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ARTICLE INFO ABSTRACT

Keywords: In this paper, we consider connected cruise control design in mixed traffic flow where most
Connected automated vehicle vehicles are human-driven. We first propose a sweeping least square method to estimate in real
Human driving behavior time feedback gains and driver reaction time of human-driven vehicles around the connected

Sweeping least square method

8 automated vehicle. Then we propose an optimal connected cruise controller based on the mean
Optimal control

dynamics of human driving behavior. We test the performance of both the estimation algorithm
and the connected cruise control algorithm using experimental data. We demonstrate that by
combining the proposed estimation algorithm and the optimal controller, the connected auto-
mated vehicle has significantly improved performance compared to a human-driven vehicle.

1. Introduction

Over the past few decades, passenger vehicles are equipped with more and more automation features during the efforts to
improve active safety, passenger comfort, and traffic efficiency of the road transportation system. In particular, adaptive cruise
control (ACC) was invented to alleviate human drivers from the constant burden of speed control (Labuhn and Chundrlik, 1995).
While the influence of ACC is yet to be observed in real traffic due to its low penetration rate, theoretical studies have found that ACC-
equipped vehicles may only have limited benefits on traffic flow (Vander Werf et al., 2002; van Arem et al., 2006; Shladover et al.,
2012). In particular, ACC vehicles may not be able to effectively suppress the speed fluctuations propagating through the vehicle
string, as each ACC vehicle only responds to its immediate predecessor (Barber et al., 2009).

In order to overcome such limitations in an ACC-equipped vehicle platoon, cooperative adaptive cruise control (CACC) has been
proposed using vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication (Milanes et al., 2011; Wang et al., 2014;
Ploeg et al., 2014b; Ploeg et al., 2014a; Milanes and Shladover, 2014; di Bernardo et al., 2015; Wang, 2018). CACC has been shown to
improve fuel economy and traffic efficiency both in theory and in experiments (Li et al., 2015; Zhou et al., 2017; Lioris et al., 2017; Li
et al., 2017a; Li et al., 2017b; Li et al., 2017c). However, the application of CACC in the early stages of driving automation may be
significantly limited by the requirement that all vehicles in a CACC platoon be equipped with ACC aside from V2X communication
devices (van Nunen et al., 2012; Englund et al., 2016). In particular, (Shladover et al., 2015) commented that “at low market
penetrations, - the probability of consecutive vehicles being equipped is negligible”. Since V2X devices have relatively low cost
compared with ACC and other driving automation systems, it is desirable to exploit the benefits of V2X without being restricted by
the penetration rate of ACC. Thus, we need to consider a connected automated vehicle design that is able to utilize V2X information
in partially connected and automated environment (Jiang et al., 2017; Zhao et al., 2018; Fountoulakis et al., 2017).
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For the longitudinal control of such a connected automated vehicle, we proposed a class of connected cruise controllers (CCC) that
exploit ad hoc V2V communication with multiple human-driven vehicles ahead (Orosz, 2016; Ge et al., 2018). Indeed, connected
cruise control can be viewed as an “advanced CACC implementation that adds information from vehicles that are beyond the direct
line of sight” (Shladover et al., 2015). By utilizing motion information from multiple vehicles ahead, connected cruise control is able
to gain “phase lead” as it responds to speed fluctuations propagating through the vehicles (Orosz et al., 2017). Several theoretical
studies have shown that connected cruise control is able to significantly improve active safety, fuel economy, and traffic efficiency of
the connected automated vehicle, especially by providing head-to-tail string stability (Zhang and Orosz, 2016; Ge and Orosz, 2014;
Avedisov and Orosz, 2017; Orosz, 2016; Ge et al., 2016).

However, previous studies generally assumed that the connected automated vehicle has a priori knowledge on the dynamics of its
predecessors (Zhang and Orosz, 2016; Ge and Orosz, 2014; Qin and Orosz, 2017). While such an assumption may hold for a platoon
of pre-assigned automated vehicles (Ploeg et al., 2014b; van Nunen et al., 2012; Englund et al., 2016), it will not hold for a system
where a connected automated vehicle drives behind several human-driven vehicles. Therefore, to create “comprehensive preview”
about incoming traffic perturbations based on motion information farther ahead (Shladover et al., 2015), the driving parameters of
preceding human-driven vehicles need to be estimated. Once the human car-following behavior can be described quantitatively,
connected automated vehicle designs can be implemented among human-driven vehicles in real traffic, and the benefits of V2V can
be harvested beyond platoons of automated vehicles.

