Midterm - Solutions

This midterm is a two hour open book, open notes exam. Do all three problems.
[30 pts] 1. Consider a two-dimensional problem defined in the region between concentric circles of radii a and b.

[10] a) Using polar coordinates, the Dirichlet Green's function may be expanded as

$$
G\left(\rho, \phi ; \rho^{\prime}, \phi^{\prime}\right)=\sum_{m=-\infty}^{\infty} g_{m}\left(\rho, \rho^{\prime}\right) e^{i m\left(\phi-\phi^{\prime}\right)}
$$

Write down the appropriate differential equation for $g_{m}\left(\rho, \rho^{\prime}\right)$.
In two dimensions, the Green's function satisfies

$$
\nabla^{\prime 2} G\left(\vec{x}, \vec{x}^{\prime}\right)=-4 \pi \delta^{(2)}\left(\vec{x}-\vec{x}^{\prime}\right)
$$

Using polar coordinates, we note that

$$
\nabla^{\prime 2}=\frac{1}{\rho^{\prime}} \frac{\partial}{\partial \rho^{\prime}} \rho^{\prime} \frac{\partial}{\partial \rho^{\prime}}+\frac{1}{\rho^{\prime 2}} \frac{\partial^{2}}{\partial \phi^{\prime 2}}
$$

and

$$
\delta^{(2)}\left(\vec{x}-\vec{x}^{\prime}\right)=\frac{1}{\rho} \delta\left(\rho-\rho^{\prime}\right) \delta\left(\phi-\phi^{\prime}\right)
$$

As a result, we have

$$
\begin{aligned}
\left(\frac{1}{\rho^{\prime}} \frac{\partial}{\partial \rho^{\prime}} \rho^{\prime} \frac{\partial}{\partial \rho^{\prime}}+\frac{1}{\rho^{\prime 2}} \frac{\partial^{2}}{\partial \phi^{\prime 2}}\right) G\left(\rho, \phi ; \rho^{\prime}, \phi^{\prime}\right) & =-\frac{4 \pi}{\rho} \delta\left(\rho-\rho^{\prime}\right) \delta\left(\phi-\phi^{\prime}\right) \\
& =-\sum_{m} \frac{2}{\rho} \delta\left(\rho-\rho^{\prime}\right) e^{i m\left(\phi-\phi^{\prime}\right)}
\end{aligned}
$$

where we have used the completeness relation

$$
\sum_{m} e^{i m\left(\phi-\phi^{\prime}\right)}=2 \pi \delta\left(\phi-\phi^{\prime}\right)
$$

Inserting the expansion

$$
G\left(\rho, \phi ; \rho^{\prime}, \phi^{\prime}\right)=\sum_{m} g_{m}\left(\rho, \rho^{\prime}\right) e^{i m\left(\phi-\phi^{\prime}\right)}
$$

into the above and matching powers of $e^{i\left(\phi-\phi^{\prime}\right)}$ then gives the differential equation

$$
\begin{equation*}
\left(\frac{1}{\rho^{\prime}} \frac{\partial}{\partial \rho^{\prime}} \rho^{\prime} \frac{\partial}{\partial \rho^{\prime}}-\frac{m^{2}}{\rho^{\prime 2}}\right) g_{m}\left(\rho, \rho^{\prime}\right)=-\frac{2}{\rho} \delta\left(\rho-\rho^{\prime}\right) \tag{1}
\end{equation*}
$$

[20] b) Solve the Green's function equation for $g_{m}\left(\rho, \rho^{\prime}\right)$ subject to Dirichlet boundary conditions and write down the result for $G\left(\rho, \phi ; \rho^{\prime}, \phi^{\prime}\right)$. Note that the $m=0$ case may need to be treated separately.

