
Physics 505 Fall 2007

Practice Final — Solutions

This final will be a three hour open book, open notes exam. Do all four problems.

1. Two point charges q and −q are located on the z axis at z = +d/2 and z = −d/2,
respectively.

a) If the charges are isolated in space, show that the potential admits a Legendre
expansion

Φ(r, θ) =
2q

4πε0

∑
l odd

rl
<

rl+1
>

Pl(cos θ)

where r< = min(r, d/2) and r> = max(r, d/2).

From basic considerations, the Coulomb potential of the two point charges can
be written as

Φ =
1

4πε0

[
q

|~x− (d/2)ẑ|
− q

|~x + (d/2)ẑ|

]
We now recall the expansion

1
|~x− ~x ′|

=
∑

l

rl
<

rl+1
>

Pl(cos γ)

where γ is the angle between ~x and ~x ′. Since the two charges are located on the
z-axis, the angle γ is simply θ for the positive charge and π − θ for the negative
charge. Thus

Φ =
q

4πε0

∑
l

rl
<

rl+1
>

[Pl(cos θ)− Pl(− cos θ)]

Since Pl(−ζ) = (−1)lPl(ζ), the even l components cancel out, and we are left
with

Φ =
2q

4πε0

∑
l odd

rl
<

rl+1
>

Pl(cos θ)

b) Now consider the charges to be contained inside a linear dielectric sphere of
permittivity ε and radius a (where a > d/2).

−q

q

Find the electric potential everywhere as an expansion in Legendre polynomials.



The dielectric sphere separates all of space into two regions, r < a and r > a. We
thus write down expansions for the electrostatic potential inside and outside the
sphere, and match at the boundary. In particular, introduce

Φin =
2q

4πε

∑
l odd

(
rl
<

rl+1
>

+ Alr
l

)
Pl(cos θ)

Φout =
2q

4πε0

∑
l odd

(
Bl

rl+1

)
Pl(cos θ)

where r< = min(r, d/2) and r> = max(r, d/2). Since we match at the surface
r = a we use the fact that r< = d/2 and r> = r near this surface. The matching
conditions are then on D⊥ and E‖. We find

D⊥ : −(l + 1)
(d/2)l

al+2
+ lAla

l−1 = −(l + 1)
Bl

al+2

E‖ :
(d/2)l

al+2
+ Ala

l−1 =
ε

ε0

Bl

al+2

or, in matrix form (
la2l+1 l + 1
−a2l+1 ε/ε0

) (
Al

Bl

)
= (d/2)l

(
l + 1

1

)
which may be solved to yield

Al =
(εr − 1)(l + 1)
(εr + 1)l + 1

(d/2)l

a2l+1
, Bl =

2l + 1
(εr + 1)l + 1

(d/2)l

where εr = ε/ε0. This gives explicitly

Φin =
2q

4πε

∑
l odd

(
rl
<

rl+1
>

+
(εr − 1)(l + 1)
(εr + 1)l + 1

(d/2)lrl

a2l+1

)
Pl(cos θ)

Φout =
2q

4πε0

∑
l odd

(
2l + 1

(εr + 1)l + 1
(d/2)l

rl+1

)
Pl(cos θ)



2. A point magnetic dipole ~m is located in vacuum pointing away from and a distance d
away from a semi-infinite slab of material with relative permeability µr.

a) Find the magnetic induction everywhere.

Perhaps the most straightforward method to solve this problem is to use an image
magnetic dipole. For a dipole ~m on the right of the slab, we introduce images ~m ′

and ~m ′′ as indicated

m’’

µ 0rµ

mm’

PR’

R

,

Following exercise 5.17 (with dipole sources instead of current sources), we find
the strengths of the images to be