While the steady-state driving behavior of individual cars can be deduced from aggregated traffic data, driving parameters such as
the feedback gains and driver reaction time delay need to be estimated based on the trajectories of individual cars. While feedback
gains can be estimated in delay-free systems using Lyapunov-type methods (Diop et al., 2001; Gomez et al., 2007) and data-driven
methods (Monteil and Bouroche, 2016; Lin et al., 2018), it is still challenging to estimate the delay time and feedback gains si-
multaneously (Orlov et al., 2003; Drakunov et al., 2006; Ge and Orosz, 2016). Moreover, stringent convergence conditions often
make Lyapunov-type methods unrealistic for human parameter estimation in real-world traffic. Thus, in this paper we propose a
sweeping least square method to simultaneously estimate human feedback gains and reaction time delay using motion information
received through V2V, in particular the dedicated short range communication (DSRC). By testing the sweeping least squares algo-
rithm with experimental data, we obtain the distributions and variations of human feedback gains and driver reaction time. Then,
using the optimal connected cruise control framework established in Ge and Orosz (2017), we design a connected cruise controller
and demonstrate the performance improvements of the connected automated vehicle following human-driven vehicles. While sto-
chastic perturbations and gains in human-driven vehicles have been considered (Moser et al., 2018; Chen et al., 2018), this CCC
design is among the first efforts to consider stochastic reaction time delay in human-driven vehicles.

The rest of this paper is organized as follows: in Section 2 we describe a theoretical car-following model for human-driven
vehicles; in Section 3 we propose a sweeping least square method to estimate driving parameters for human drivers; in Section 4 we
validate the estimation algorithm in a four-car experiment and discuss the variation and distribution of human parameters; in Section
5 we design an optimal connected cruise controller based on the average human car-following behavior and demonstrate the per-
formance improvement; and finally in Section 6 we conclude the results and discuss future research directions.

2. Theoretical car-following model

In this section, we consider the longitudinal motion of vehicles in a single lane; see Fig. 1(a), and introduce the theoretical car-
following model in non-emergency situations (Helbing, 2001; Treiber et al., 2006; Orosz et al., 2010). The dynamics of a conventional
vehicle i is

hi(©) = v (- (0),
vi(0) = a; (Vi (i (t=5))—vi (=) + B; (i1 (t=7)—vi (1—7)). @

Here the dot stands for differentiation with respect to time ¢, h; denotes the spacing, (i.e., the bumper-to-bumper distance between
the vehicle i and its predecessor), and v; denotes the velocity of vehicle i; see Fig. 1(a). According to (1) the acceleration is determined

Kiq

)

O hst,i hgo 7 hl

Fig. 1. (a): Single-lane car-following of human-driven vehicles showing the spacing and the velocities. (b): The range policy (2) where v,y is the
maximum velocity, hg; is the smallest spacing before the vehicle intends to stop, and hy; is the largest spacing after which the vehicle intends to
maintain Vg ;.
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by two terms: the difference between the spacing-dependent desired velocity and the actual velocity, and the velocity difference
between the vehicle and its predecessor. The gains «; and §5; are used to correct velocity errors, and 7 is the driver reaction time.
The desired velocity is determined by the range policy function

0 it h; < hyis
Vi(h) = {xi(hi—hg) if gy < by < hgo s
Vmax,i if hi = hgo,i’ (2)

shown in Fig. 1(b). That is, the desired velocity is zero for small spacings (h; < h,;) and equal to the maximum speed Vyy; for large
spacings (h; > hg ;). Between these, the desired velocity increases with the spacing linearly, with gradient x;. Many other range
policies may be chosen, but the qualitative dynamics remain similar if the above characteristics are kept (Orosz et al., 2010).

We note that (1), (2) bears resemblance to many ACC designs (Labuhn and Chundrlik, 1995; Barber et al., 2009). In particular,
when hg; < h; < hg,;, both the ACC designs and the theoretical car-following model (1), (2) contain feedback terms with respect to
the spacing distance h;, the vehicle speed v;, and the preceding vehicle’s speed v;,1. Also, the inverse of the range policy gradient x; is
often referred to as the time gap in the ACC designs.

