insert this
into the formula (5) for the capacitance per unit length. Unfortunately, these
expressions are somewhat unwieldy. One way to proceed is to start with the
hyperbolic trig identity

cosh(ξa − ξb) = cosh ξa cosh ξb − sinh ξa sinh ξb

which may be rewritten as

cosh(ξa − ξb) + sinh ξa sinh ξb = cosh ξa cosh ξb

Squaring this and manipulating the result gives an identity

sinh2(ξa − ξb) + 2 cosh(ξa − ξb) sinh ξa sinh ξb = sinh2 ξa + sinh2 ξb

which is equivalent to

cosh(ξa − ξb) =
1
2

(
sinh ξa
sinh ξb

+
sinh ξb
sinh ξa

− sinh2(ξa − ξb)
sinh ξa sinh ξb

)
The interesting feature of this expression is that the right hand side is fully
determined in terms of a, b and d by elementary substitution of (6) and (7). In
particular, we see that

cosh
(

2πε0(Vb − Va)
λ

)
=

1
2

(
−a
b
− b

a
+
d2

ab

)
=
d2 − a2 − b2

2ab
(8)



Note that it is also possible (and perhaps easier) to derive this identity by working
backwards. Using (5), this immediately gives

1
C

=
1

2πε0
cosh−1

(
d2 − a2 − b2

2ab

)
(9)

c) Verify that the result for C agrees with the answer in Problem 1.7 in the appro-
priate limit and determine the next nonvanishing order correction in powers of
a/d and b/d.

Note that (9) may be rewritten as

1
C

=
1

2πε0
log
(
ξ +

√
ξ2 − 1

)
where ξ = (d2 − a2 − b2)/(2ab). In the limit d� a, b, we have ξ � 1, so we may
expand

1
C

=
1

2πε0

(
log(2ξ)− 1

4ξ2
+O(

1
ξ4

)
)

=
1

2πε0

(
log
(
d2

ab

)
+ log

(
1− a2 + b2

d2

)
− a2b2

d4

(
1− a2 + b2

d2

)−2

+ · · ·

)

=
1

2πε0

(
log
(
d2

ab

)
− a2 + b2

d2
+ · · ·

)
Inverting gives

C =
πε0

log(d/
√
ab)

(
1 +

1
log(d/

√
ab)

a2 + b2

2d2
+ · · ·

)
This indeed agrees with the answer to Problem 1.7 in the large separation limit.

d) Repeat the calculation of the capacitance per unit length for two cylinders inside
each other (d < |b− a|). Check the result for concentric cylinders (d = 0).

For the case of two cylinders inside each other, we take the potentials Va and Vb
to have the same sign. Assuming Va > Vb > 0, the calculation is identical to
that of part b above, except that there is no minus sign in the first term of (7).
Formally, this is equivalent to taking a → −a, which changes the overall sign of
the right hand side of (8). The resulting formula for the capacitance per unit
length is then

1
C

=
1

2πε0
cosh−1

(
a2 + b2 − d2

2ab

)
For concentric cylinders, we set d = 0 to obtain

1
C

=
1

2πε0
cosh−1

(
a2 + b2

2ab

)
=

log |a/b|
2πε0



This reproduces the familiar result from elementary treatments of cylindrical
capacitors.

2.10 A large parallel plate capacitor is made up of two plane conducting sheets with sepa-
ration D, one of which has a small hemispherical boss of radius a on its inner surface
(D � a). The conductor with the boss is kept at zero potential, and the other con-
ductor is at a potential such that far from the boss the electric field between the plates
is E0.

a) Calculate the surface-charge densitites at an arbitrary point on the plane and on
the boss, and sketch their behavior as a function of distance (or angle).

The way to approach this problem is to realize that the second conductor (the
one without the boss) is kept far away from the region of interest (which is near
the boss). Thus its only real purpose is to complete the capacitor and create a
nearly uniform electric field E0. As a result, this problem reduces to that of a
conductor with a hemispherical boss in a uniform electric field. This, in turn,
can be seen to be equivalent to half of the space of the conducting sphere in a
uniform electric field setup.

0E

D

z

a

Taking the conductor to be located at z = 0, the boss to be located at the origin,
and the space between the plates to be z > 0, we end up with the (sphere in a
uniform field) potential

Φ = −E0z

(
1− a3

r3

)
0 < z < D

Of course, this result was obtained heuristically. Thus it would be useful to
verify its correctness. To do so, we may easily show that the potential satisfies
the appropriate conducting plate boundary conditions

Φ(z = 0) = 0 Φ(r = a) = 0

Of course, we should note that this is not an exact solution at the second conduc-
tor since Φ(z = D) = −E0D + (correction) is not absolutely constant. However,
this is a perfectly reasonable solution to a high level of accuracy near the con-
ductor with the boss.