~m ′ =
µr − 1
µr + 1

~m, ~m ′′ =
2µr

µr + 1
~m

Since an isolated magnetic dipole has magnetic induction

~B =
µ0

4π

3R̂(R̂ · ~m)− ~m

R3

the effect of the images is to give a magnetic induction

right: ~B =
µ0

4π

[
3R̂(R̂ · ~m)− ~m

R3
+

µr − 1
µr + 1

3R̂′(R̂′ · ~m)− ~m

R′3

]

left: ~B =
µ0

4π

2µr

µr + 1
3R̂(R̂ · ~m)− ~m

R3

where ~R and ~R′ are as indicated in the figure. Introducing a rectangular coor-
dinate system, we locate the dipole of strength ~m = (0, 0,m) at (0, 0, d). Then
~R = (x, y, z − d) and ~R′ = (x, y, z + d). Hence we have explicitly

right: ~B =
µ0m

4π

[
3(z − d)(x, y, z − d)

(x2 + y2 + (z − d)2)5/2
− (0, 0, 1)

(x2 + y2 + (z − d)2)3/2

+
µr − 1
µr + 1

(
3(z + d)(x, y, z + d)

(x2 + y2 + (z + d)2)5/2
− (0, 0, 1)

(x2 + y2 + (z + d)2)3/2

)]
left: ~B =

µ0m

4π

2µr

µr + 1
3(z − d)(x, y, z − d)

(x2 + y2 + (z − d)2)5/2
− (0, 0, 1)

(x2 + y2 + (z − d)2)3/2



b) What is the force on the dipole (magnitude and direction)?

The real dipole feels a force from its image. We may calculate

~F = ~∇(~m · ~Bimage)

where

~m · ~Bimage =
µ0m

2

4π

µr − 1
µr + 1

(
3(z + d)2

(x2 + y2 + (z + d)2)5/2
− 1

(x2 + y2 + (z + d)2)3/2

)
=

µ0m
2

4π

µr − 1
µr + 1

2(z + d)2 − x2 − y2

(x2 + y2 + (z + d)2)5/2

Instead of taking the complete gradient of this expression, we note from symmetry
that the force can only act in the z direction. We thus compute the z derivative
only

Fz = ∂z(~m · ~Bimage)

=
µ0m

2

4π

µr − 1
µr + 1

(
4(z + d)

(x2 + y2 + (z + d)2)5/2
− 5(z + d)(2(z + d)2 − x2 − y2)

(x2 + y2 + (z + d)2)7/2

)
=

µ0m
2

4π

µr − 1
µr + 1

(z + d)(9x2 + 9y2 − 6(z + d)2)
(x2 + y2 + (z + d)2)7/2

This needs to be evaluated at the actual location of the dipole, (x, y, z) = (0, 0, d).
We thus obtain

Fz =
µ0m

2

4π

µr − 1
µr + 1

(−6)
(2d)4

= −µ0m
2

4π

µr − 1
µr + 1

3
8d4

The dipole is hence attracted to the semi-infinite slab.

3. An infinitely long solenoid of radius a has N tightly wound turns per unit length. For
a constant current I, elementary considerations tells us that the magnetic induction
is uniform inside the solenoid. In cylindrical coordinates, ~B = µ0NIẑΘ(a− ρ) where
Θ(ξ) = 1 if ξ > 0 (and 0 otherwise) is the unit step function.

This problem, however, involves a sinusoidal current I(t) = I0e
−iωt. In the following,

consider only the inside of the solenoid and assume all fields vanish outside.

a) By symmetry considerations, the time-dependent magnetic induction only has a
non-vanishing z component, Bz(ρ)e−iωt. Show that the electric field only has a
component along the φ̂ direction. Consider the inside of the solenoid only.

Note that the harmonic versions of Faraday’s law and Ampère’s law are

~∇× ~E − iω ~B = 0, ~∇× ~B +
iω

c2
~E = 0



We may solve Ampère’s law for the electric field

~E =
ic2

ω
~∇× ~B

Using ~B = Bz(ρ)ẑ and the cylindrical coordinates expression for the curl, we
obtain

~E = − ic2

ω
B′

zφ̂

where ′ denotes d/dρ. This indicates that ~E = Eφ(ρ)φ̂ where Eφ = −(ic2/ω)B′
z.

b) Find the exact solution for Bz(ρ) inside the solenoid. Give your result in terms
of the maximum current I flowing through the wires of the solenoid.