We also note that (2) defines the steady-state behavior of vehicle i, and in aggregation the steady-state traffic flow where vehicles
travel with the same constant velocity:

hi(@) = h, () =v=Vi(h). 3

In a vehicle string, the equilibrium velocity v* is determined by the head vehicle while the equilibrium spacing h;* can be
calculated from the range policy (2).

While (h*, v*) can be deduced from aggregated traffic data, there has been few research in the past investigating the distribution
and variation of parameters a;, §, x;, 7; for individual vehicles, especially when they are human-driven. However, as geolocation,
inertial measurement units and wireless communication devices become less expensive and more widespread, the time is ripe for such
investigations. In particular, the knowledge of human driving behavior may be used to optimize the performance of a connected
automated vehicle among human-driven cars. In this way, the benefits of V2V communication can be exploited without the support of
other automated vehicles.

3. The sweeping least squares method

In this section we present a sweeping least squares method to simultaneously identify the feedback gains «;, 5, range policy slope
x;, and delay time 7 in (1) for human-driven vehicles. We assume that the spacing and velocity data of human-driven vehicles can be
obtained through V2V communication. The estimation will be used in the next section to design connected cruise controllers that
exploit motion information of these human-driven vehicles.

Note that when hy; < h; < hgo; @ human driver maintains affine spacing and speed feedback terms, and all parameters o, §8;, «;, T
can be estimated, cf. (1), (2). When the spacing is too large (h; > hy;) or too small (h; < hg;), the range policy function (2) saturates
and information on the gradient ; is lost. Since the value of ; significantly influences the string stability (Seiler et al., 2004; Zhang
and Orosz, 2016), we focus on the region hg; < h; < hg,;, where uniform traffic flow may turn into stop-and-go traffic jams (Orosz
et al., 2010). Therefore, we consider the motion of the human-driven vehicle i for hy; < h; < hg;

hi(®) = viaa (D, (0),
vi(0) = a; (b (=)= (t—1)) + ;i1 ((—1)—; (=), (@)
where ]:l\l' = hi_hst,i~
We discretize the second equation in (4) using the explicit Euler method with time step At:

ulk + U=wilk] _ o eeml v le—m]) + 6, (n [k—m] vy [k—m]).

At (5)
where m = round(z;/At). Here At = 0.1 [s] as the update frequency of V2V communication is 10 Hz.
We consider N + 1 data points over a timespan of NAt and rewrite the unknown parameters a;, 8, x; in (5) as
a=-o—f, b=ax, c=§ 6)

We consider the possible range of driver reaction time 7 € [T, Tmax], and sample it such that 7 = mAt, where
m € {Mpin, -0, Mmax} With T = Mpin At and Tax = MpaxAt. Then for each potential unit of delay m, the corresponding gains are

a(m)
b (m) | = (ATA)'ATB(m),
¢(m) @

and the corresponding minimum fitting error under delay mAt is
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2

a(m)
R*(m) = ml)ir}R(a, b, cm) = | Al 5 (m) |-B(m) | ,
where
w[0] Ai[0] vieafo] o v+ auim)
A= : : : , B(m)= A7 : ,
u[N] RiN] v [N] vilm + N+ 1=vi{m + N] ©

with the data size N larger than the maximum delay unit 7.
Among the potential delay values, we choose the delay 7 = # At and its corresponding estimated gains &, 8, ¥ which generate the
smallest fitting error. That is,
M = argminR*(m), & = —d (M)—C (i), E =e@), % =>bm)a.
m 10)
We note that each least square calculation (7), (9) exhibits a small computational load. Thus, the estimation algorithm (7), (9),
(8), (10) can be implemented in real time.

4. Experimental validation of estimation algorithm

In this section we test the sweeping least squares method using experimental data and discuss the variation and distribution of
estimated human parameters.

We equip four production vehicles with on-board units that receive and broadcast V2V messages through DSRC; see Fig. 2. The
on-board units also record GPS coordinates (latitude ¢, longitude A, elevation r) and speed v of each vehicle in every 0.1 [s]. The
experiments are conducted on a local single-lane road where the four vehicles are driven in a string by human drivers; see Fig. 3(a).
Then the spacing for vehicle i is

hi = dig+1—1, an

where [ =5 [m] is the assumed vehicle length, and d;¢.1) is the great-circle distance between two GPS points (¢, 4;, ) and
(@,41> Ais1> 1i41), which is given by the Haversine formula

dig+n) = Z(R + %)aresin\/sin2 (%) + cosg;cosg;, ;sin? (%) 12
12

cf. (Inman, 1835). In this paper, we set the nominal radius of the Earth R = 6371000 [m]. The spacing and velocity profiles from one
of the test runs are shown in Fig. 3(b,c).