We start with the $m \neq 0$ case. The homogeneous equation corresponding to the Green's function equation (1) is

$$
\left(\frac{1}{\rho^{\prime}} \frac{\partial}{\partial \rho^{\prime}} \rho^{\prime} \frac{\partial}{\partial \rho^{\prime}}-\frac{m^{2}}{\rho^{\prime 2}}\right) g_{m}\left(\rho, \rho^{\prime}\right)=0
$$

This is easy to solve as it is equidimensional in ρ^{\prime}. The two independent solutions are of the form $\rho^{\prime m}$ and $\rho^{\prime-m}$. Because of the delta-function source in (1), we break up the ρ^{\prime} interval into $a \leq \rho^{\prime} \leq \rho$ and $\rho \leq \rho^{\prime} \leq b$. Hence we write

$$
g_{m}\left(\rho, \rho^{\prime}\right)= \begin{cases}A u\left(\rho^{\prime}\right) & a \leq \rho^{\prime} \leq \rho \\ B v\left(\rho^{\prime}\right) & \rho \leq \rho^{\prime} \leq b\end{cases}
$$

where

$$
\begin{equation*}
u\left(\rho^{\prime}\right)=\left(\frac{\rho^{\prime}}{a}\right)^{m}-\left(\frac{a}{\rho^{\prime}}\right)^{m}, \quad v\left(\rho^{\prime}\right)=\left(\frac{\rho^{\prime}}{b}\right)^{m}-\left(\frac{b}{\rho^{\prime}}\right)^{m} \tag{2}
\end{equation*}
$$

are appropriately chosen to satisfy the Dirichlet boundary conditions $g_{m}(\rho, a)=0$ and $g_{m}(\rho, b)=0$. Note that these expressions are valid for both positive and negative m. From (1), we must now satisfy the matching and jump conditions

$$
\begin{equation*}
g_{<}=g_{>}, \quad \frac{\partial}{\partial \rho^{\prime}} g_{<}=\frac{\partial}{\partial \rho^{\prime}} g_{>}+\frac{2}{\rho} \tag{3}
\end{equation*}
$$

where $g_{<}$and $g_{>}$are the values of $g_{m}\left(\rho, \rho^{\prime}\right)$ for ρ^{\prime} immediately to the left and right of the delta function at ρ, respectively. These conditions give rise to a set of two equations which may be solved to determine the two unknowns A and B. Alternatively, by symmetry of the Green's function, we may write

$$
g_{m}\left(\rho, \rho^{\prime}\right)=A u\left(\rho_{<}\right) v\left(\rho_{>}\right)
$$

where $\rho_{<}=\min \left(\rho, \rho^{\prime}\right)$ and $\rho_{>}=\max \left(\rho, \rho^{\prime}\right)$, and where A is a ρ and ρ^{\prime} independent constant. In this case, the first condition of (3) is automatically satisfied, while the second one gives

$$
A u^{\prime}(\rho) v(\rho)=A u(\rho) v^{\prime}(\rho)+\frac{2}{\rho}
$$

or equivalently

$$
A=-\frac{2}{\rho}\left|\begin{array}{cc}
u(\rho) & v(\rho) \\
u^{\prime}(\rho) & v^{\prime}(\rho)
\end{array}\right|^{-1}
$$

Note that the determinant is simply the Wronskian of $u(\rho)$ and $v(\rho)$. In any case, using (2), we see that

$$
\begin{aligned}
\left|\begin{array}{cc}
u(\rho) & v(\rho) \\
u^{\prime}(\rho) & v^{\prime}(\rho)
\end{array}\right|= & \frac{m}{\rho}\left[\left(\left(\frac{\rho}{a}\right)^{m}-\left(\frac{a}{\rho}\right)^{m}\right)\left(\left(\frac{\rho}{b}\right)^{m}+\left(\frac{b}{\rho}\right)^{m}\right)\right. \\
& \left.-\left(\left(\frac{\rho}{a}\right)^{m}+\left(\frac{a}{\rho}\right)^{m}\right)\left(\left(\frac{\rho}{b}\right)^{m}-\left(\frac{b}{\rho}\right)^{m}\right)\right] \\
= & \frac{2 m}{\rho}\left[\left(\frac{b}{a}\right)^{m}-\left(\frac{a}{b}\right)^{m}\right]
\end{aligned}
$$

