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ABSTRACT
Connected vehicle systems (CVS) are considered in this paper where
vehicles exchange information using wireless vehicle-to-vehicle
(V2V) communication. The concept of connected cruise control (CCC)
is established that allows control design at the level of individual
vehicles while exploiting V2V connectivity. Due to its high level of
modularity the proposed design can be applied to large heteroge-
neous traffic systems. The dynamics of a simple CVS is analysed in
detail while taking into account nonlinearities in the vehicle dynam-
ics as well as in the controller. Time delays that arise due to inter-
mittencies and packet drops in the communication channels are also
incorporated. The results are summarisedusing stability chartswhich
allow one to select control gains to maintain stability and ensure
disturbance attenuation when the delay is below a critical value.
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1. Introduction

Traffic congestion has been increasing monotonously in the last couple of decades and it
costs more than $120 billion annually in the United States only.[1] Connected vehicle tech-
nologies allow vehicles to obtain traffic information beyond the line of sight and they can
provide newways tomanage transportation systems andmitigate congestion. In this paper
the potentials and limitations of wireless vehicle-to-vehicles (V2V) communication are
investigated in order to maintain smooth flow in transportation systems. These technolo-
gies are originally developed for safety applications [2,3] but recent efforts demonstrated
their applicability to improve mobility [4–6] and fuel economy.[7]

One way to exploit V2V communication for mobility is creating vehicular platoons
where a designated leader is followed by a group of vehicles. In traditional platoon design
it is assumed that each vehicle is equipped with radar or other range sensors tomonitor the
motion of the vehicle immediately ahead and they use wireless communication to monitor
the motion of the platoon leader as shown at the top of Figure 1. This strategy is referred
as cooperative adaptive cruise control (CACC).[8–17] However, looking at the extremely
low penetration rate of CACC, one may argue that such tightly controlled platoons are
not feasible in dynamic traffic scenarios. First of all, auto manufacturers are selling indi-
vidual automobiles and not platoons of vehicles. This demand modular design that allow
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Figure 1. Comparing the connectivity topologies of CACC and CCC where red dashed arrows represent
the information flow via wireless V2V communication. In case of CACC each vehicle is equipped by radar
and receive information from a designated platoon leader using V2V communication. In case of CCC
the vehicle at the tail monitors the motion of n vehicles ahead using V2V communication which may be
conventional human-driven vehicles. The positions, velocities, and headways of the vehicles are denoted
by s–s, v–s, and h–s, respectively, while the communication delays are denoted by σ–s.

automakers to exploit the received V2V information without designing the whole platoon.
Also, the design must remain scalable when increasing the number of vehicles. However,
due to the limited range of wireless communication (approxmately 200–300m), vehicles
may not be able to communicate with a distant leader, and long platoons may place strong
restrictions on the motion of other vehicles participating in traffic by hindering certain
manoeuvres (e.g. entering or leaving the highway). Finally, assuming that all vehicles can
be equipped with sensors and actuators is unrealistic and would keep the penetration rate
low for a long time. It is clearly necessary to allow human-driven vehicles in the flow that
may or may not broadcast information about their motion.

In order to address these challenges we propose the concept of connected cruise control
(CCC) that is illustrated at the bottom of Figure 1. This strategy allows a single vehicle ben-
efit from V2V information broadcast by multiple vehicles ahead without requiring those
vehicles to be equipped with range sensors. As a matter of fact, it does not even require
that all vehicles broadcast their information. The different vehicle numbering used at the
top and the bottom of Figure 1 further emphasises that while CACC focuses on build-
ing platoons from head to tail, CCC focuses on increasing the situation awareness of an
individual vehicle (without redesigning the other vehicles). When comparing the top and
bottom of Figure 1 one may also notice that the level of automation required for CCC is
much less than for CACC and indeed eliminating range sensors and actuators significantly
reduces the cost. Still, our design may bring benefits at the system level when the CCC
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vehicle attenuates the velocity fluctuations arising in the vehicles ahead. Moreover, insert-
ing multiple CCC vehicles into the traffic flow of human-driven vehicles does not reduce
modularity while the arising large-scale connected vehicle system (CVS) may outperform
the conventional system.

Appropriately reacting to events that occur a few vehicles ahead may allowmilder
actions that are beneficial for safety and fuel economy and can also improve mobility.
To realise CCC, in this paper we propose a class of nonlinear, multi-input, proportional-
integral-velocity-acceleration (PIVA) type of controllers that allow the CCC vehicle to
exploit all available motion information from the broadcasting vehicles ahead. The con-
trollers are constructed such that they can ensure the existence of a uniform flow equilib-
rium in the entire velocity range independent of the external disturbances, communication
topology, control gains, and communication delays. This makes CCC applicable in het-
erogenous vehicle streams where CCC vehicles are mixed into the flow of conventional
vehicles. Indeed, this increased flexibility makes the control design more challenging as
explained below.

Most longitudinal controllers are constructed by omitting vehicle dynamics (grade, air
drag, and rolling resistance), but recent efforts showed that this can significantly influence
the behaviour of multi-vehicle systems.[18–21]. Here we consider a physics-based nonlin-
ear model to describe the longitudinal vehicle dynamics.[22] Some efforts have beenmade
to eliminate the vehicle dynamics by using controllers that counterbalance these terms.[23]
However, since the vehicle parametersmay not be known exactly and external disturbances
(grade and headwind) may not be known at all, such controllers may not be feasible in
practice. Instead, we use integral actions to eliminate the steady-state error.Moreover, con-
trollers are typically designed at the linear level in the CACC literature,[10,14–17] but they
ought to contain nonlinearities corresponding the saturation of speed at zero and at the
speed limit. In this paper we present a CCC framework that can accommodate any non-
linear range policy. This allows the controllers to switch automatically between CCC and
standard cruise control and, by choosing appropriate range policies, can lead to smooth
ride conditions and increased highway capacity.

While wireless communication allows vehicles to obtain information beyond the line
of sight, it also introduces delays into the control loop due to the intermittencies and
packets drops. Current designated short range communication (DSRC) protocols broad-
cast messages in every 100ms and the packet delivery ratio varies depending on distance
and geography.[24] The arising delays may significantly change the traffic dynamics lead-
ing to instabilities at the linear and nonlinear levels.[25–28] In this paper we focus on
the two kinds of stability: plant stability and string stability. By plant stability we sim-
ply mean the vehicle’s ability to approach a constant speed when all vehicles ahead travel
with that constant speed. On the other hand, string stability refers the vehicle’s ability to
attenuate fluctuations arising in the motion of cars ahead.While (plant) stability charts are
used extensively in the dynamics and control literature and in the industry, here we also
summarise string stability results using stability charts in order to provide a concise rep-
resentation of the dynamics under parameter variations. Moreover, we also evaluate string
stability at the nonlinear level and study how fluctuations of different sizes propagate along
the chain of CCC vehicles.

The layout of the paper is the following. In Section 2 we describe our general CCC
framework. In Section 3 we analyse the linear dynamics of a simple CVS that is built as
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a concatenation of the simplest CCC configuration. In Section 4 we study the nonlinear
dynamics of this system. Finally, in Section 5 we conclude our results and discuss future
research directions.

