
Physics 505 Fall 2007

Practice Midterm — Solutions

This midterm will be a two hour open book, open notes exam. Do all three problems.

1. A rectangular box has sides of lengths a, b and c
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a) For the Dirichlet problem in the interior of the box, the Green’s function may be
expanded as

G(x, y, z;x′, y′, z′) =
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∞∑
n=1

gmn(z, z′) sin
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a
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Write down the appropriate differential equation that gmn(z, z′) must satisfy.

Note that sin kx satisfies the completeness relation

∞∑
m=1
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a
sin

mπx′

a
=

a

2
δ(x− x′)

Hence the Green’s function equation

∇2
x′G(~x, ~x ′) = −4πδ3(~x− ~x ′)
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)
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Working out the x′ and y′ derivatives on the left-hand side yields∑
m,n

[
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)2
]
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a
sin
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a
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b
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= −16π
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However, since sin kx forms an orthogonal basis, each term in this sum must
vanish by itself. This results in the differential equation(

d2

dz′2
− γ2

mn

)
gmn(z, z′) = −16π

ab
δ(z − z′) (1)

where γmn = π
√

(m/a)2 + (n/b)2 is given in part c). Note that the Fourier sine
expansion automatically satisfies Dirichlet boundary conditions for x and y. The
remaining boundary condition is that gmn(z, z′) vanishes whenever z or z′ is equal
to 0 or c.

b) Solve the Green’s function equation for gmn(z, z′) subject to Dirichlet boundary
conditions and write down the result for G(x, y, z;x′, y′, z′).

We may solve the Green’s function equation (1) by first noting that the homoge-
neous equation is of the form

g′′(z′)− γ2
mng(z′) = 0

This is a second-order linear equation with constant coefficients admitting the
familiar solution

g(z′) = Aeγmnz′
+ Be−γmnz′

However, we want g(z′) = 0 when z′ = 0 or z′ = c. This motivates us to write
out the solutions

u(z′) = sinh γmnz′ 0 < z′ < z

v(z′) = sinh[γmn(c− z′)] z < z′ < c

The Green’s function solution is then given by

gmn(z, z′) =
{

Au(z′) z′ < z
Bv(z′) z′ > z

The matching conditions

g< = g>,
d

dz′
g< =

d

dz′
g> +

16π

ab

then give the system

A sinh γmnz = B sinh[γmn(c− z)],

A cosh γmnz = −B cosh[γmn(c− z)] +
16π

abγmn

which may be solved to yield

A =
16π sinh[γmn(c− z)]

abγmn(cosh γmnz sinh[γmn(c− z)] + sinh γmnz cosh[γmn(c− z)])

=
16π sinh[γmn(c− z)]

abγmn sinh γmnc
=

16π

abγmn sinh γmnc
v(z)



and

B =
16π sinh γmnz

abγmn(cosh γmnz sinh[γmn(c− z)] + sinh γmnz cosh[γmn(c− z)])

=
16π sinh γmnz

abγmn sinh γmnc
=

16π

abγmn sinh γmnc
u(z)

As a result, the full Green’s function solution is then given by

gmn(z, z′) =
16π

abγmn sinh γmnc
u(z<)v(z>)

=
16π

abγmn sinh γmnc
sinh γmnz< sinh γmn[(c− z>)]

Hence

G(~x, ~x ′) =
16π

ab

∑
m,n

1
γmn sinh γmnc

sin
mπx

a
sin

mπx′

a
sin

nπy

b
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nπy′

b

× sinh γmnz< sinh γmn[(c− z>)]

(2)

c) Consider the boundary value problem where the potential on top of the box is
Φ(x, y, c) = V (x, y) while the potential on the other five sides vanish. Using the
Greens’ function obtained above, show that the potential may be written as

Φ(x, y, z) =
∞∑

m=1

∞∑
n=1

Amn sin
mπx

a
sin

nπy

b
sinh γmnz

where γmn = π
√

(m/a)2 + (n/b)2 and

Amn =
4

ab sinh γmnc

∫ a

0

dx

∫ b

0

dy V (x, y) sin
mπx

a
sin

nπy

b

Since we only have to worry about the potential on the top of the box (and since
we assume there is no charge inside the box), the Green’s function solution may
be written

Φ(~x ) = − 1
4π

∫
z′=c

Φ(~x ′)
∂G(~x, ~x ′)