This gives

$$
A=-\frac{1}{m}\left[\left(\frac{b}{a}\right)^{m}-\left(\frac{a}{b}\right)^{m}\right]^{-1}
$$

so that

$$
\begin{equation*}
g_{m}\left(\rho, \rho^{\prime}\right)=-\frac{u\left(\rho_{<}\right) v\left(\rho_{>}\right)}{m\left[(b / a)^{m}-(a / b)^{m}\right]} \quad(m \neq 0) \tag{4}
\end{equation*}
$$

where $u(\rho)$ and $v(\rho)$ are given in (2).
When $m=0$, the Green's function equation (1) reduces to

$$
\frac{1}{\rho^{\prime}} \frac{\partial}{\partial \rho^{\prime}} \rho^{\prime} \frac{\partial}{\partial \rho^{\prime}} g_{0}\left(\rho, \rho^{\prime}\right)=-\frac{2}{\rho} \delta\left(\rho-\rho^{\prime}\right)
$$

In this case, the two linearly independent solutions to the homogeneous equation are 1 (ie a constant) and $\log \rho^{\prime}$. The Dirichlet boundary conditions are then satisfied with

$$
u\left(\rho^{\prime}\right)=\log \left(\frac{\rho^{\prime}}{a}\right), \quad v\left(\rho^{\prime}\right)=\log \left(\frac{\rho^{\prime}}{b}\right)
$$

This time, the Wronskian is

$$
\left|\begin{array}{cc}
u(\rho) & v(\rho) \\
u^{\prime}(\rho) & v^{\prime}(\rho)
\end{array}\right|=\frac{1}{\rho}\left[\log \left(\frac{\rho}{a}\right)-\log \left(\frac{\rho}{b}\right)\right]=\frac{1}{\rho} \log \left(\frac{b}{a}\right)
$$

so that

$$
A=-\frac{2}{\rho}\left|\begin{array}{cc}
u(\rho) & v(\rho) \\
u^{\prime}(\rho) & v^{\prime}(\rho)
\end{array}\right|^{-1}=-\frac{2}{\log (b / a)}
$$

and

$$
\begin{equation*}
g_{0}\left(\rho, \rho^{\prime}\right)=-\frac{2 \log \left(\rho_{<} / a\right) \log \left(\rho_{>} / b\right)}{\log (b / a)} \tag{5}
\end{equation*}
$$

Finally, combining (4) and (5) gives the complete Green's function

$$
\begin{aligned}
G\left(\rho, \phi ; \rho^{\prime}, \phi^{\prime}\right)= & -\frac{2 \log \left(\rho_{<} / a\right) \log \left(\rho_{>} / b\right)}{\log (b / a)} \\
& -\sum_{m \neq 0} \frac{\left[\left(\rho_{<} / a\right)^{m}-\left(a / \rho_{<}\right)^{m}\right]\left[\left(\rho_{>} / b\right)^{m}-\left(b / \rho_{>}\right)^{m}\right]}{m\left[(b / a)^{m}-(a / b)^{m}\right]} e^{i m\left(\phi-\phi^{\prime}\right)}
\end{aligned}
$$

Since the prefactor to $e^{i m\left(\phi-\phi^{\prime}\right)}$ is even under the replacement $m \rightarrow-m$, the Green's function may equivalently be written as

$$
\begin{aligned}
G\left(\rho, \phi ; \rho^{\prime}, \phi^{\prime}\right) & =\frac{2 \log \left(\rho_{<} / a\right) \log \left(b / \rho_{>}\right)}{\log (b / a)} \\
& +\sum_{m=1}^{\infty} \frac{2\left[\left(\rho_{<} / a\right)^{m}-\left(a / \rho_{<}\right)^{m}\right]\left[\left(b / \rho_{>}\right)^{m}-\left(\rho_{>} / b\right)^{m}\right]}{m\left[(b / a)^{m}-(a / b)^{m}\right]} \cos \left[m\left(\phi-\phi^{\prime}\right)\right]
\end{aligned}
$$