In Fig. 3(c) we can see that the velocity v, of the head vehicle (green curve) is almost constant before decreasing at t = 30 [s],
while the velocities of following vehicles oscillate before 30 [s] and they also exhibit more severe decelerations (v; is the black curve,
v, is the red curve, v; is the blue curve). This shows that human drivers amplify the velocity fluctuations propagating along the chain.
Such amplifications are often referred to as string instability (Seiler et al., 2004), which not only negatively impacts the performance
of individual cars, but may also lead to stop-and-go traffic jams and rear-end crashes in heavy traffic. However, the motion in-
formation of vehicles 2,3,4 can be used by vehicle 1 to better reject the speed fluctuations (Shladover et al., 2012), if their car-
following behaviors can be described quantitatively. Therefore, we apply the proposed estimation algorithm to the experimental data
to observe the variation in the estimated driver parameters and their distributions.

The estimation algorithm (7), (9), (8), (10) produces &, ﬁNl i, 7. for each data segment of size N + 1. For example, at time stamp
to = koAt an estimation is obtained using the motion information v;[k], h;[k], and vi41[k] for k € {ko—N, ...,ko}. As the car receives

O @

s_/‘

Fig. 2. The V2V communication on-board unit: ® upper-level computer, @ ethernet cable, ® electronic control unit, ® power cable, ® V2V/GPS
antennae.
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0 10 20 30 40 50 60 0 10 20 30 40

50 60

tls)
Fig. 3. (a) The experimental setup: a string of 4 vehicles on a single-lane road where all vehicles are equipped with GPS and V2V devices. (b,c)
Headway and velocity profiles of the 4-vehicle string during one test run, where the black, red, and light blue curves correspond to the spacing and
velocity profiles of vehicles 3, 2, 1, respectively. The green curve in (b) is the velocity of the head vehicle 4. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

new motion information and the window shifts forward in time, the estimated values of &;, EL , i, and 7, change. Thus, the estimated
parameters will be time-varying.

As an example, we estimate the driver parameters o, 8,, %, % for vehicle 2 using h,, v,, vs. The spacing h, is shown in Fig. 4(a),
and the velocities v, (red curve) and v; (black curve) are shown in Fig. 4(b). We consider the minimum human reaction time 7,,;;, = 0.2
[s] and maximum human reaction time 7,,,x = 2 [s], that is, the discrete time delay m € {2, ...,20}. Based on the observed spacing and
velocity data, we also consider hy; = 0 [m], although hy; may be non-zero in other driving scenarios. Finally, we consider N = 150 in
each data segment, and correspondingly the parameter estimation starts at t = 15 [s], as shown in Fig. 5. As the data window moves
forward in time, the estimated delay time % varies around 1 [s]; see Fig. 5(a). Note that the estimated feedback gains & and ,52 are
significantly smaller than the values deducted from macroscopic data, such as a = 0.6 [1/s], § ~ 0.9 [1/s] in Ge et al. (2016). Since
the algorithm for %; involves division, we present %; after filtering the numerical noise using a third-order Savitzky-Golay filter with
window size %NAt =5 [s]; see Fig. 5(d).

In Fig. 5, the human reaction time, feedback gains, and range policy slope exhibits stochastic variations. While their values can be
averaged over time for connected vehicle design, it is desirable to examine their distribution over a larger data set. Therefore, we
repeated the experiment shown in Fig. 3 and accumulated over ten thousand estimations for each following vehicle. In particular, we
present the distribution of driver parameters for vehicles 2 and 3.

In Fig. 6(a,b) we show the histogram of estimated driver reaction time % and %, respectively. The mean and variance of the driver
reaction time for car 2 is (1.16, 0.19) [s], while for car 3 we have (0.89, 0.12) [s]. Although the two drivers have different mean and
variance in the reaction time, their distributions are not significantly different from each other. Thus, we may assume a nominal
distribution of 7 for both drivers when designing a connected automated vehicle that uses motion information from vehicles 2 and 3.

In Fig. 7 we show the histograms of human feedback gains &;, E; and range policy slope %; for vehicle 2 (panels (a,c,e)) and vehicle
3 (panels (b,d,f)). By comparing Fig. 7(a,c,e) and (b,d,f) one may observe that, while there exist some differences in each pair of
histograms (a,b), (c,d) and (e,f), the range of human feedback gains &;, E’: and range policy slope ¥; are the same for the two drivers.
Thus, one may represent &;, Ei, %; of both drivers using a set of nominal distributions in connected automated vehicle design.