Turning to the surface charge density, it is obtained by taking the normal deriva-
tive, σ = −ε0∂Φ/∂n|S . On the plane, the normal direction is ẑ. Hence

σplane = −ε0∂zΦ
∣∣∣
z=0

= ε0E0

[
1− a3

r3
+ z

3a3z

r5

]
z=0

= ε0E0

(
1− a3

r3

)
Note that the charge density vanishes at the location where the boss meets the
plane (r = a).

On the boss, the normal direction is r̂. Taking z = r cos θ, we obtain

σboss = −ε0∂rΦ
∣∣∣
r=a

= ε0E0

(
1 + 2

a3

r3

)
cos θ

∣∣∣
r=a

= 3ε0E0 cos θ

Again this vanishes at the joint between the boss and the plane (this is also con-
sistent with the general theory of charge distribution near joints of conductors).
The charge density σ may be plotted in units of ε0E0

a
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Note the different scales along the vertical axis. The charge density at the tip of
the boss is three times that on the plate far away from the boss, and this is true
for any size boss. Of course, far away from the plate, the relation σ = ε0E0 is a
familiar one for parallel plate capacitors. In addition, however, this Gauss’ law
relation demonstrates the interesting fact that the electric field is three times as
strong at the tip of the boss.

b) Show that the total charge on the boss has the magnitude 3πε0E0a
2.

The charge on the boss is given by integrating

Qboss = a2

∫ 2π

0

dφ

∫ 1

0

σboss d cos θ = 3ε0E0a
2(2π)

∫ 1

0

cos θ d cos θ = 3πε0E0a
2

c) If, instead of the other conducting sheet at a different potential, a point charge
q is placed directly above the hemispherical boss at a distance d from its center,
show that the charge induced on the boss is

q′ = −q
[
1− d2 − a2

d
√
d2 + a2

]



Taking away the second conductor (i.e. removing the uniform electric field) turns
this into an image charge problem for a point charge near a conducting sphere.
For the sphere by itself, a charge q at position d generates an image −q(a/d) at
location a2/d. Starting from this, we introduce the conducting plane at z = 0.
This gives additional image charges based on the reflection z → −z. The images
of the original charge and first image are thus −q and −d and q(a/d) and −a2/d.
In other words

Φ(~x ) = kq

(
1

|~x− dẑ|
− a/d

|~x− (a2/d)ẑ|
− 1
|~x+ dẑ|

+
a/d

|~x+ (a2/d)ẑ|

)
(10)

The surface charge on the boss is given by σ = −ε0x̂ · ~∇Φ|x=a, which has for
the most part been calculated several times before in the spherical conductor
examples. The result for (10) is

σ = −ε0kq
(

d2 − a2

a(d2 + a2 − 2ad cos θ)3/2
− d2 − a2

a(d2 + a2 + 2ad cos θ)3/2

)
= − q

4πa
(d2 − a2)

(
1

(d2 + a2 − 2ad cos θ)3/2
− 1

(d2 + a2 + 2ad cos θ)3/2

)

The total charge on the boss is given by integration

Qboss = − q

4πa
(d2 − a2)(2πa2)

∫ 1

0

d cos θ
(

1
(d2 + a2 − 2ad cos θ)3/2

− 1
(d2 + a2 + 2ad cos θ)3/2

)
= − q

2d
(d2 − a2)

[
(d2 + a2 − 2ad cos θ)−1/2 + (d2 + a2 + 2ad cos θ)1/2

]1
0

= − q

2d
(d2 − a2)

(
1

d− a
+

1
d+ a

− 2
(d2 + a2)1/2

)
= −q

(
1− d2 − a2

d(d2 + a2)1/2

)

2.11 A line charge with linear charge density τ is placed parallel to, and a distance R away
from, the axis of a conducting cylinder of radius b held at fixed voltage such that the
potential vanishes at infinity. Find

a) the magnitude and position of the image charge(s);

We set up the system using polar coordinates as follows



R ’ R

b

V

’τ τ

( ρ, ϕ )

We wish to determine the magnitude τ ′ and position R′ of the image charge.
Here we have assumed that only one image line charge is needed, and that by
symmetry it falls along the line connecting the origin to the charge τ . For line
charges, the potential may be written as

Φ(ρ, φ) = − 1
2πε0

(
τ log |~x− ~R |+ τ ′ log |~x− ~R′|

)
= − 1

4πε0

(
τ log(ρ2 +R2 − 2ρR cosφ) + τ ′ log(ρ2 +R′2 − 2ρR′ cosφ)

)
(11)

We are fortunate that this problem specifies that the potential vanishes at infinity,
Φ(ρ =∞) = 0. This is because taking ρ→∞ in the above gives