2. General framework for CCC

In this sectionwe consider a nonlinearmodel to describe the longitudinal vehicle dynamics
and construct a nonlinear controller that canmaintain a distance dependent velocity using
V2V information received from up to n vehicles ahead; see the bottom of Figure 1. CCC
strategies shall be based on the position, velocity, and acceleration of other vehicles and
integral terms shall be included in order to eliminate disturbances like air drag and grade.
Thus, we propose a class of multi-input PIVA controllers that can be realised even when
not all vehicles in the communication range broadcasts their kinematic information and
even when certain type of information (e.g. acceleration) is not available. Moreover, we
take into account the delay effects caused by intermittencies and packet drops in wireless
communication.

2.1. Vehicle dynamics and traffic equilibrium

In order to model the longitudinal dynamics of the vehicle we assume no slip condition on
the wheels and neglect the flexibility of the tires and the suspension. Applying the power
law we obtain the differential equation for the longitudinal velocity v

meff v̇ = −mg sinφ − γ mg cosφ − k(v + vw)2 + η

R
Ten, (1)

where the dot stands for differentiation with respect to time t, the effective mass meff =
m + J/R2 contains the mass of the vehicle m, the moment of inertia J of the rotating
elements, and the wheel radius R. Furthermore, g is the gravitational constant, φ is the
inclination angle, γ is the rolling resistance coefficient, k is the air drag constant, vw is the
velocity of the headwind, η is the gear ratio, and Ten is the engine torque.[18,22] For sim-
plicity, we consider φ = 0, vw = 0 and J = 0 =⇒ meff = m, while the other parameters
are shown in Table A1 in Appendix 1.

Our goal is to design controllers that can maintain a distance dependent velocity in the
velocity range v ∈ [0, vmax] and distance range h ∈ [0, ∞), that is, implement a given
range policy v = V(h) as a steady state of the system independent of the external distur-
bances. While a variety of range policies can be considered they shall satisfy the following
general properties: (i)V is continuous andmonotonously increasing (themore sparse traf-
fic is, the faster the vehicle wants to go); (ii) V(h) ≡ 0 for h ≤ hst (in dense traffic, the
vehicle intends to stop); (iii) V(h) ≡ vmax for h ≥ hgo (in sparse traffic, the vehicle tries to
maintain maximum (free-flow) speed). This can formally be written as

V(h) =
⎧⎨
⎩

0 if h ≤ hst,
F(h) if hst < h < hgo,
vmax if h ≥ hgo,

(2)

where F(h) is a strictly monotonously increasing function such that F(hst) = 0 and
F(hgo) = vmax. Indeed, vehicles that implement such range policy are capable of handling
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stop-and-go situations. The numerical values of the parameters hst, hgo, vmax used in this
paper are listed in Table A1 in Appendix 1.

Three different range policies are shown in Figure 2(a)–(c). Panel (a) displays the range
policy with the linear function

F(h) = vmax
h − hst
hgo − hst

, (3)

corresponding to keeping the constant time gap 1/F′(h) ≡ (hgo − hst)/vmax. To avoid non-
smoothness at hst and hgo (that can result in a ‘jerky’ ride) one may use the smooth range
policy with function

F(h) = vmax

2

(
1 − cos

(
π

h − hst
hgo − hst

))
, (4)

that is shown in Figure 2(b), or the infinitely smooth range policy with function

F(h) = vmax

2

(
1 + tanh

[
tan

(
π
h − (hst + hgo)/2

hgo − hst

)])
, (5)

which is depicted in Figure 2(c).
Apart from increasing driver comfort, smooth range policiesmay also increase the over-

all throughput of the system as shown by the flux-density diagrams in Figure 2(d)–(f). Here
the density and the flux are defined by ρ = 1/(h + �) and Q = ρv = ρV(1/ρ − �) where
� is the approximate vehicle length. We remark that these definitions are only accurate in
equilibrium situations where equidistant vehicles travel with constant velocity. Using the
parameters shown in Table A1, we obtain qmax = 0.75 [veh/s/lane] = 2700 [veh/h/lane],
qmax = 0.7997 [veh/s/lane] = 2879 [veh/h/lane], and qmax = 0.8315 [veh/s/lane] = 2993
[veh/h/lane] for the panels (d), (e), and (f), respectively. Such increase is considered sig-
nificant in transportation systems. At the same time, the minimum of the effective time
gap 1/F′(h) becomes smaller that can make control design more challenging as explained
further below.

2.2. Nonlinear control design

We consider the configuration at the bottom of Figure 1 where the CCC vehicle can mon-
itor the motion of multiple vehicles ahead (up to n vehicles) and we propose the following
nonlinear multi-input PIVA controller to regulate the engine torque:

Ten(t) =
n∑
j=1

Tcom,j(t − σj), (6)

where

Tcom,j = Kpj żj + Kij zj + Kvj(W(vLj) − v) + Kaj v̇Lj , (7)

and

żj = V

⎛
⎝1

j

⎛
⎝sLj − s −

j∑
k=1

�Lk

⎞
⎠
⎞
⎠ − v, (8)
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Figure 2. (a,b,c) Range policies (2) with the middle sections given by (3)–(5). (d)–(f ) Fundamental diagrams corresponding to the range policies. (g) Saturation
function (10).
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for j = 1, . . . , n. Here s and sLj denote the positions of the front bumper of the vehicles
along the road while v = ṡ and vLj = ṡLj are the corresponding velocities; see Figure 1.
These positions, velocities, and accelerations can be obtained by global positioning systems
(GPS), wheel-based sensors, and accelerometers.[3] Note that for accurate positioning
differential GPS may be required. The symbols �Lj represent the lengths of the vehicles
(not spelled out in Figure 1). The integral variables zj are introduced to eliminate the
steady-state error. Alternatively, one may use the headways h = sL1 − s − �L1 and hLj =
sLj+1 − sLj − �Lj+1 which yields

żj = V

⎛
⎝1

j

⎛
⎝h +

j−1∑
k=1

hLk

⎞
⎠
⎞
⎠ − v. (9)

The controller is constructed such that theCCCvehicle intends to keep a velocity depen-
dent distance (given by the range policy (2)) from the vehicle ahead and intends to keep
multiples of this distance (minus the vehicle lengths) from the vehicles that are further
ahead.[29,30] Moreover, the CCC vehicle also tries to match its speed and acceleration to
the speed and acceleration of vehicles ahead. Thus, when the vehicles ahead travel with
the same velocity v∗ and they are equidistant with headways h∗, then the CCC vehicle can
achieve the desired equilibrium v∗ = V(h∗). This equilibrium is independent of the exter-
nal disturbances, the communication topology, the control gains, and the communication
delays. The control law (7) also contains the saturation function

W(vLj) =
{

vLj if vLj ≤ vmax,
vmax if vLj > vmax,

(10)

shown in Figure 2(g), to hinder the CCC vehicle to follow vehicles whose velocity is larger
than vmax. The range policy (2) and the function (10) allow the controller to automatically
switch between CCC and standard cruise control when other vehicles move away.