5. Optimal connected cruise control design considering human behavior

In this section, we first modify the theoretical car-following model to consider variations in human driver parameters. Then using
the data-based car-following model, we design an optimal connected cruise controller that is able to reduce the speed fluctuations of

h2 60
fu]

40

20

250 0 50 100 150 200

t[s]

Fig. 4. (a): Headway of vehicle 2 during one test run. (b): Velocity of vehicles 2 (red curve) and 3 (black curve) during one test run. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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50 100 150 Z(J(Jt [S} 250

50 100 1310 20(Jt [S} 250

Fig. 5. Estimated driver parameters of vehicle 2 in the test run shown in Fig. 4 starting from ¢ = 15 [s]. (a): The time profile of estimated delay time
% with the quantization step At = 0.1 [s] and the range of[0.2, 2] [s]. (b,c): The time profile of estimated feedback gains &, Ez (d): The time profile of
estimated range policy slope %, filtered by a third-order Savitzky-Golay filter of window size 5 [s]. The dashed black lines denote the mean values.

2000 (a) 2000 (b)
1500 | 1500
1000 | 1000
500 500
0 0 ' ' ' :
0 05 1 15 2 0 0.5 1 15 2

T2 Is] T3 [s)

Fig. 6. Histograms of estimated driver reaction time for vehicles 2 and 3.

the CCC vehicle. Finally, the performance of this data-driven connected automated vehicle design is tested using the experimental
data.

We consider the scenario shown in Fig. 8 where the vehicle at the tail (dark blue) is a connected automated vehicle. The red
arrows indicate feedback terms using the motion information from corresponding vehicles ahead. In this case, only vehicle 1 needs to
be longitudinally automated, while all other vehicles only need to be equipped with V2V communication devices.

5.1. Data-driven connected cruise control design

Without the data-driven estimations shown in Section 4, we can only use theoretical car-following models like (4) to design
connected cruise controllers. In particular, (Ge and Orosz, 2017) proposed an optimal design that minimizes the spacing and speed
fluctuations while penalizing the control efforts. It was shown that with appropriate weighting factors, the CCC vehicle can be
theoretically head-to-tail string stable. That is, vehicle 1 has smaller speed fluctuations compared with vehicle 4, the vehicle farthest
ahead whose motion signal is used in the connected cruise controller. Here, we modify the car-following model (4) to better describe
the motion of human-driven vehicles nearby. Then, by adapting the string-stable optimal design to this data-driven car-following
model, we facilitate the implementation of connected cruise control in real traffic.

We consider the mean dynamics of (4) with stochastic parameters &, E , % and T, cf. Figs. 6 and 7. Under certain assumptions
(Gomez et al., 2016; Sadeghpour and Orosz, 2018), we can use the mean values &;, El X; to represent stochastic human parameters
&, E and %;, yet the distribution of driver reaction time 7 cannot be simply represented by its mean value (see Appendix A). Instead,
the probability density function of driver reaction time 7 appears explicitly in distributed delay terms. That is, the data-based car-
following model for human-driven vehicle i becomes

(1) = vi (O-v (1),
ui(t) = & jfimax wi(B)(":h (t + 6)—vi(t + 6))d6 + E,.f_imax wi(B)Wip1(t + 0)—v;(t + 0))d8, 13)

where w;(0) is the normed kernel of the distributed delay 6 € [Ty, 0] due to the distribution of human reaction time 7 € [0, Tyax]-
On the other hand, the car-following dynamics of the connected automated vehicle is given by
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2000 2000
(a)
1500 1 1500
1000 1 1 1000
500 | 500
0 0
-0.5 0 0.5 | 1.5 0
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1200 ( ) v v 1200
c
1000 _— 1 1000
800 M 800
600 1 600
400 ! 400
200 1 200
0 0
-0.5 0 0.5 1 ~ y 1.5 -0.
B2 3]
(e)
1500 m 1500
1000 1000
500 1 500
0 : 0
0 0.5 1 1.5 ~ ! 2 1.5 1 2
Ra (3] K3 [;]

Fig. 7. (a,c,e): Histogram of human feedback gains &, 3; and range policy slope %, for vehicle 2. (b,d,f): Histogram of human feedback gains &, 53

and range policy slope %; for vehicle 3.