∂n′
da′

= − 1
4π

∫
z′=c

V (x′, y′)
∂G(~x, ~x ′)

∂n′
dz′ dy′

(3)



Noting that the outward-pointing normal n̂′ on the top of the box is in the +ẑ′

direction, we compute the normal derivative of (2)

∂G(~x, ~x ′)
∂n′

∣∣∣∣
z′=c

=
∂G(~x, ~x ′)

∂z′

∣∣∣∣
z′=c

=
16π

ab

∑
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1
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mπx

a
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a
sin
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b
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b
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(
− γmn cosh γmn[(c− z′)]

)∣∣∣∣
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= −4π
∑
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4
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a
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b
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a
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nπy′
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Inserting this into (3) then straightforwardly gives the desired result. Note that
the primes may be dropped from the double integral Amn once it has been isolated
from the rest of the expression.

2. The potential on the surface of a sphere of radius a is specified by

β

V0

0

0

β

V (θ, φ) =

{ 0, 0 ≤ θ < β
V0, β ≤ θ ≤ π − β
0, π − β < θ ≤ π

There are no other charges in this problem.

a) Show that the potential outside the sphere may be expressed as

Φ(r, θ, φ) =
∑

l=0,2,4,6,...

V0[Pl+1(cos β)− Pl−1(cos β)]
(a

r

)l+1

Pl(cos θ)

where we take P−1(x) = 0. Note that Legendre polynomials satisfy the relation
(2l + 1)Pl(x) = P ′

l+1(x)− P ′
l−1(x).

There are several ways of solving this problem. Perhaps the most straightforward
is to realize from azimuthal symmetry that the potential necessarily admits a
Legendre expansion

Φ(~x ) =
∑

l

αl

(a

r

)l+1

Pl(cos θ)



The boundary conditions at r = a gives

V (θ) =
∑

l

αlPl(cos θ)

This is clearly a Legendre expansion for V (θ). The legendre orthogonality relation
allows us to write the expansion coefficients αl as

αl =
2l + 1

2

∫ 1

−1

V (cos θ) Pl(cos θ) d(cos θ)

For the specified potential, this becomes

αl =
2l + 1

2

∫ cos β

− cos β

V0Pl(cos θ) d(cos θ) =
V0

2

∫ cos β

− cos β

(2l + 1)Pl(x) dx

Using the Legendre relation given in the problem, we obtain

αl =
V0

2

∫ cos β

− cos β

[P ′
l+1(x)− P ′

l−1(x)] dx

=
V0

2

[
Pl+1(cos β)− Pl−1(cos β)− Pl+1(− cos β) + Pl−1(− cos β)

]
=

V0

2
(1 + (−)l)[Pl+1(cos β)− Pl−1(cos β)]

This vanishes unless l is even (which should be obvious from the z → −z sym-
metry of the problem). The result is then

Φ(r, θ) =
∑

l even

V0[Pl+1(cos β)− Pl−1(cos β)]
(a

r

)l+1

Pl(cos θ)

Note that l = 0 is allowed, and gives the monopole contribution. (An earlier
version of this practice midterm excluded l = 0 from the sum, and this was a
mistake.)

This problem could also have been solved by using the Dirichlet Green’s function
outside a sphere

G(~x, ~x ′) = 4π
∑
l,m

1
2l + 1

(
rl
< −

a2l+1

rl+1
<

)
1

rl+1
>

Y ∗
lm(Ω′)Ylm(Ω)

After slight manipulation, we would have ended up with a similar Legendre poly-
nomial integration.

b) For fixed V0, what angle β maximizes the quadrupole moment?



The quadrupole is given by l = 2. Hence the quadrupole moment is related to
the α2 term in the expansion. Since we do not care about normalization (we only
care to maximize the moment) it is sufficient to write

q2,0 ∼ α2 ∼ P3(cos β)− P1(cos β)

We extremize this quantity by taking a derivative with respect to β and setting
the result to zero. Noting that taking a derivative simply ‘undoes’ the integration,
we end up solving

dq2,0

dβ
∼ P2(cos β) sinβ = 1

2 (3 cos2 β − 1) sinβ = 0

This is solved by β = 0 and β = cos−1(±1/
√

3). Clearly the quadrupole moment
vanishes when β = 0 (as the entire sphere is at a constant zero potential). Hence
the maximum is when β = cos−1(1/

√
3), provided we restrict 0 ≤ β ≤ π/2.