The proportional, integral, velocity, and acceleration gains are denoted by Kpj , Kij , Kvj ,
and Kaj , respectively. When the CCC vehicle is not receiving messages from the jth vehicle
ahead the corresponding gains are set to zero. Also, when the jth vehicle is not transmitting
a certain type of information (e.g. acceleration) then the corresponding gain is set to zero.
This way the CCC vehicles exploits all available information and the controller remains
functional even when not all vehicles ahead are broadcasting.

We remark that apart from the nonlinearities arising in the vehicle dynamics (1) and
the PIVA controller (7), (8) one may take into account the engine saturation.[31] In this
case (6) shall be substituted by

Ten(t) = U

⎛
⎝ n∑

j=1
Tcom,j(t − σj), v(t)

⎞
⎠ , (11)

where the function U saturates at the maximum available torque (which depends on the
speed v(t)) and at the minimum available braking torque. These saturations do not effect
the linear stability analysis but would make the nonlinear analysis more complex so these
are neglected here.
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2.3. Communication delays

When using wireless V2V communication, time delays appear in the control loop since
messages have to be processed by both the sender and the receiver. First, the sender sam-
ples its kinematic properties (GPS location, wheel-based velocity) and after processing the
information the broadcasting unit (DSRC radio) sends the packet using the broadcast-
and-catch wireless protocol IEEE802.11p.[32] If the packet is successfully received by the
receiver then the information is processed and the controller assigns the appropriate com-
mands for the engine or brake torque. Indeed, each of these processes takes time and the
sampling time is set such that it is larger than the sum of these processing times. Typi-
cally, 	t = 100ms is used in current DSRC standards. We remark that according to the
IEEE802.11p protocol, successful packet delivery is not acknowledged by the receiver and
no packets are re-sent to be able to operate in dynamic traffic environments. For simplicity,
we assume that the clocks of the vehicles are synchronised.

When all packets are delivered successfully, the use of a zero-order hold (ZOH) results
in periodically varying time delays as shown in Figure 3(a). Thus, if the packet sent at t =
(k − 1)	t is successfully delivered, then it can be used by the CCC vehicle to set the torque
at t = k	t, which it kept constant until t = (k + 1)	t. This means that the delay in the
control loop increases from 	t to 2	t during the time interval t ∈ [k	t, (k + 1)	t), and
then it drops back to 	t when a new packet is put in use at t = (k + 1)	t; see Figure 3(a)
and [33]. However, when only every rth packet is delivered, the delay increases to (r +
1)	t before dropping back to 	t; see Figure 3(b) and (c) for r=2 and r=3, respectively.
Indeed, packet drops typically occur in a stochastic manner which results in stochastic
delay variations as shown in Figure 3(d).

In this paper our goal is to understand the trends implied by the delay, and thus, we
approximate the time-varying communication delays with their time average, denoted by
σj in (6). In particular, when every rth packet is delivered, we have

σ = r + 2
2

	t. (12)

In the stochastic case we can use the mean of the delay distribution to approximate the
average delay. Since packet delivery can be modelled by Bernoulli trials, we use the mean
of the corresponding geometric distribution of the first success time to obtain the delay

σ = 1
p
	t, (13)

where p is the probability of successful packet delivery.
In Section 3 we analyse the stability of a simple predecessor–follower configuration

using the average delay approximation. In order to validate of this approximation, we carry
out the calculations with ZOH with no packet drops (r=1 in (12) and Figure 3(a)) in
Appendix 2.We demonstrate that the stability charts obtained with the two differentmeth-
ods are almost indistinguishable from each other. For deterministic packet drops (r>1
in (12) and Figure 3(b),(c)) the ZOH calculations become much more complex while the
complexity of average delay approximation remains the same. In this case the average delay
approximation still gives a good approximation of the stability chart obtained using ZOH
(though the difference is larger than with no packet drops). For stochastic packet drops
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Figure 3. Time-varying communication delays when using a ZOH in the controller. (a) No packet loss. (b) Every second packet is received. (c) Every third packet is
received. (d) Packets are lost in a stochastic manner.
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Figure 4. A CVS built as the concatenation of the simplest CCC configuration (zoomed).

(Figure 3(d)) using the average delay approximation (13) allows us to identify the tenden-
cies, but more sophisticated methods are needed to obtain quantitative results. Taking the
mean dynamics, the resulting distributed delay system can be used to obtain necessary sta-
bility conditions; see [16] with uniform distribution and [34] with geometric distribution.
However, to be able to derive necessary and sufficient conditions one needs to analyse the
covariance dynamics.[34]

2.4. Predecessor–follower configuration

When mixing CCC and non-CCC vehicles a large variety CVS may arise as discussed
in [35] where simplified model and a simplified controller were used. Here we use the
physics-based model and controller described above and we analyse the simplest CCC
configuration where the CCC vehicle receives information from the vehicle immediately
ahead. The concatenation of this setup gives rise to a simple CVS of predecessor–follower
type; see Figure 4.

In this case (6)–(9) are simplified to

Ten(t) = Tcom(t − σ), (14)

where

Tcom = Kpż + Kiz + Kv(W(vL) − v) + Kav̇L, (15)

and

ż = V(h) − v, (16)

where the index j=1 is dropped for simplicity. Inserting these into (1), and considering
the simplification φ = 0, vw = 0 and J = 0 =⇒ meff = m, the system can be described by
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the delay differential equations

ḣ(t) = vL(t) − v(t),

v̇(t) = −γ g − k
m

v2(t) + K̂pż(t − σ) + K̂iz(t − σ)

+ K̂v(W(vL(t − σ)) − v(t − σ)) + K̂av̇L(t − σ),

ż(t) = V(h(t)) − v(t),

(17)

where vL is the input and v is the output and

K̂p = Kpη

mR
, K̂i = Kiη

mR
, K̂v = Kvη

mR
, K̂a = Kaη

mR
. (18)

Note that K̂p and K̂v have the unit [1/s], K̂i have the unit [1/s2], and K̂p/K̂i repre-
sents the characteristic time needed to make the steady-state error zero. Indeed, K̂a is a
dimensionless quantity.

We remark that instead of (14) the first-order lag approximation

Tcom(t) = Ten(t + σ) ≈ Ten(t) + σ Ṫen(t), (19)

is often used in the literature; see Appendix 3. However, we will demonstrate in the next
section that this only gives a good approximation of the dynamics for small gains and low
frequencies.

3. Linear stability analysis and stability charts

In this section we analyse the linear stability of the simple model (17). In particular, we
characterise the domains of plant stability and string stability in the parameter space
(K̂p, K̂i, K̂v, σ). For simplicity, we consider K̂a = 0 and refer the reader to [36] where the
effects of this parameter are studied on a simplified model.