or

$$
\begin{aligned}
G\left(\rho, \phi ; \rho^{\prime}, \phi^{\prime}\right)= & \frac{2 \log \left(\rho_{<} / a\right) \log \left(b / \rho_{>}\right)}{\log (b / a)} \\
& +\sum_{m=1}^{\infty} \frac{2}{m}\left(\frac{\rho_{<}}{\rho_{>}}\right)^{m} \frac{\left[1-\left(a / \rho_{<}\right)^{2 m}\right]\left[1-\left(\rho_{>} / b\right)^{2 m}\right]}{\left[1-(a / b)^{2 m}\right]} \cos \left[m\left(\phi-\phi^{\prime}\right)\right]
\end{aligned}
$$

[35 pts] 2. A spherical surface of radius a and surface-charge density $\sigma(\theta)=\sigma_{0}+\sigma_{1} \cos \theta$ is placed concentrically inside a grounded conducting sphere of radius b. Here θ is the standard polar angle in spherical coordinates.

[20] a) Find the potential $\Phi(r, \theta, \phi)$ everywhere inside the conducting sphere.
Since this problem focuses on the interior of a conducting sphere of radius b, we may use the Dirichlet Green's function

$$
\begin{equation*}
G\left(\vec{x}, \vec{x}^{\prime}\right)=\sum_{l, m} \frac{4 \pi}{2 l+1} r_{<}^{l}\left(\frac{1}{r_{>}^{l+1}}-\frac{r_{>}^{l}}{b^{2 l+1}}\right) Y_{l}^{m}(\Omega) Y_{l}^{m *}\left(\Omega^{\prime}\right) \tag{6}
\end{equation*}
$$

In general, the potential inside the conducting sphere is given by

$$
\Phi(\vec{x})=\frac{1}{4 \pi \epsilon_{0}} \int_{V} G\left(\vec{x}, \vec{x}^{\prime}\right) \rho\left(\vec{x}^{\prime}\right) d^{3} x^{\prime}-\frac{1}{4 \pi} \int_{S} \Phi\left(\vec{x}^{\prime}\right) \frac{\partial G}{\partial n^{\prime}} d a^{\prime}
$$

However the surface term does not contribute since the potential $\Phi\left(\vec{x}^{\prime}\right)$ vanishes on the surface of the grounded conducting sphere. As a result, we are left to evaluate

$$
\Phi(\vec{x})=\frac{1}{4 \pi \epsilon_{0}} \int_{V} G\left(\vec{x}, \vec{x}^{\prime}\right) \rho\left(\vec{x}^{\prime}\right) d^{3} x^{\prime}
$$

where

$$
\rho\left(\vec{x}^{\prime}\right)=\sigma\left(\theta^{\prime}\right) \delta\left(r^{\prime}-a\right)=\left[\sigma_{0}+\sigma_{1} \cos \theta^{\prime}\right] \delta\left(r^{\prime}-a\right)
$$

Using the Green's function of (6) and using the $\delta\left(r^{\prime}-a\right)$ to kill the r^{\prime} integral gives

$$
\Phi(\vec{x})=\frac{1}{4 \pi \epsilon_{0}} \sum_{l, m} \frac{4 \pi}{2 l+1} r_{<}^{l}\left(\frac{1}{r_{>}^{l+1}}-\frac{r_{>}^{l}}{b^{2 l+1}}\right) Y_{l}^{m}(\Omega) \int \sigma\left(\theta^{\prime}\right) Y_{l}^{m *}\left(\Omega^{\prime}\right) a^{2} d \Omega^{\prime}
$$

where $r_{<}=\min (r, a)$ and $r_{>}=\max (r, a)$. Since the charge distribution $\sigma\left(\theta^{\prime}\right)$ is azimuthally symmetric, only the $m=0$ terms survive in the sum, and we are left with a Legendre polynomial series

$$
\Phi(r, \theta)=\frac{2 \pi a^{2}}{4 \pi \epsilon_{0}} \sum_{l} r_{<}^{l}\left(\frac{1}{r_{>}^{l+1}}-\frac{r_{>}^{l}}{b^{2 l+1}}\right) P_{l}(\cos \theta) \int_{-1}^{1} \sigma\left(\theta^{\prime}\right) P_{l}\left(\cos \theta^{\prime}\right) d\left(\cos \theta^{\prime}\right)
$$