Note that β > π/2 does not really make sense, except in a formal manner where
V0 → −V0 (corresponding to interchanging the integration limits). Technically,
the problem should have asked to maximize the magnitude of the quadrupole
moment instead of to make q2,0 as positive as possible (which would depend on
the sign of V0).

3. A line charge on the z axis extends from z = −a to z = +a and has linear charge
density varying as

x
−λ 0

0λ

|z |

z

α

α

a

a

−

y λ(z) =
{

λ0z
α, 0 < z ≤ a

−λ0|z|α, −a ≤ z < 0

where α is a positive constant. The total charge on the 0 < z ≤ a segment is Q (and
the charge on the −a ≤ z < 0 segment is −Q).

a) Calculate all of the multipole moments of the charge distribution. Make sure to
indicate which moments are non-vanishing.

Noting that a uniformly charged line charge on the +z axis has charge density

ρ =
λ0

2πr2
δ(cosθ − 1)

we see that a varying line charge yields

ρ =
λ(r)
2πr2

δ(cos θ − 1)



This may be checked by observing

dq = ρ d3x = ρ r2 dr dφ d(cos θ) = λ(r)dr
dφ

2π

∣∣∣
cos θ=1

(Note that there is no distinction between r and z for cos θ = 1.) Hence, for the
positive and negative line charge, we have

ρ =
λ0r

α

2πr2
[δ(cos θ − 1)− δ(cos θ + 1)]

We may normalize λ0 by integrating from 0 to a to obtain the total charge Q

Q =
∫ a

0

λ(z) dz =
∫ a

0

λ0z
α dz =

λ0a
α+1

α + 1

Hence

ρ = Q
α + 1
2πar2

( r

a

)α

[δ(cos θ − 1)− δ(cos θ + 1)]

The multipole moments are then

qlm =
∫

rlY ∗
lm(Ω)ρ r2 dr dΩ

= Q
α + 1

a

∫ a

0

rl
( r

a

)α

dr

∫
Y ∗

lm(Ω)[δ(cos θ − 1)− δ(cos θ + 1)]
dΩ
2π

By azimuthal symmetry, only the m = 0 moments are non-vanishing

ql,0 = Q
α + 1

a

al+1

α + l + 1

∫ 1

−1

√
2l + 1

4π
Pl(cos θ)[δ(cos θ − 1)− δ(cos θ + 1)]d(cos θ)

= Qal α + 1
α + l + 1

√
2l + 1

4π
[Pl(1)− Pl(−1)]

= Qal α + 1
α + l + 1

√
2l + 1

4π
[1− (−)l]

Hence all moments vanish unless l is odd and m is zero. Then

ql,0 = Qal α + 1
α + l + 1

√
2l + 1

π
l odd

b) Write down the multipole expansion for the potential in explicit form up to the
first two non-vanishing terms.



The multipole expansion gives

Φ =
1

4πε0

∑
l,m

4π

2l + 1
qlm

Ylm(θ, φ)
rl+1

=
1

4πε0

∑
l odd

√
4π

2l + 1
ql,0

Pl(cos θ)
rl+1

=
2Q

4πε0r

∑
l odd

α + 1
α + l + 1

(a

r

)l

Pl(cos θ)

=
2Q

4πε0

(
(α + 1)a
α + 2

Pl(cos θ)
r2

+
(α + 1)a3

α + 4
P3(cos θ)

r4
+ · · ·

)
=

2Q

4πε0

(
(α + 1)a
α + 2

cos θ

r2
+

(α + 1)a3

2(α + 4)
5 cos3 θ − 3 cos θ

r4
+ · · ·

)

(4)

c) What is the dipole moment ~p in terms of Q, a and α?

Note that the dipole term in (4) has the form

Φ =
1

4πε0

2Q(α + 1)a
α + 2

z

r3

Comparing this with the dipole expression

φ =
1

4πε0

~p · ~x
r3

gives

~p =
2Q(α + 1)a

α + 2
ẑ

Alternatively, one could compute directly

~p =
∫

~xρ d3x =
∫ a

−a

~xQ(α + 1)
|z|α

aα+1
sgn(z) dz

∣∣∣∣
x=y=0

The z component is the only non-vanishing component

pz = 2Q(α + 1)
∫ a

0

|z|α+1

aα+1
dz =

2Q(α + 1)a
α + 2