3.1. Linearisation and transfer function

When considering the constant input vL(t) ≡ v∗
L, where 0 ≤ v∗

L ≤ vmax, the system (17)
possesses the equilibrium

v∗ = v∗
L, v∗ = V(h∗), z∗ = 1

K̂i

(
γ g + k

m
(v∗)2

)
, (20)

where the last equation determines the engine torque T∗
en = Kiz∗ = mR/η(γ g +

k/m(v∗)2) required to maintain the equilibrium.We remark that in the velocity range 0 <

v∗
L < vmax the relationship v∗ = V(h∗) gives the unique headway h∗ = F−1(v∗); see (2).
On the other hand, for v∗

L = 0 any h∗ ≤ hst is possible, and for v∗
L = vmax any h∗ ≥ hgo

is possible. Finally, for v∗
L > vmax the state v∗ = vmax can be achieved though this not an

equilibrium of (17) since the left-hand side of the first equation is not zero. In this case, the
follower simply operates in standard cruise control mode while the leader is getting away.
In this paper we focus on the dynamic regime 0 < v∗

L < vmax.
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Defining the perturbations

x(t) =
⎡
⎣h̃(t)ṽ(t)
z̃(t)

⎤
⎦ =

⎡
⎣h(t) − h∗

v(t) − v∗
z(t) − z∗

⎤
⎦ , u(t) = ṽL(t) = vL(t) − v∗, (21)

the linearisation of (17) can be written as

ẋ(t) = A x(t) + Aσ x(t − σ) + B u(t) + Bσ u(t − σ), (22)

with matrices

A =
⎡
⎣ 0 −1 0

0 −2 k
mv∗ 0

N∗ −1 0

⎤
⎦ , Aσ =

⎡
⎣ 0 0 0
N∗K̂p −(K̂p + K̂v) K̂i
0 0 0

⎤
⎦ ,

B =
⎡
⎣10
0

⎤
⎦ , Bσ =

⎡
⎣ 0
K̂v
0

⎤
⎦ . (23)

Here the symbol N∗ represents the derivative of the range policy (2) at the equilibrium
headway h∗ that can be expressed as

N∗ = V ′(h∗) =
⎧⎨
⎩

0 if h∗ ≤ hst,
F′(h∗) if hst < h∗ < hgo,
0 if h∗ ≥ hgo,

(24)

which is equivalent to

N∗ = F′(F−1(v∗)), (25)

for 0 < v∗ < vmax. For the range policy (3) we obtain

N∗ ≡ vmax

hgo − hst
, (26)

while for (4) we have

N∗ = π
vmax

hgo − hst

√
v∗

vmax

(
1 − v∗

vmax

)
, (27)

and these are plotted in Figure 5(a) and (b), respectively. For the range policy (5) the alge-
braic expression becomes complicated but the function looks similar to case (4) and both
functions reach their maximum at v∗ = vmax/2 where we have N∗ = π/2 · vmax/(hgo −
hst). Notice thatN∗ has the unit [1/s]. Thus, for 0 < v∗ < vmax, wemay define the effective
time gap as

Tgap = 1
N∗

. (28)

This is constant in case of the range policy (3) but changes with velocity v∗ for range
policies (4) and (5).
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Figure 5. The derivative (25) of the range policy as a function of the equilibrium velocity v∗. Panels (a),
(b), and (c) correspond to (3),(4), and (5), respectively.

The output y(t) = ṽ(t) = v(t) − v∗ can be formally written as

y(t) = C x(t) + Cσ x(t − σ) + D u(t) + Dσ u(t − σ), (29)

with matrices

C = [
0 1 0

]
, Cσ = [

0 0 0
]
, D = Dσ = 0. (30)

Taking the Laplace transform of (22) and (29) with zero initial conditions on the interval
t ∈ [−σ , 0] and using the matrices (23) and (30) result in the transfer function


(s) = Ṽ(s)
ṼL(s)

= (C + Cσ e−sσ )(sI − A − Aσ e−sσ )−1(B + Bσ e−sσ ) + (D + Dσ e−sσ )

= K̂vs2 + N∗K̂ps + N∗K̂i

(s3 + 2 k
mv∗s2)esσ + (K̂p + K̂v)s2 + (N∗K̂p + K̂i)s + N∗K̂i

, (31)

where Ṽ(s) and ṼL(s) denote the Laplace transform of ṽ(t) and ṽL(t), respectively.
We remark that the transfer function of the system with the first-order lag approxima-

tion (19) can be obtained by standard analysis of the corresponding ordinary differential
equations; see Appendix 3. This corresponds to the approximation esσ ≈ 1 + σ s in (31).
Again, we emphasise that this only provides reliable stability results for small gains and low
frequencies as will be shown below.
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3.2. Plant stability

Herewe investigate the dynamics in the vicinity of the equilibrium (20) at the linear level by
using the system (22), (29), and the corresponding transfer function (31). We summarise
the results using stability charts in the (K̂i, K̂p)-plane and in the (K̂v, K̂p)-plane for different
values of the delay σ . In this subsection we study plant stability which means that if the
leader is driving with constant speed the CCC vehicle approaches this speed. In the next
subsection we investigate string stability whichmeans that if the speed of the vehicle ahead
varies, these fluctuations are attenuated by the CCC vehicle. That is, string stability implies
that fluctuations decay as they propagate backward along the chain of CCC vehicles in
Figure 4.We show the results for v∗ = 15 [m/s] (that is, h∗ = 20 [m]) using the parameters
in Table A1. These result in N∗ = π/2 [1/s], that is, Tgap = 2/π ≈ 0.64 [s] for the range
policies (2), (4) and (2), (5); see Figure 5(b) and (c). As will be shown below this gives the
worst-case scenario in terms of plant and string stability.

To achieve plant stability, all the infinitely many poles of the transfer function (31) have
to be located in the left-half complex plane. To ensure this, we analyse the characteristic
equation obtained by setting the denominator of the transfer function (31) to be zero. For
s=0, we obtain the plant stability boundary

K̂i = 0. (32)

When crossing this stability boundary a real characteristic root crosses the imaginary axis
in the complex plane and the system diverges from the equilibrium in a non-oscillatory
way.

Moreover, substituting s = i�, i2 = −1, � > 0 into the characteristic equation, sepa-
rating the real and imaginary parts, algebraic manipulations lead to

K̂p = −2
k
m

v∗ cos(�σ) + � sin(�σ) − K̂v + N∗K̂i

�2 ,

K̂i = �2

N2∗ + �2

((
2
k
m

v∗N∗ + �2
)
cos(�σ) −

(
N∗ − 2

k
m

v∗
)

� sin(�σ) + N∗K̂v

)
.

(33)

This gives the stability boundary in the (K̂p, K̂i) parameter plane as shown by the solid red
curve in Figure 6(a) for K̂v = 0.5 [1/s] and σ = 0.2 [s]. (This σ value corresponds to the
scenario when every second packet is delivered; cf. (12) and Figure 3(b).) When crossing
the stability boundary (33), a pair of complex conjugate roots crosses the imaginary axis
at ±i� and oscillations arise with frequency close to �. This frequency increases along
the boundary as shown in Figure 6(b) resulting in low- and high- frequency oscillations
when crossing the lower and the upper part of the plant stability boundary, respectively. By
applying Stépán’s formulae,[37] it can be proven that plant stability is guaranteed within
the lobe-shaped area enclosed by (32) and (33) as shown by the union of the light and dark
grey areas.