We now use

$$
\sigma\left(\theta^{\prime}\right)=\sigma_{0} P_{0}\left(\cos \theta^{\prime}\right)+\sigma_{1} P_{1}\left(\cos \theta^{\prime}\right)
$$

and the orthogonality of Legendre polynomials

$$
\int_{-1}^{1} P_{l}(x) P_{l^{\prime}}(x) d x=\frac{2}{2 l+1} \delta_{l, l^{\prime}}
$$

to obtain

$$
\begin{aligned}
\Phi(r, \theta) & =\frac{a^{2}}{\epsilon_{0}} \sum_{l} r_{<}^{l}\left(\frac{1}{r_{>}^{l+1}}-\frac{r_{>}^{l}}{b^{2 l+1}}\right) P_{l}(\cos \theta)\left[\sigma_{0} \delta_{l, 0}+\frac{1}{3} \sigma_{1} \delta_{l, 1}\right] \\
& =\frac{a^{2}}{\epsilon_{0}}\left[\sigma_{0}\left(\frac{1}{r_{>}}-\frac{1}{b}\right)+\frac{1}{3} \sigma_{1} r_{<}\left(\frac{1}{r_{>}^{2}}-\frac{r_{>}}{b^{3}}\right) \cos \theta\right]
\end{aligned}
$$

Explicitly, this gives

$$
\Phi(r, \theta)= \begin{cases}\frac{a^{2}}{\epsilon_{0}}\left[\sigma_{0}\left(\frac{1}{a}-\frac{1}{b}\right)+\frac{1}{3} \sigma_{1} r\left(\frac{1}{a^{2}}-\frac{a}{b^{3}}\right) \cos \theta\right] & r<a \tag{7}\\ \frac{a^{2}}{\epsilon_{0}}\left[\sigma_{0}\left(\frac{1}{r}-\frac{1}{b}\right)+\frac{1}{3} \sigma_{1} a\left(\frac{1}{r^{2}}-\frac{r}{b^{3}}\right) \cos \theta\right] & r>a\end{cases}
$$

An alternate means of solving this problem is to solve Laplace's equation separately for $r<a$ and for $a<r<b$, and to match the two solutions at the location of the charged surface, $r=a$. Taking boundary conditions into account, we may write

$$
\begin{array}{ll}
\Phi_{<}=\sum_{l} \alpha_{l} r^{l} P_{l}(\cos \theta) & (r<a) \\
\Phi_{>}=\sum_{l} \beta_{l}\left(\frac{1}{r^{l+1}}-\frac{r^{l}}{b^{2 l+1}}\right) P_{l}(\cos \theta) & (a<r<b) \tag{8}
\end{array}
$$

where these forms have been chosen to satisfy the boundary conditions at $r=0$ and $r=b$, respectively. The matching conditions at the surface $r=a$ are that the potential is continuous, $\Phi_{<}=\left.\Phi_{>}\right|_{r=a}$ and that the jump in the perpendicular component of the electric field is given by σ / ϵ_{0}, namely $E_{r}^{>}=E_{r}^{<}+\sigma /\left.\epsilon_{0}\right|_{r=a}$ or $\partial \Phi_{<} / \partial r=\partial \Phi_{>} / \partial r+\sigma /\left.\epsilon_{0}\right|_{r=a}$. These two conditions lead to the simultaneous equations

$$
\begin{aligned}
\alpha_{l} a^{2 l+1}-\beta_{l}\left(1-(a / b)^{2 l+1}\right) & =0 \\
l \alpha_{l} a^{2 l+1}+\beta_{l}\left((l+1)+l(a / b)^{2 l+1}\right) & =\sigma_{l} a^{l+2} / \epsilon_{0}
\end{aligned}
$$

which may be written in matrix form

$$
\left(\begin{array}{cc}
1 & -1+(a / b)^{2 l+1} \\
l & l+1+l(a / b)^{2 l+1}
\end{array}\right)\binom{\alpha_{l} a^{2 l+1}}{\beta_{l}}=\binom{0}{\sigma_{l} a^{l+2} / \epsilon_{0}}
$$

