
Physics 505 Fall 2007

Final Exam — Solutions

This final is a three hour open book, open notes exam. Do all four problems.

[25 pts] 1. A point electric dipole with dipole moment ~p is located in vacuum pointing away
from and a distance d away from the flat surface of a semi-infinite dielectric with
permittivity ε.

[15] a) Find the electric potential Φ everywhere.

This problem can be solved by the method of images for a dielectric. Recall that
for a point charge q located a distance d from the flat surface of a semi-infinite
dielectric
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and where the position vectors are

~R1 = (x, y, z − d), ~R2 = (x, y, z + d)

Here we have assume that the physical charge q is located at (0, 0, d) and the
observer is at point P given by (x, y, z). By substituting in q′ and q′′, the potential
is more explicitly written as
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Since a point electric dipole may be obtained by taking two charges −q and +q
separated by a distance l in the limit l → 0, the dipole problem may be solved
by linear superposition
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Since the electric potential for a dipole in free space is given by
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the electric dipole generalization of the point charge solution (1) is then
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where ~p = pẑ is pointing away from the dielectric. Note that, according to the
figure, the image dipole points in the opposite direction as the physical one, so
long as we define the direction to be from −q′ to +q′. This is what accounts
for the sign difference between the two terms in the first lines of (1) and (2). In
reality, however, since the image charge q′ has the opposite sign as q (assuming
ε > ε0), the image dipole actually points in the same direction as the physical
one. This physical result is consistent with the plus sign in the first line of (2),
which shows that both dipoles point in the same direction.

[10] b) What is the electric potential if the dipole is instead oriented parallel to the
surface of the dielectric?

Note that the orientation of the image dipole is different for the parallel configu-
ration
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As a result, the potential is given instead by
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where ~p = px̂ is pointing parallel to the surface of the dielectric. Note that the
image solution can be generalized for a dipole at an arbitrary angle relative to
the surface of the dielectric.

[25 pts] 2. A wire coil is wound around the surface of a solid sphere of radius a and relative
permeability µr. The coil is designed in such a way that it carries a surface current
density ~K = φ̂(I/a) sin θ.

Find the magnetic induction ~B everywhere.

Despite the presence of a surface current, this problem may be solved using a
magnetic scalar potential approach. The trick is to realize that the two separate
regions r < a and r > a are both current-free regions of space. This allows us to
introduce ‘inside’ (r < a) and ‘outside’ (r > a) potentials
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where Φin
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M solve Laplace’s equation, ∇2ΦM = 0. Using spherical coor-
dinates, and taking azimuthal symmetry into account, we may write
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The effect of the surface current ~K = φ̂(I/a) sin θ shows up in the matching
conditions at r = a

r̂ · ( ~Bout − ~Bin)|r=a = 0, r̂ × ( ~Hout − ~H in)|r=a = ~K

In explicit components, these conditions are

Bin
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Given (3), the appropriate components of the magnetic induction and magnetic
field are
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By orthogonality, the matching conditions must independently hold for each value
of l. Noting that
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we see that the matching conditions are
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These equations are homogeneous, except for l = 1. As a result, only the l = 1
mode contributes, with a solution
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This gives rise to a magnetic induction
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The interior field is uniform, while the exterior field is that of a magnetic dipole.



[25 pts] 3. A semi-infinite coaxial cable consists of an inner conductor of radius a surrounded by
an outer conductor of radius b. A dielectric with permittivity ε and permeability µ
fills the volume between the conductors.

V

[5] a) If a constant (static) potential difference V0 is applied between the conductors,
what is the electric field inside the cable? Ignore fringe effects.

It is natural to use cylindrical coordinates for this problem. For the electrostatics
problem, an elementary application of Gauss’ law gives an electric field
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where λ is the charge per unit length on the inner conductor. Since the potential
difference between conductors is V0, we have
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As a result, the electric field is given in terms of V0 by

~E = − V0

ρ log(b/a)
ρ̂

[15] b) Show that, if a sinusoidal potential difference V (t) = V0e
−iωt is applied at the

end of the cable, then Maxwell’s equations admit a traveling wave solution

~B = φ̂B(ρ)ei(kz−ωt), ~E = ρ̂E(ρ)ei(kz−ωt)

where z is the direction along the axis of the cable. Find B(ρ) and E(ρ) in terms
of V0.