The stability losses are demonstrated by plotting the leading eigenvalues in the complex
plane in Figure 6(c)–(h) for the points marked A, B, C, G, H, I in Figure 6(a) at K̂i = 0.5
[1/s2]. The eigenvalues are calculated by using the software DDE-biftool.[38] Cases G, H,
I represent a low-frequency stability loss (� ≈ 1.07 [1/s] in case G) where a pair of roots
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Figure 6. (a) Stability diagram in the (K̂i, K̂p) parameter plane for K̂v = 0.5 [1/s] and σ = 0.2 [s].
The plant and string stability boundaries are shown as solid red and solid blue curves, respectively,
while the dashed curves correspond to the first-order lag approximation. The green vertical line (close
to the vertical axis) is a string stability boundary with ωcr = 0. Shading indicates plant stability while
string stability is only satisfied in the dark grey region. (b) Variation of the frequencies � and ωcr along
the plant and string stability boundaries. (c)–(h) Eigenvalue plots for the points A, B, C, G, H, I marked in
panel (a). (i), (j) Amplification ratios as a function of the excitation frequency for points C, D, E, F, Gmarked
in panel (a).
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moves to the right-hand side as K̂p is decreased. On the other hand, Cases A, B, C represent
a high-frequency stability loss (� ≈ 6.74[1/s] in case B) where a pair of roots crosses the
imaginary axis as K̂p is increased.

We remark that one may derive plant stability boundaries for the system with the first-
order lag approximation (19) by using the transfer function (61) given in Appendix 3 and
the results are depicted as red dashed curves in Figure 6(a), (b). These only approximate
the stability boundaries well for low frequencies and small gains. In fact, the first-order
lag approximation predicts a much larger plant stable area (above the red dashed curve in
Figure 6(a)) compared to the shaded domain. In particular, the approximationwould allow
the use of high gains while these lead to high-frequency oscillations in the delayed system.

3.3. String stability

To determine string stability (attenuation of fluctuations) at the linear level we use the
Fourier decomposition of the signal vL(t). As superposition holds for linear systems, string
stability can be guaranteed by ensuring that the output–input amplitude ratio stays below
1 for all excitation frequencies. In particular, driving the system with the sinusoidal input

vL(t) = v∗
L + ṽL(t) = v∗

L + v
amp
L sin(ωt), (34)

results in the steady-state output

vss(t) = v∗ + ṽ(t) = v∗ + v
amp
L |
(iω)| sin(ωt + ∠
(iω)), (35)

where v∗ = v∗
L (cf. 20), while 
(iω) is obtained from the transfer function (31). Here | · |

and ∠· denote the magnitude and angle of a complex number, respectively. That is, string
stability is satisfied when

|
(iω)| < 1, (36)

for allω > 0. Using (31) and some algebraicmanipulations this condition can be re-written
as

G(ω) = −ω4 −
(
K̂2
p + 2K̂pK̂v + 4

k2

m2 (v∗)2
)

ω2 − K̂2
i

+ 2
(((

N∗ − 2
k
m

v∗
)
K̂p + K̂i − 2

k
m

v∗K̂v

)
ω2 + 2

k
m

v∗N∗K̂i

)
cos(ωσ)

+ 2
((

K̂p + K̂v

)
ω2 + 2

k
m

v∗N∗K̂p −
(
N∗ − 2

k
m

v∗
)
K̂i

)
ω sin(ωσ) < 0, (37)

for all ω > 0 which is satisfied if the maximum of G(ω) is smaller than zero. Indeed, G
depends on many other parameters, including the control gains K̂p, K̂i, K̂v, but these are
not spelled out for the sake of simplicity.

If G reaches its maximum at ωcr = 0, then the stability condition simplifies to

K̂i > 4
k
m

v∗N∗, (38)

and the corresponding boundary is shown in Figure 6(a) as a green vertical line (close to
the vertical axis). On the other hand, ifG reaches itsmaximum atωcr > 0, then the stability
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boundary is given by

G(ωcr) = 0,

H(ωcr) = ∂G
∂ωcr

= 0,
(39)

where the condition (∂2G/∂ω2
cr) < 0 also has to be satisfied. However, (39) cannot be

solved explicitly for the gain parameters. In order to derive the stability boundaries in the
parametric form (K̂p(ωcr), K̂i(ωcr)) we set up the mock ordinary differential equation

d
dt
K̂p = G(K̂p, K̂i;ωcr),

d
dt
K̂i = H(K̂p, K̂i;ωcr),

(40)

and solve for its equilibrium while varying the parameter ωcr by applying numerical
continuation.[39] This requires an initial guess of the solution for a particular value of
ωcr that can be corrected using the Newton–Raphson method. Then the corrected solu-
tion can be used as an initial guess for nearby ωcr values. This way the stability boundary
can be continued while ωcr is varied.

The corresponding string stability boundary is shown as a blue solid curve in Figure 6(a)
for K̂v = 0.5 [1/s] and σ = 0.2 [s] while the corresponding frequencies ωcr are plotted in
Figure 6(b). The lobe-shaped dark grey domain enclosed by (38) and the solution of (39)
corresponds to string stable parameter combinations. Notice that ωcr increases along the
boundary. This means that string stability occurs for low- and high- frequencies when
crossing the stability boundary for low and high values of K̂p, respectively. We remark that
there exist other string stability boundaries that are located in the plant unstable (white)
domain. These are not shown in the figure since they have no physical meaning.

In order to demonstrate the string stability losses at different frequencies we plot the
amplification ratio |
(iω)| as a function of the frequency ω in Figure 6(i), (j) for the points
marked C, D, E, F, G in Figure 6(a) at K̂i = 0.5 [1/s2]. Cases E, F, G show a low-frequency
string stability loss that occurs when K̂p is decreased. In particular, ωcr = 1.42 [1/s] in
case F (see the zoomed version in panel (j)), and thus, case G is string unstable in the
frequency domain ω ∈ [0.37, 1.88] [1/s]. On the other hand, cases C, D, E correspond to
a high-frequency string stability loss through the increase of K̂p. Here we have ωcr = 5.17
[1/s] in case D, and thus case C shows string unstable behaviour in the frequency domain
ω ∈ [5.00, 6.86] [1/s].

Again, the string stability boundaries can be obtained numerically when using the first-
order lag approximation (19) and the transfer function (61) given in Appendix 3. The
results are plotted in Figure 6(a), (b) as blue dashed curves that only provide a good approx-
imation of the stability boundaries for low frequencies and small gains. Also, the predicted
string stable domain (above the blue dashed curve in Figure 6(a)) is significantly larger
than the dark grey domain.

We demonstrate how the plant and string stable domains change with the communica-
tion delay σ in Figure 7 for K̂v = 0.5 [1/s] where the same notation is used as in Figure 6(a),
(b). For reference, we show the case when σ = 0 in Figure 7(a), (b). In this case selecting
sufficiently large gains, (i.e., K̂p � 2.13 [1/s] and K̂i � 0.0281 [1/s2]) ensures both plant and
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Figure 7. (a)–(d) Stability diagram in the (K̂i, K̂p) parameter plane in case of K̂v = 0.5 [1/s] for different
values of the communication delay σ as indicated. (e)–(g) Variation of the frequencies� and ωcr along
the plant and string stability boundaries. The same notation is used as in Figure 6(a), (b).
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string stability. However, this does not hold for nonzero delay as shown in Figure 7(b)–(d),
(f)–(h)where the σ values are selected according to (12) for r=1,2,3. As the delay increases
the stable domains shrink and for σ = 0.25 [s] the string stable domain disappears.