Y W W
e—1 a1 la—n
hy hy hs

Fig. 8. The connected vehicle system setup: a string of 4 vehicles on a single-lane road where all vehicles are equipped with GPS and V2V
communication devices and the last, connected automated vehicle is driven by a CCC algorithm. The red arrows represent feedback terms in the
connected cruise controller that use motion information received from vehicles ahead. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

(@) = v, (- ),
Vi) = u(t), 14)

where u(t) is the optimal CCC controller to be designed. While (14) does not detail powertrain dynamics nor consider physical effects
such as rolling resistance and wind drag, CCC designs based on this model can be implemented in a hierarchical manner, where these
effects are compensated by the lower-level controller (Zhang et al., 2018). In order to have feedback terms in u(¢t) that are similar to
those in human car-following behavior (4) and (13), we define

X = Kihi—v; . 4= [ .0 ]’
Vit1—Vi Vn+1 (15)
wherei = 1, ...,n. Here we have n = 3 (cf. Fig. 8). While larger n is allowed in this framework, the range of reliable vehicle-to-vehicle
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communication often impose the limit n < 4.
We construct the state and disturbance vectors

0

X .
XH s- ||
n ¢

1e)
and write the dynamics of the connected vehicle system (13), (14) as
X(t) = AX(t) + j:o G(OX (¢t + 0)dd + Du(t) + ¢(t). a7
The coefficient matrices are given by
A D, 0 G,(6)
a=| - | p=|] co=| O x®
An : . N
0 Gun(0) 18)
where the blocks are defined by
% a B
A= [O Kl], Bi=—|_ [i , Gu(6) = Byw;(0),
00 @ f
— 0 0
D, = [_}], Bi_1) = [5;‘ E] G(i—1)i(6) = B_1)iw;(0). (19)
We define the multi-objective cost function for the connected automated vehicle
tf 1
He@ X0 = [ @+ G+ n P de = [+ XTIXL, 20)
where the weights 3, > 0, %, > 0 and T = diag[y,, %, 0, ...,0] € R?2n_ The optimal controller to (17), (20) is
() = —DT(Pl(t)X(t) + L0 Quoxc+odw+eo+ [ QU e)de)
—Tmax ’ —Tmax ’ ’ (21)

where the matrices Py(¢), Qi(t, 6) are not influenced by the disturbance ¢(t).

In Ge and Orosz (2017) we found that a connected cruise controller can be designed with minimal computational cost and
satisfactory performance when assuming ¢ (¢) = 0 and infinite time horizon. Since the controller (21) has the same structure as in Ge
and Orosz (2017), we assume ¢(t) = 0 and t; - oo in (20), which yields the steady-state solution

P()=P;, Qi(t,0)=Qi6), Rt & 6) =R, 09),
P,(t) =0, Q,, 06)=0. (22)

Substituting (22) into (21) leads to the simplified controller

() = —DT(PIX(t) + [ Om QOX(t + e)de),

(23)
where the matrices P;, Q;(0) are given by
A'P, + P A-P,DD'P; + Q;(0) + QT (0) + I = 0,
3Q1(6) = (A'—P,DDN)Q,(6) + PiG(6) + Ry(0, 6),
(@ + dRy(E, 6) = GT(H)Q:() + QI (¥)G(6)-Q] (§)DD'Q,(6), (24)

with boundary conditions
Qi(=Tmax) = 0, Ry (—Tmax, 0) = 0, (25)

see (Kolmanovskii and Myshkis, 1992) for proofs. Since the coefficient matrices A and G(6) are upper-triangular, we can use the
recursive method introduced in Ge and Orosz (2017) to analytically solve this LQ problem with distributed delay.
Solving (24), (25), an analytical solution can be obtained for the optimal CCC controller

n

u@®) =Y, (@i ®hi(©-vi(0) + By Wi (D—vi (1))

i=1

+ Z f_or f©)@&;hi(t + 0)—v;(t + 6))d6 + Z jﬁ 8Oy (t + 6)—v;(t + 0))db,
i=1 e i=1 " (26)

where the CCC gains ay;, 8;; and kernels f;(6), g;(6) can be calculated using (37), (38), (45), (48), (49), (50), (51) in Appendix B.
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Fig. 9. Optimal feedback gains «y;, 8,; and kernels f;(8), g;(6) in the CCC controller (26). We assume that the human reaction time follows Gamma
distribution (53) with the mean value 0.86 [s] and the variance 0.30 [s]. The weights in the cost function are y, = 0.01, y, = 0.04.