This may be solved to give

$$
\begin{aligned}
\binom{\alpha_{l} a^{2 l+1}}{\beta_{l}} & =\frac{1}{2 l+1}\left(\begin{array}{cc}
l+1+l(a / b)^{2 l+1} & 1-(a / b)^{2 l+1} \\
-l
\end{array}\right)\binom{0}{\sigma_{l} a^{l+2} / \epsilon_{0}} \\
& =\frac{\sigma_{l} a^{l+2}}{(2 l+1) \epsilon_{0}}\binom{1-(a / b)^{2 l+1}}{1}
\end{aligned}
$$

In particular

$$
\alpha_{0}=\frac{\sigma_{0} a}{\epsilon_{0}}\left(1-\frac{a}{b}\right), \quad \alpha_{1}=\frac{\sigma_{1}}{3 \epsilon_{0}}\left(1-\left(\frac{a}{b}\right)^{3}\right)
$$

and

$$
\beta_{0}=\frac{\sigma_{0} a^{2}}{\epsilon_{0}}, \quad \beta_{1}=\frac{\sigma_{1} a^{3}}{3 \epsilon_{0}}
$$

Substituting these coefficients into (8) reproduces the potential (7) obtained above using the Green's function method.
[10] b) What is the induced surface-charge density on the interior surface of the conducting sphere?

The induced surface-charge density is given by

$$
\sigma=-\left.\epsilon_{0} E_{r}\right|_{r=b}=\left.\epsilon_{0} \frac{\partial \Phi}{\partial r}\right|_{r=b}
$$

Using the expression for $\Phi(r>a)$ obtained in (7), we see that

$$
\begin{align*}
\sigma & =a^{2} \frac{\partial}{\partial r}\left[\sigma_{0}\left(\frac{1}{r}-\frac{1}{b}\right)+\frac{1}{3} \sigma_{1} a\left(\frac{1}{r^{2}}-\frac{r^{3}}{b}\right) \cos \theta\right]_{r=b} \tag{9}\\
& =-\left[\sigma_{0}\left(\frac{a}{b}\right)^{2}+\sigma_{1}\left(\frac{a}{b}\right)^{3} \cos \theta\right]
\end{align*}
$$

[5] c) What is the total induced charge on the interior surface of the conducting sphere? The total induced charge is obtained by integrating (9) over the area of the conducting sphere

$$
Q_{\mathrm{induced}}=\int_{r=b} \sigma d a=-\sigma_{0}\left(\frac{a}{b}\right)^{2}\left(4 \pi b^{2}\right)=-4 \pi a^{2} \sigma_{0}
$$

Note that the dipole term proportional to σ_{1} integrates to zero over the entire surface of the sphere. This is just the negative of the total charge of the surface at $r=a$

$$
q=(\text { average surface charge density }) \times(\text { area })=\sigma_{0}\left(4 \pi a^{2}\right)
$$

Even without knowning the result of part b, this can be obtained directly by elementary application of Gauss' law inside a hollow conductor.
[35 pts] 3. A solid (ungrounded) conducting sphere of radius a and charge $-2 q$ is located at the origin. A point charge of $+q$ is placed above the conducting sphere at a distance L from the origin, and another one (also of charge $+q$) is placed at a distance L below the origin.

[15] a) Find the potential $\Phi(\vec{x})$ everywhere outside the conducting sphere. (Take $\Phi=0$ at infinity.)