The sinusoidal potential difference is of harmonic form. Thus we may examine the
harmonic Maxwell’s equations. Firstly, Gauss’ law for magnetism, ~∇ · ~B = 0, is
trivially satisfied for the above solution. For the source-free Gauss’ law, ~∇· ~E = 0,
we have
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for some constant C. This allows us to write
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Faraday’s law, ~∇× ~E − iω ~B = 0, then gives
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so that
~B = φ̂
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ei(kz−ωt)

The remaining equation to verify is the Ampère-Maxwell equation, ~∇ × ~B +
iµεω ~E = 0, which gives
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As a result, Maxwell’s equations are solved provided we impose the standard
dispersion relation k =

√
µεω. Note that, if we take z = 0 to be the end of the

cable, we may solve for the constant C by imposing
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This gives C = −V0/ log(b/a), so that
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Note that traveling waves in the −z direction (as well as superpositions of waves)
are also possible.

[5] c) What is the impedance Z (given by the complex Ohm’s law, V = IZ) of the
cable?

The impedance is given by Z = V/I. The potential at the end of the cable (z = 0)
is already given, so all we need is the current. The current may be obtained from
Ampère’s law in integral form ∮

~B · d~l = µI

where we integrate along a circle of radius a < ρ < b located at z = 0. This gives
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The impedance is then
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which is real and independent of frequency. This is a feature of coaxial transmis-
sion lines. Note that the displacement current term is in the ρ̂ direction (since
this is the direction of the electric field) and does not contribute to the above ap-
plication of Ampère’s law. Alternatively, we may calculate the current using the



matching condition n̂× ~H|S = ~K (where S denotes the surface of the conductor)
to obtain the surface current density ~K and they by I = (circumference)×K.

[25 pts] 4. A plane polarized electromagnetic wave of frequency ω in free space is normally inci-
dent on the flat surface of an excellent conductor (µ = µ0, ε = ε0 and σ � ωε0) which
fills the region z > 0. Assume the incident wave is given by ~E = x̂Eie

i(kz−ωt)

[10] a) What is the current density ~J inside the conductor (in the limit σ � ωε0)?
Express your result in terms of the skin depth δ =

√
2/µ0σω.

For a normally incident plane wave, we take the incoming wave to be in a medium
with index of refraction n and the transmitted wave to be in a medium with index
of refraction n′. Then
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For this problem, we have n = 1. For n′, we use the excellent conductor approx-
imation
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The current density inside the conductor is then
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δωσ

c
ei(z/δ−ωt)e−z/δ = x̂

√
ε0
µ0
Ei(1− i)

2
δ
ei(z/δ−ωt)e−z/δ (4)

[5] b) Now assume that the conductor is perfect. Solve for the reflected wave in the
limit of a perfect conductor. (Note that E‖ vanishes at the surface of a perfect
conductor.)

If a wave ~E = x̂Eie
i(kz−ωt) is normally incident on a perfect conductor, the

reflected wave will have the form ~E′′ = x̂E′′ei(−kz−ωt). The total electric field at
z = 0 (the surface of the conductor) is then x̂(Ei +E′′)e−iωt. Since this is in the
parallel direction, it must vanish. Hence E′′ = −Ei. The reflected wave is then

~E′′ = −x̂Eiei(−kz−ωt)



This is interpreted as a 180◦ phase shift.
[10] c) Compute the idealized surface current density ~K on the surface of the perfect

conductor, and show that it satisfies the relation

~K =
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~J dz

where ~J is the current density found in part a.

The surface current density is given by
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∣∣
z=0

= − 1
µ0
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where we used the fact that the transmitted wave ~B′ vanishes in a perfect con-
ductor. The incident and reflected magnetic inductions are
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Substituting in ~E and ~E′′ gives
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We now compare this with the current density found in part a. From (4) we have∫ ∞
0

~Jdz = x̂

√
ε0
µ0
Ei(1− i)

2
δ
e−iωt

∫ ∞
0

e−(1−i)z/δdz

= x̂

√
ε0
µ0
Ei(1− i)

2
δ
e−iωt

δ

1− i

= x̂

√
ε0
µ0

2Eie−iωt

So we see that ~K =
∫∞
0

~J dz is indeed satisfied.