Φ(ρ→∞) ∼ −τ + τ ′

2πε0
log ρ

and the only way for this to vanish is to choose τ ′ = −τ . Using this, the above
expression (11) for the potential may be rewritten as

Φ(ρ, φ) =
τ

4πε0
log
(
ρ2 +R′2 − 2ρR′ cosφ
ρ2 +R2 − 2ρR cosφ

)
(12)

Any other value of τ ′ would lead to an unmanageable problem. Of course, we are
not done yet, as we must also determine the location R′ of the image charge. To
do this, we impose the constant voltage boundary condition Φ(b, φ) = V , which
translates to

b2 +R′2 − 2bR′ cosφ
b2 +R2 − 2bR cosφ

= exp
(

4πε0V
τ

)
≡ λ2 (13)

where the last equality is taken as the definition of the constant λ. Multiplying
out by the denominator and rearranging, this is equivalent to

(1− λ2)b2 +R′2 − λ2R2 = 2b(R′ − λ2R) cosφ

Since we need this equation to hold for any angle φ along the cylinder, we see
that both sides have to independently vanish. This leads to

R′ = λ2R, λ2R2 −R′2 = (1− λ2)b2



which may be solved to give

λ =
b

R
, R′ =

b2

R

This indicates that the image has charge τ ′ and location R′ where

τ ′ = −τ, R′ =
b2

R

Incidentally, from the definition of λ in (13), we see that the potential of the
cylindrical conductor is

V = − τ

2πε0
log
(
R

b

)
This is negative for τ > 0.

b) the potential at any point (expressed in polar coordinates with the origin at the
axis of the cylinder and the direction from the origin to the line charge as the x
axis), including the asymptotic form far from the cylinder;

Substituting R′ = b2/R into (12) gives the potential

Φ(ρ, φ) =
τ

4πε0
log
(
ρ2 + b4/R2 − 2ρ(b2/R) cosφ

ρ2 +R2 − 2ρR cosφ

)
(14)

For ρ� R > b > 0, this may be expanded to yield

Φ =
τ

2πε0

[
R2 − b2

ρR
cosφ+

R4 − b4

2ρ2R2
cos 2φ+

R6 − b6

3ρ3R3
cos 3φ+O

(
1
ρ4

)]
Note that this is an expansion in harmonics of the form cos(nφ)/ρn

Φ =
τ

2πε0

∞∑
n=1

R2n − b2n

n(ρR)n
cos(nφ)

c) the induced surface-charge density, and plot it as a function of angle for R/b = 2,
4 in units of τ/2πb;

Using (14), we compute the surface-charge density

σ = −ε0
∂Φ
∂ρ

∣∣∣∣
ρ=b

=
τ

2π

[
ρ−R cosφ

ρ2 +R2 − 2ρR cosφ
− ρ− (b2/R) cosφ
ρ2 + b4/R2 − 2ρ(b2/R) cosφ

]
ρ=b

=
τ

2π
(b−R cosφ)− (R2/b2)(b− (b2/R) cosφ)

b2 +R2 − 2bR cosφ

= − τ

2πb
R2 − b2

b2 +R2 − 2bR cosφ

= − τ

2πb
(R/b)2 − 1

(R/b)2 + 1− 2(R/b) cosφ



For R/b = 2, the plot of the induced surface-charge density is as follows

ϕ
σ /( τ /2πb)
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while for R/b = 4 we have

ϕ
σ /( τ /2πb)
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The induced surface-charge density is greatest in magnitude on the side of the
cylinder closest to the line charge. For R/b = 4, the line charge is further away
from the cylinder, and the peak to φ = 0 is less pronounced. Note that the total
charge (per unit length) on the cylinder is given by

Q =
∫ 2π

0

σ bdφ = − τ

2π
(R2 − b2)

∫ 2π

0

dφ

b2 +R2 − 2bR cosφ

This integral may be performed by contour integration, using the substitution
z = eiφ. The result is∫ 2π

0

dφ

b2 +R2 − 2bR cosφ
=

2π
|R2 − b2|

Hence we see that Q = −τ (independent of the ratio R/b), as expected.



d) the force per unit length on the line charge.

For a line charge of strength τ1 in an electric field E2 = τ2/2πε0d created by a
line charge of strength τ2, the magnitude of the force is F = τ1E2 = τ1τ2/2πε0d,
where d is the separation between the charges. In this case, the charge τ is
attracted to its image of strength −τ , and the separation is

d = R−R′ = R− b2/R =
R2 − b2

R

As a result, the force per unit length is

F =
1

2πε0
τ2

b

bR

R2 − b2

and the line charge τ is attracted towards the center of the conducting cylinder.