Perhaps the most straightforward way to approach this problem is to use the method of images. The image charge corresponding to the $+q$ charge located at
a distance L from the center is $-q(a / L)$, and its location is a^{2} / L from the center. If the conducting sphere is grounded, the potential is then

$$
\Phi_{\text {grounded }}=\frac{q}{4 \pi \epsilon_{0}}\left[\frac{1}{|\vec{x}-L \hat{z}|}+\frac{1}{|\vec{x}+L \hat{z}|}-\frac{a / L}{\left|\vec{x}-\left(a^{2} / L\right) \hat{z}\right|}-\frac{a / L}{\left|\vec{x}+\left(a^{2} / L\right) \hat{z}\right|}\right]
$$

However, the conducting sphere is actually ungrounded, and has a total charge $-2 q$ on it. Taking into account the two image changes, the effective charge on the sphere is $q_{\text {eff }}=-2 q+2 q(a / L)$. Hence the potential is

$$
\begin{equation*}
\Phi=\frac{q}{4 \pi \epsilon_{0}}\left[\frac{-2+2 a / L}{|\vec{x}|}+\frac{1}{|\vec{x}-L \hat{z}|}+\frac{1}{|\vec{x}+L \hat{z}|}-\frac{a / L}{\left|\vec{x}-\left(a^{2} / L\right) \hat{z}\right|}-\frac{a / L}{\left|\vec{x}+\left(a^{2} / L\right) \hat{z}\right|}\right] \tag{10}
\end{equation*}
$$

[5] b) What is the potential of the conducting sphere?
The surface of the conducting sphere is given by $r=a$. Since the method of images guarantees that $\Phi_{\text {grounded }}(r=a)=0$, and since we may rewrite (10) as

$$
\Phi=\Phi_{\text {grounded }}-\frac{q}{2 \pi \epsilon_{0}} \frac{1-a / L}{|\vec{x}|}
$$

we immediately see that

$$
\Phi(r=a)=-\frac{q}{2 \pi \epsilon_{0}}\left(\frac{1}{a}-\frac{1}{L}\right)
$$

This is the potential of the conducting sphere.
[15] c) Calculate the multipole moments $q_{l m}$. Make sure to indicate which moments are non-vanishing.

In order to calculate the multipole moments, we first rewrite (10) using the azimuthally symmetric expansion

$$
\frac{1}{\left|\vec{x}-\vec{x}^{\prime}\right|}=\sum_{l} \frac{r_{<}^{l}}{r_{>}^{l+1}} P_{l}(\cos \gamma)
$$

where $\cos \gamma=\hat{x} \cdot \hat{x}^{\prime}$, and where $r_{<}=\min \left(r, r^{\prime}\right)$ and $r_{>}=\max \left(r, r^{\prime}\right)$. Since the charges are on the \hat{z} axis, the angle γ is either θ or $\pi-\theta$. The expansion of (10) is then

$$
\Phi=\frac{q}{4 \pi \epsilon_{0}}\left[\frac{-2+2 a / L}{r}+\sum_{l}\left(\frac{r_{<}^{l}}{r_{>}^{l+1}}-\frac{a}{L} \frac{\left(a^{2} / L\right)^{l}}{r^{l+1}}\right)\left(P_{l}(\cos \theta)+P_{l}(-\cos \theta)\right)\right]
$$

Since $P_{l}(-x)=(-1)^{l} P_{l}(x)$, this expression simplifies to

$$
\begin{aligned}
\Phi & =\frac{q}{2 \pi \epsilon_{0}}\left[\frac{-1+a / L}{r}+\sum_{l=0,2,4, \ldots}\left(\frac{r_{<}^{l}}{r_{>}^{l+1}}-\frac{a^{2 l+1}}{(r L)^{l+1}}\right) P_{l}(\cos \theta)\right] \\
& =\frac{q}{2 \pi \epsilon_{0}}\left[\left(\frac{1}{r_{>}}-\frac{1}{r}\right)+\sum_{l=2,4, \ldots}\left(\frac{r_{<}^{l}}{r_{>}^{l+1}}-\frac{a^{2 l+1}}{(r L)^{l+1}}\right) P_{l}(\cos \theta)\right]
\end{aligned}
$$