In order to show the effects caused by the variations of the gain parameter K̂v, we fix
K̂i = 0.5 [1/s2] and plot the plant and string stability boundaries in the (K̂v, K̂p)-plane for
different values of σ in Figure 8. In this case the plant stability boundary can be found in
parametric form by rearranging (33) while the string stability boundary can be obtained
by setting up a mock differential equation for K̂p and K̂v, similar to (40). Notice that, apart
from the zero delay case shown in Figure 8(a), (e), K̂v has to be between bounds in order to
maintain stability. Figure 8(a)–(d) also illustrates that the plant and string stable domains
shrink as the delay increases and that string stability is not possible to obtain when the
delay exceeds some critical value. In particular, Figure 8(d), (h) depicts a scenario where
the delay is very close to the critical value.

We remark that with no packet drops the stability results obtained above match very
well with those obtained using ZOH inAppendix 2; compare Figure 7(b) with Figure A1(a)
and Figure 8(b) with Figure A1(b). Moreover, when considering the general CCC setup in
Figure 4 one may compare the speed variations of the CCC vehicle to any of the n vehicles
ahead and obtain different string stability results.[35,36]

3.4. Calculating the critical delay

In order to obtain a performance limit of the controllers, here we determine the critical
value of the delay beyond which no string stability is possible for any combination of the
gain parameters K̂p, K̂i, K̂v. By observing the zoomed inlets in Figure 7(c), (d) one may
notice that the string stability boundary emanates for the ωcr = 0 point (blue cross) in dif-
ferent ways. To characterise this behaviourwe calculate the Taylor expansion of the stability
boundary (K̂p(ωcr), K̂i(ωcr)) about ωcr = 0:

K̂p(ωcr) = K̂p(0) + dK̂p

dωcr

∣∣∣∣∣
0

ωcr + 1
2
d2K̂p

dω2
cr

∣∣∣∣∣
0

ω2
cr + · · · ,

K̂i(ωcr) = K̂i(0) + dK̂i

dωcr

∣∣∣∣∣
0

ωcr + 1
2
d2K̂i

dω2
cr

∣∣∣∣∣
0

ω2
cr + · · · ,

(41)

where the coefficients can be obtained by taking the total derivatives of functions
G(K̂p(ωcr), K̂i(ωcr),ωcr) and H(K̂p(ωcr), K̂i(ωcr),ωcr) in (39) with respect to ωcr. In par-
ticular, we obtain

dK̂p

dωcr

∣∣∣∣∣
0

= dK̂i

dωcr

∣∣∣∣∣
0

= d2K̂i

dω2
cr

∣∣∣∣∣
0

= 0,
d2K̂i

dω2
cr

∣∣∣∣∣
0

= − ∂2G
∂ω2

cr

∣∣∣∣
0

(
∂G
∂K̂p

∣∣∣∣∣
0

)−1

. (42)

Thus, solving d2K̂i/dω2
cr|0 = 0 for σ one may obtain the critical delay where the stability

boundary changes direction. In the general case it is difficult to calculate this σ analytically.
To get some insight, first we consider k/m = 0 as this is a small number compared to any
other constants in the systems; cf. Table A1 in Appendix 1.
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Figure 8. (a)–(d) Stability diagrams in the (K̂v, K̂p)parameter plane in case of K̂i = 0.5 [1/s2] for different
values of the delay σ as indicated. (e)–(g) Variation of the frequencies � and ωcr along the plant and
string stability boundaries. The same notation is used as in Figure 6(a), (b).
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Figure 9. The critical delay σcr as the function of the gain parameter K̂v. Solid green and red dashed
curves are for k/m = 0 and k/m = 2.9775 · 10−4 [1/m], cf. Table. A1.

In this case we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K̂i(0) = 0,

K̂p(0) = 2(N∗ − K̂v),

d2K̂i

dω2
cr

∣∣∣∣∣
0

= 2
2N∗(N∗ − K̂v)σ

2 − 2(2N∗ − K̂v)σ + 1
N∗ − K̂v

,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

if K̂v ≤ N∗,

K̂i(0) = 0,

K̂p(0) = 0,

d2K̂i

dω2
cr

∣∣∣∣∣
0

= 2
2K̂vσ − 1
K̂v − N∗

,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

if K̂v > N∗.

(43)

That is, solving d2K̂i/dω2
cr|0 = 0, we obtain the critical delay

σcr =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2N∗ − K̂v −
√
2N2∗ − 2N∗K̂v + K̂2

v

2N∗(N∗ − K̂v)
if K̂v ≤ N∗,

1
2K̂v

if K̂v > N∗,
(44)

which is shown in Figure 9 as a green solid curve.
Notice that σcr takes its maximum at K̂v = N∗ where

σ̄cr = 1
2N∗

= Tgap

2
, (45)

cf. (28). This means that when delay is larger than the half of the time headway, there
exist no combination of the gain parameters K̂p, K̂i, K̂v that can guarantee plant and string
stability. When considering k/m > 0 the algebraic formulae become more complicated
but one can calculate σcr numerically for different values of K̂v as shown in Figure 9 by
the red dashed curve (that almost overlaps the green curve). The maximum still occurs
at K̂v ≈ N∗, that is, σ̄cr ≈ 1/2N∗ as depicted by the zoomed version (shown as an inlet).
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Similar arguments may be used when considering first-order lag approximation (19) and
the transfer function (61). However, in this case there exist a boundary that leads to string
stability even for σ > σ̄cr; see the domains above the blue dashed curves in Figures 7(d)
and 8(d).

4. Nonlinear effects

Since the vehicle model (1) as a well as the controller (6), (7), (9) are nonlinear, the ques-
tion arises that how such nonlinearities influence the dynamics of CVS. Here we consider
the predecessor–follower configuration studied in the previous section and investigate the
effects of the nonlinear PIVA controller (14)–(16).

Regarding plant stability, we found that the linear stability losses detected above cor-
respond to supercritical Hopf bifurcations at the nonlinear level [37,40] and self-excited
oscillations appear outside the linearly stable domain only. That is, linear plant stability
ensures global plant stability. In order to study string stability at the nonlinear level, we
concatenate the system (17) and investigate the propagation of perturbations along the
chain of 85+1 vehicles (see Figure 4) while using the range policy (2), (4) with parameters
in Table A1. We show below that there exist parameter domains where the system is lin-
early string stable but it is string unstable at the nonlinear level. That is, small perturbations
decay as they propagate along the platoon while large perturbations are amplified.

The results are summarised in Figure 10 for K̂v = 0.5 [1/s], K̂i = 0.5 [1/s2], and σ = 0.2
[s]. In this case, v∗ = 15 [m/s] corresponds to Figures 6(a), 7(c), and 9(c). Due to the non-
linear relationship (27) shown in Figure 5(b) we obtain the plant and string stability curves
(red and blue) in the (v∗, K̂p)-plane as shown in Figure 10(a). The corresponding criti-
cal frequencies are plotted in Figure 10(b). In order to demonstrate the nonlinear effects
we select the parameters corresponding to the point J located in the linearly string stable
domain in Figure 10(a), that is, we consider v∗ = 25 [m/s] and K̂p = 1.6 [1/s].