We now substitute the electric field into Faraday’s law to obtain a second order
differential equation in cylindrical coordinates

0 = ~∇× ~E − iω ~B = − ic2

ω
~∇× (B′

zφ̂)− iωBz ẑ = − ic2

ω

1
ρ
∂ρ(ρB′

z)ẑ − iωBz ẑ

The result is (
1
ρ
∂ρρ∂ρ +

ω2

c2

)
Bz = 0

or

B′′
z +

1
ρ
B′

z +
ω2

c2
Bz = 0

This is Bessel’s equation, and has a solution

Bz(ρ) = AJ0(ωρ/c)

(we do not use N0(ζ) since the solution should not blow up at ρ = 0.) To obtain
the constant A, we note that at the surface of the solenoid (ρ = a) the H‖

matching conditions state
H‖ = K

where K is the surface current density. Using K = NI, we obtain

1
µ0

AJ0

(ωa

c

)
= NI

or A = µ0NI/J0(ωa/c). Thus

Bz(ρ) = µ0NI
J0(ωρ/c)
J0(ωa/c)



4. A plane polarized electromagnetic wave of frequency ω in free space is incident with
angle i on the flat surface of an excellent conductor (µ = µ0, ε = ε0 and σ � ωε0)
which fills the region z > 0.

r

σ

z

x

i

(conductor)E i

E

Consider only linear polarization perpendicular to the plane of incidence.

a) If the incident wave is given by ~E = ~Eie
i(~k·~x−ωt), show that (in the limit σ � ωε0)

the magnitude of the electric field inside the conductor is

Ec = Eiγ cos i e−z/δei(kx sin i+z/δ−ωt)

where

δ =
√

2
ωµ0σ

and γ = (1− i)

√
2ε0ω

σ

The z direction is perpendicular to the flat surface of the conductor, while the x
direction is parallel to it.

We use a complex dielectric constant

ε′ = ε0 +
iσ

ω
≈ iσ

ω

This gives

n′ =
√

ε′

ε0
≈

√
iσ

ε0ω
= (1 + i)

√
σ

2ε0ω
=

2
γ

as well as

k =
ω

c
, k′ =

ωn′

c
= (1 + i)

√
ωµ0σ

2
=

(1 + i)
δ

For ~E perpendicular to the plane of incidence, the ‘transmitted’ wave is given by

E′ = Ei
2n cos i

n cos i +
√

n′2 − n2 sin2 i

Hence

Ec = E′ei(~k′·~x−ωt) = Ei
2n cos i

n cos i +
√

n′2 − n2 sin2 i
ei(k′z cos r+k′x sin r−ωt)

= Ei
2 cos i

cos i +
√

n′2 − sin2 i
ei((1+i)(z/δ) cos r+kxn′ sin r−ωt)



However, in the limit |n′| � 1 we find

n′ cos r =
√

n′2 − sin2 i ≈ n′

so that cos r ≈ 1. Using these approximations in the above, we arrive at

Ec = Ei
2 cos i

n
ei((1+i)z/δ+kx sin i−ωt) = Eiγ cos i e−z/δei(kx sin i+z/δ−ωt)

b) Show that the time averaged power per unit area flowing into the conductor is
given by S⊥ = ε0|Ei|2ωδ cos2 i.

There are numerous was of computing the power flowing into the conductor. We
can compute the incident minus the reflected power, or we may simply compute
the transmitted power just within the conductor. We could also compute the
total power dissipated in the conductor by integrating through the entire depth
of the conductor. By energy conservation, all these should give the same result.

Suppose we compute the power dissipated in the conductor. By Ohm’s law, we
write

P =
1
2

~E · ~J∗ =
σ

2
| ~E |2

Using the above expression, this gives

P =
σ

2
|Ei|2|γ|2 cos2 i e−2z/δ = 2ε0ω|Ei|2 cos2 i e−2z/δ

Note that this is the power density (per volume) lost in the conductor. To get
the power lost per unit cross-sectional area, we have to integrate this along the z
direction

P⊥ =
∫ ∞

0

P dz = ε0|Ei|2ωδ cos2 i

By conservation of energy, this must be equal to the power flowing into the
conductor.