The asymptotic potential far away from the charges is obtained by taking $r_{<}=L$ and $r_{>}=r$. In this case

$$
\begin{aligned}
\Phi & =\frac{q}{2 \pi \epsilon_{0}} \sum_{l=2,4, \ldots}\left(\frac{L^{l}}{r^{l+1}}-\frac{a^{2 l+1}}{(r L)^{l+1}}\right) P_{l}(\cos \theta) \\
& =\frac{q}{2 \pi \epsilon_{0}} \sum_{l=2,4, \ldots} L^{l}\left(1-\left(\frac{a}{L}\right)^{2 l+1}\right) \frac{P_{l}(\cos \theta)}{r^{l+1}} \\
& =\frac{q}{2 \pi \epsilon_{0}} \sum_{l=2,4, \ldots} \sqrt{\frac{4 \pi}{2 l+1}} L^{l}\left(1-\left(\frac{a}{L}\right)^{2 l+1}\right) \frac{Y_{l}^{0}(\Omega)}{r^{l+1}}
\end{aligned}
$$

Comparing with with the multipole expansion

$$
\Phi=\frac{1}{4 \pi \epsilon_{0}} \sum_{l, m} \frac{4 \pi}{2 l+1} q_{l m} \frac{Y_{l}^{m}(\Omega)}{r^{l+1}}
$$

allows us to identify the multipole moments

$$
\begin{equation*}
q_{l, 0}=\sqrt{\frac{2 l+1}{\pi}} q L^{l}\left(1-\left(\frac{a}{L}\right)^{2 l+1}\right) \quad l=2,4,6, \ldots \tag{11}
\end{equation*}
$$

Alternatively, these moments may be obtained by realizing that this problem is equivalent to a five point charge problem by the method of images. The five point charges are the obvious ones leading to the potential (10)

$$
\begin{aligned}
& \rho(\vec{x})=q\left[-2(1-a / L) \delta^{(3)}(\vec{x})+\delta^{(3)}(\vec{x}-L \hat{z})+\delta^{(3)}(\vec{x}+L \hat{z})\right. \\
&\left.-(a / L) \delta^{(3)}\left(\vec{x}-\left(a^{2} / L\right) \hat{z}\right)-(a / L) \delta^{(3)}\left(\vec{x}+\left(a^{2} / L\right) \hat{z}\right)\right]
\end{aligned}
$$

In general, the multipole moments are defined by

$$
q_{l m}=\int \rho(\vec{x}) r^{l} Y_{l}^{m *}(\Omega) d^{3} x
$$

However, because of azimuthal symmetry, only the $m=0$ moments are nonvanishing. In this case

$$
\begin{aligned}
q_{l, 0}= & \sqrt{\frac{2 l+1}{4 \pi}} \int \rho(\vec{x}) r^{l} P_{l}(\cos \theta) d^{3} x \\
= & \sqrt{\frac{2 l+1}{4 \pi}} q\left[-2\left(1-\frac{a}{L}\right) \delta_{l, 0}+L^{l} P_{l}(1)+L^{l} P_{l}(-1)\right. \\
& \left.\quad-\frac{a}{L}\left(\frac{a^{2}}{L}\right)^{l} P_{l}(1)-\frac{a}{L}\left(\frac{a^{2}}{L}\right)^{l} P_{l}(-1)\right]
\end{aligned}
$$

Since $P_{l}(1)=1$ and $P_{l}(-1)=(-1)^{l}$, this simplifies to

$$
q_{l, 0}=\sqrt{\frac{2 l+1}{\pi}} q\left[-\left(1-\frac{a}{L}\right) \delta_{l, 0}+L^{l}\left(1-\left(\frac{a}{L}\right)^{2 l+1}\right)\right] \quad l \text { even }
$$

Noting that the $l=0$ term vanishes, we see that this result is identical to (11).