We set the velocity of the head vehicle (the first vehicle in the platoon) to be

vH(t) = v∗
H + v

amp
H sin(ω t), (46)

cf. (34) and vary the amplitude v
amp
H and the frequencyω. In steady state the velocity of the

tail vehicle becomes

vssT (t) = v
amp
T φ(t), (47)

where φ(t) is a 2π/ω-periodic function with amplitude 1. (This form may not hold for a
general system but we found it to be true for the type of nonlinearities used here.) We use
the numerical continuation package DDE-biftool [38] to compute the steady-state oscilla-
tions. Since this package can only handle autonomous systems we generate the sinusoidal
signal in (46) by the equation[

ẋ
ẏ

]
=

[
μ ω

−ω μ

] [
x
y

]
− (x2 + y2)

[
1 0
0 1

] [
x
y

]
, (48)

which is the normal form of a supercritical Hopf bifurcation.[40] For μ = 1 this leads to
the stable nonlinear oscillations [

x(t)
y(t)

]
=

[
sin(ωt)
cos(ωt)

]
. (49)
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Figure 10. (a) Stability chart in the (v∗, K̂p)-plane for K̂v = 0.5 [1/s], K̂i = 0.5 [1/s2] and σ = 0.2 [s]
whenusing the rangepolicy (2), (4)withparameters shown in TableA1. (b) Variationof the frequencies�
andωcr along the linear plant and string stability boundaries. The same notation is used as in Figure 6(a),
(b) and the bistable domain is indicated as dashed. (c)–(e) The amplitude of the steady-state oscillations
of a vehicle at the tail of a (85 + 1)-car chain for different perturbation sizes applied at the head vehi-
cle. The parameters correspond to the point marked J in panel (a). The blue curves are for the nonlinear
model while the green curves show the linear approximation. (f )–(h) Velocity oscillations of the head
vehicle (black dashed–dotted curve) and the tail vehicle in steady state (blue solid curve) corresponding
to the crosses atω = 0.5 [1/s] in panels (c)–(e).
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In Figure 10(c)–(e) the blue curve depicts the amplitude of the tail vehicle v
amp
T as a

function of the excitation frequency ω for different values of the amplitude of the head
vehicle v

amp
H . The nonlinear results are compared with the prediction of the linear model

(green curve) that is based on the transfer function (31). For small ω the blue curves are
missing since a large number of collocation points were needed to represent the peri-
odic orbit and the continuation tools lead to computational difficulties. The oscillations
are plotted in Figure 10(f)–(h) for ω = 0.5 [1/s]. When the excitation amplitude is small
(Figure 10(c), (f)) the linear model gives a good prediction and string stable behaviour is
observed at all frequencies, that is, perturbations are attenuated as they propagate along
the chain of vehicles. On the other hand, when the excitation amplitude exceeds a critical
value (Figure 10(d), (g)), then the system becomes string unstable. That is, perturba-
tions may increase as they propagate upstream and lead to large-amplitude stop-and-go
oscillations at the tail. Further increasing the oscillation amplitude (Figure 10(e), (h)), no
significant changes are observed in the qualitative dynamics. These results correspond to
whatwas observed in [26] for a simplifiedmodel using a ring configuration.We remark that
the acceleration of vehicles may become unrealistically large and the speed may become
slightly negative for the fully developed stop-and-go motion since the engine and break
torques are not saturated in ourmodel. Investigating such effects are left for future research.

The domains of bistability are indicated in Figure 10(a) as dashed regions bounded by
the linear string stability boundaries (blue curves) and the bistability boundaries (black
curves), the latter one obtained by numerical continuation. When moving from the lin-
ear stability boundary towards the bistability boundary, the size of the input perturbation
required to trigger large-amplitude oscillations increases. In the vicinity of the linear sta-
bility curve even small perturbations at the head lead to stop-and-go oscillations at the
tail. On the other hand, close to the bistability boundary the input at the head has to be
almost as large the output at the tail. By observing the shape of the bistable regime one
may notice that considering the linear string stability boundaries in the worst-case sce-
nario (v∗ ≈ 15[m/s]) is adequate to make the system string stable for all v∗ values at the
nonlinear level. This property allows a reliable nonlinear CCC design.

5. Conclusion and discussion

In this paper, we established the concept of CCC that goes beyond traditional platooning
scenarios and allows modular and scalable design of heterogenous CVS. In particular, we
showed that using CCC, one can exploit the ad-hoc nature of wireless V2V communica-
tion and ensure the existence of a uniform flow equilibrium in the entire velocity range
independent of the external disturbances, connectivity structure, applied control gains,
and communication delays. We demonstrated that designing the nonlinear range policy
appropriately may lead to increased flux on highways while the flow can be stabilised by
tuning the gains in the proposed nonlinear, multi-input, PIVA controllers. We explained
how time delays arise in the feedback loops corresponding to intermittencies and packet
drops.

We analysed the linear and nonlinear dynamics of a CVS built as a concatenation of
the simplest CCC configuration. In particular, we evaluated the plant and string stabil-
ity of the system. At the linear level we used transfer functions to evaluate the dynamics
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and converted the algebraic stability conditions into stability charts that allow designers to
choose the control gains. We also proved that if the communication delay exceeds the half
of the time headway then no combinations of the proportional, integral, and velocity gains
can ensure string stability.We used numerical continuation to evaluate the dynamics at the
nonlinear level and to characterise the domains of bistability in parameter space. In these
domains the system showed string stable behaviour for small perturbations, that is, per-
turbations decayed as they propagated backward along the chain of vehicles. On the other
hand, for large perturbations we observed string instability and stop-and-go motion arose
as the signal cascaded backward. However, we also found that bistability can be avoided by
selecting the control gains according to the worst-case scenario of linear stability, making
the nonlinear control design successful.

Indeed, many interesting questions remain to be studied about CCC and CVS. For
example, acceleration may be used to improve the performance, especially to increase
the critical delay.[36] Also, it can be shown that string stability may be achieved by
exploiting long range V2V communication even when the vehicles between the sender
and the receiver are human-driven cars that are not equipped with range sensors and
communication.[35] Finally, by analysing the covariance dynamics one may design con-
trollers that ensure plant stability as well as attenuation of disturbances despite stochastic
delay variations in the control loop.[34] Showing the applicability of these results on
physics-based vehicle models and realising the controllers on real vehicles will be pursued
in the future.
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Appendix 1. Parameters used in this paper

Table A1. Data of a 2011 Chevrolet HHR vehicle [41] are shown together with the parameters used for
the range policies (2)–(5).

m= 1555 (kg) Mass of the vehicle
Cd = 0.34 Air drag coefficient
A= 2.3 ( m2) Frontal area
ρa = 1.184( kg/m3) Air density at 25 (◦C )
k = 1

2 CdρaA = 0.463 ( kg/m )
R = 0.313 (m) Tire rolling radius
γ = 0.011 Tire rolling resistance coefficient
g = 9.81 ( m/s2) Gravitational constant
� = 5(m) Vehicle length (approximation)
vmax = 30( m/s ) Desired maximum velocity
hst = 5(m) Desired stopping distance
hgo = 35(m) Minimal free-flow distance

http://twr.cs.kuleuven.be/research/software/delay/ddebiftool.shtml
http://twr.cs.kuleuven.be/research/software/delay/ddebiftool.shtml
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Appendix 2. Digital control with zero-order hold and no packet drops

As mentioned in the main text, σ -s in (6), (14) represent the average delays while the delay in fact
varies in time; see Figure 3. In order to demonstrate that this is a reasonable approximation we
present the linear stability charts for the predecessor–follower configuration analysed in Section 3
with no packet drops; see Figure 3(a) and (12) with r= 1.

