Practice Midterm

The midterm will be a two hour open book, open notes exam. Do all three problems.

1. A rectangular box has sides of lengths a, b and c

a) For the Dirichlet problem in the interior of the box, the Green's function may be expanded as

$$
G\left(x, y, z ; x^{\prime}, y^{\prime}, z^{\prime}\right)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} g_{m n}\left(z, z^{\prime}\right) \sin \frac{m \pi x}{a} \sin \frac{m \pi x^{\prime}}{a} \sin \frac{n \pi y}{b} \sin \frac{n \pi y^{\prime}}{b}
$$

Write down the appropriate differential equation that $g_{m n}\left(z, z^{\prime}\right)$ must satisfy.
b) Solve the Green's function equation for $g_{m n}\left(z, z^{\prime}\right)$ subject to Dirichlet boundary conditions and write down the result for $G\left(x, y, z ; x^{\prime}, y^{\prime}, z^{\prime}\right)$.
c) Consider the boundary value problem where the potential on top of the box is $\Phi(x, y, c)=V(x, y)$ while the potential on the other five sides vanish. Using the Greens' function obtained above, show that the potential may be written as

$$
\Phi(x, y, z)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{m n} \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b} \sinh \gamma_{m n} z
$$

where $\gamma_{m n}=\pi \sqrt{(m / a)^{2}+(n / b)^{2}}$ and

$$
A_{m n}=\frac{4}{a b \sinh \gamma_{m n} c} \int_{0}^{a} d x \int_{0}^{b} d y V(x, y) \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b}
$$

2. The potential on the surface of a sphere of radius a is specified by

$$
V(\theta, \phi)= \begin{cases}0, & 0 \leq \theta<\beta \\ V_{0}, & \beta \leq \theta \leq \pi-\beta \\ 0, & \pi-\beta<\theta \leq \pi\end{cases}
$$

There are no other charges in this problem.
a) Show that the potential outside the sphere may be expressed as

$$
\Phi(r, \theta, \phi)=\sum_{l=0,2,4,6, \ldots} V_{0}\left[P_{l+1}(\cos \beta)-P_{l-1}(\cos \beta)\right]\left(\frac{a}{r}\right)^{l+1} P_{l}(\cos \theta)
$$

where we take $P_{-1}(x)=0$. Note that Legendre polynomials satisfy the relation $(2 l+1) P_{l}(x)=P_{l+1}^{\prime}(x)-P_{l-1}^{\prime}(x)$.
$b)$ For fixed V_{0}, what angle β maximizes the quadrupole moment?
3. A line charge on the z axis extends from $z=-a$ to $z=+a$ and has linear charge density varying as

$$
\lambda(z)= \begin{cases}\lambda_{0} z^{\alpha}, & 0<z \leq a \\ -\lambda_{0}|z|^{\alpha}, & -a \leq z<0\end{cases}
$$

where α is a positive constant. The total charge on the $0<z \leq a$ segment is Q (and the charge on the $-a \leq z<0$ segment is $-Q$).
a) Calculate all of the multipole moments of the charge distribution. Make sure to indicate which moments are non-vanishing.
b) Write down the multipole expansion for the potential in explicit form up to the first two non-vanishing terms.
c) What is the dipole moment \vec{p} in terms of Q, a and α ?

