1 Problem 4.9
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Figure 1: Setup for problem 4.9

Using the fact that we have azimuthal symmetry, we have inside the sphere:
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And outside the sphere:
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where @, is the potential due to the charge q.
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Because 7’ only points to the single point charge along the z-axis, v = . Therefore:
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Now, we need to apply the following boundary conditions:
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Applying eqation (3) yields:
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Applying eqation (4) yields:
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Equating equations (5) and (6):
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Plugging B, into equation (5):
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Plugging these expressions for A; and By into equations (1) and (2):
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1.2

For r/d < 1, 1 > 2 terms are negligible. Thus, ®;,(7) becomes:
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Our solution for ®;, in part a is:
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For /ey — 00, all the terms in the series go to zero, except for the [ = 0 term:
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For ¢ /ey — o0, our solution for ®,, in part a becomes:
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Note that the extra term out front comes due to the fact that £y/¢ doesn’t vanish when it
multiplies [ when [ = 0. However, £q/¢ vanishes for all other terms in the series.
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Doyt () agrees with equation 2.8 in Jackson. Note that we have ®i,(a) = Doui(a), as ex-
pected, and ®;,(7) is constant, as expected, since the potential must remain constant inside
a conductor. Hence, our solution for part a reduces to that of a conducting sphere in the
limit /g9 — o0.

2 Problem 5.3

Figure 2: Single loop

Starting with the Biot-Savart Law for a loop with radius a and current I:
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Noting that dI x B = dlRsin6 = dIR(a/R) = dla:
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For N loops squished together, B just becomes:
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To account for the rings to the left of the observation point, we integrate from 0 to c:
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Figure 3:

Using the substitution b = atanf, db = asec? fdb:
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To account for the rings to the right of the observation point, we integrate from 0 to d:
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Using the substitution b = atanf, db = a sec? fdb:
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3 Problem 5.6
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Figure 4: Setup for problem 5.6
We will consider two different systems and superimpose them (see figure 4).

1. A cylinder of radius a with current density J2Z.

2. A cylinder of radius b with current density —Jz.

The B-field due to the cylinder in system 1 is:

fﬂﬂém/fds

B2mr = poJrr?
By =re

= Er (2 x7)

The B-field due to the cylinder in system 2 is:
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Superimposing these two systems yields B =B, + By
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