In this case the system (17) is substituted by

ḣ(t) = vL(t) − v(t),

v̇(t) = −γ g − k
m

v2(t) + K̂p(V(h(tk−1)) − v(tk−1)) + K̂iz(tk)

+ K̂v(W(vL(tk−1)) − v(tk−1)) + K̂av̇L(tk−1),

z(tk+1) = z(tk) + (V(h(tk)) − v(tk))	t,

(A1)

on the time interval t ∈ [k 	t, (k + 1)	t) where the integral part of controller is implemented as a
discrete map. Again we consider K̂a = 0 and linearise the system about the equilibrium (20). Then
we solve the linearised system on the time interval t ∈ [k 	t, (k + 1)	t) with the approximation∫ tk+1
tk

ṽL(t)dt ≈ (ṽL(tk+1) + ṽL(tk))	t/2 and define the augmented state and input

x̂(k) =

⎡
⎢⎢⎢⎢⎣

h̃(tk)
ṽ(tk)
z̃(tk)

h̃(tk−1)
ṽ(tk−1)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

h(tk) − h∗
v(tk) − v∗
z(tk) − z∗

h(tk−1) − h∗
v(tk−1) − v∗

⎤
⎥⎥⎥⎦ , û(k) = ṽL(tk) = vL(tk) − v∗, (A2)

to obtain the form

x̂(k + 1) = Â x̂(k) + B̂−1 û(k − 1) + B̂0 û(k) + B̂1 û(k + 1). (A3)

Here the matrices

Â =

⎡
⎢⎢⎢⎢⎣

1 −α1 α2K̂i α2K̂pN∗ −α2(K̂p + K̂v)

0 α0 α1K̂i α1K̂pN∗ −α1(K̂p + K̂v)
N∗	t −	t 1 0 0
1 0 0 0 0
0 1 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

B̂−1 =

⎡
⎢⎢⎢⎢⎣

α2K̂v
α1K̂v
0
0
0

⎤
⎥⎥⎥⎥⎦ , B̂0 = B̂1 =

⎡
⎢⎢⎢⎣

	t/2
0
0
0
0

⎤
⎥⎥⎥⎦ , (A4)

contain the coefficients

α0 = exp
(

−2
k
m

v∗	t
)
, α1 = 1 − α0

2(k/m)v∗ , α2 = α1 − 	t
2(k/m)v∗ . (A5)

The output ŷ(k) = ṽ(tk) = v(tk) − v∗ can be formally written as

ŷ(k) = Ĉŷ(k), Ĉ = [0 1 0 0 0]. (A6)
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Figure A1. Stability diagrams using ZOH with sampling time 	t = 0.1 [s]. (a) Stability chart in the
(K̂i, K̂p)-plane for K̂v = 0.5 [1/s]; cf. Figure 7(b). (b) Stability chart in the (K̂v, K̂p)-plane for K̂i = 0.5 [1/s2];
cf. Figure 8(b). The same notation is used as in Figure 6(a), (b).

Taking the Z-transform of (A3) and (A6) with zero initial conditions and using the matrices (A4)
yields the transfer function


̂(z) = Ṽ(z)
ṼL(z)

= Ĉ(zI − Â)−1(B̂−1/z + B̂0 + B̂1z)

= c2z2 + c1z + c0
z4 + a3z3 + a2z2 + a1z + a0

.

(A7)

where

a3 = −α0 − 2,

a2 = K̂p(α1 − α2N∗) + K̂i(α1 − α2N∗)	t + K̂vα1 + 2α0 + 1,

a1 = −K̂p(2α1 − (α2
1 + α0α2 + α2)N∗) − K̂i(α1 − (α2

1 + α0α2)N∗)	t − K̂v2α1 − α0,

a0 = K̂p(α1 − (α2
1 + α0α2)N∗) + K̂vα1,

c2 = K̂pα1N∗	t/2 + K̂iα1N∗	t2/2 + K̂vα1,

c1 = K̂iα1N∗	t2/2 − K̂v2α1,

c0 = −K̂pα1N∗	t/2 + K̂vα1.

(A8)

The transfer function (47) can be used to analyse plant stability and string stability.[42] In particular,
plant stability requires that all poles (roots of the denominator) are located within the unit circle
while string stability requires |
̂(eiω	t)| < 1 for allω > 0; cf. (36). These conditions can be checked
by using the methods presented in the paper and the corresponding stability diagrams are shown in
Figure A1 for the sampling time 	t = 0.1 [s]. When comparing these with Figures 7(b) and 8(b)
made for the average delay σ = 3	t/2 = 0.15 [s] the similarity is remarkable, while the complexity
of the formulae (A7), (A8), (A5) is much higher than that of (31).
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Appendix 3. First-order lag approximation

Considering the approximation (19) and defining the variable w = Tenη/mR, (1), (14)–(16) result
in the ordinary differential equations

ḣ(t) = vL(t) − v(t),

v̇(t) = −γ g − k
m

v2(t) + w(t),

ż(t) = V(h(t)) − v(t),

ẇ(t) = 1
σ

(K̂pż(t) + K̂iz(t) + K̂v(W(vL(t) − v(t)) + K̂av̇L(t) − w(t)),

(A9)

where K̂p, K̂i, K̂v, K̂a are defined by (18) and we still consider the simplifications φ = 0, vw = 0 and
J = 0 =⇒ meff = m (cf. (17)). Also, let us assume K̂a = 0. The equilibrium of (A9) is given by (20)
and w∗ = K̂iz∗. Extending the state vector in (21) by incorporating w̃(t) = w(t) − w∗ as the fourth
component, that is, defining x̄(t) = [ h̃(t), ṽ(t), z̃(t), w̃(t)]T, while still using the input u(t) = ṽL(t)
and the output y(t) = ṽ(t), one may linearise (A9) and obtain

˙̄x(t) = Ā x̄(t) + B̄ u(t),

y(t) = C̄ x̄(t) + D̄ u(t),
(A10)

with matrices

Ā =

⎡
⎢⎢⎢⎢⎣

0 −1 0 0

0 −2
k
m

v∗ 0 1
N∗ −1 0 0

N∗
1
σ
K̂p − 1

σ
(K̂p + K̂v)

1
σ
K̂i − 1

σ

⎤
⎥⎥⎥⎥⎦ ,

B̄ =

⎡
⎢⎢⎢⎣

1
0
0

1
σ
K̂v

⎤
⎥⎥⎥⎦ , C̄ = [

0 1 0 0
]
, D̄ = 0. (A11)

The Laplace transform of (A10) with zero initial conditions yields the transfer function


(s) = Ṽ(s)
ṼL(s)

= C̄(sI − Ā)−1B̄ + D̄

= K̂vs2 + N∗K̂ps + N∗K̂i

σ s4 + (σ 2(k/m)v∗ + 1)s3 + (2(k/m)v∗ + K̂p + K̂v)s2 + (N∗K̂p + K̂i)s + N∗K̂i
.

(A12)
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