While all preceding vehicles are human-driven in Fig. 8, the optimal connected cruise control design can be extended to the case
when some preceding vehicles are also driven by connected cruise controllers. However, such scenarios are rare when the penetration
rate of driving automation is low. Therefore, for this data-driven design, we assume a CCC vehicle does not “look beyond” another
CCC vehicle. For example, if vehicle 3 in Fig. 8 is another CCC vehicle, then vehicle 1 would no longer use motion information of
vehicle 4. In this way, multiple CCC vehicles in the traffic flow will only generate a cascade of connected vehicle systems where each
connected vehicle system only contains one CCC vehicle at the tail.

We also note that the weighting factors y;, and ¥, in the cost function (20) should be chosen such that the optimal CCC design (26)
is string stable. While the string stable regions in the (y,, %, )-plane can be calculated similarly as in Ge and Orosz (2017), we provide
more details in Appendix C. We also note that the optimal CCC controller (26) only contains speed and spacing feedback, while
acceleration feedback has been found to improve car-following performance as well (Ge and Orosz, 2014). Since the optimal CCC
design can be readily extended to include the acceleration feedback, detailed discussions are omitted here.

5.2. Data-driven evaluation of the connected cruise controller

By replacing the human driver in vehicle 1 with the optimal controller (26), we evaluate the performance of this connected cruise
controller using experimental data and compare it with what the human driver has achieved during the tests. While the controller
gains and kernels (45), (50), (51) allow heterogeneous human parameters &;, E %; and delay distribution w;(0), for simplicity, here
we assume the parameters and delay distribution for vehicles 2 and 3 are the same, i.e., & = @ = 0.2 [1/s], ,6_’2 = 33 = 0.4 [1/s],
16 = i = 0.6 [1/s]; cf. Fig. 7(b,d,f). We also assume the human reaction time % and 7 follow the same Gamma distribution, and obtain
its probability density function using the histograms shown in Fig. 6. We also set weights y;, = 0.01, %, = 0.04 in the cost function (20).

In Fig. 9, the feedback gains «y;, §,; and kernels f;(6), g;(0) are plotted for Gamma-distributed human reaction time. Fig. 9(a,b)
show that the feedback gains decay as vehicle number i increases, i.e., as the motion information comes from vehicles farther
downstream. Fig. 9(c,d) show that the kernels f(6) = 0 and g (6) = 0, while the kernels f;(6) and g;(6) for i > 1 decrease both as i
increases and as 6 approaches —7,,,«. These qualitative features remain the same when the number of preceding vehicles increases, or
when Gaussian distribution is assumed for human reaction time.

With feedback gains and kernels given in Fig. 9, we replace the human driver in vehicle 1 with the CCC controller (26) (cf. Figs. 3
and 8), and evaluate the performance of CCC in the same traffic situations that the human driver has experienced. In Fig. 10(a), the
spacing of vehicles 3, 2, and 1 observed in an experiment are plotted as black, red, and light blue, respectively, and the dark blue
curve is the spacing response of vehicle 1 when it is driven by the CCC algorithm. The CCC algorithm produces much smaller spacing
fluctuations (dark blue curve) compared to the human driver. In particular, while the human-driven vehicle 1 almost collided with
vehicle 2 in the experiment (light blue curve at ¢ ~ 210 [s]), such a safety hazard is avoided when vehicle 1 is driven by the CCC
algorithm (dark blue curve at ¢t ~ 210 [s]). In Fig. 10(b) the green curve is the velocity v; of the head vehicle, while the other curves
have the same color scheme as in panel (a). Again, the CCC vehicle at the tail has smaller fluctuations in velocity compared with other
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Fig. 10. (a,b,c) The spacing, velocity, and acceleration profiles of a (3 + 1)-car vehicle string. The color scheme is the same as in Fig. 3. The dark
blue curves correspond to the connected automated vehicle at the tail that is driven by the CCC controller (26). (d,e,f) The spacing, speed, and

acceleration histogram of vehicle 1 when it is human-driven. (g,h,i) The spacing, speed, and acceleration histogram of vehicle 1 when it is connected
automated. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

vehicles. In Fig. 10(c) we compare the acceleration v, of the tail vehicle when it is human-driven (light blue curve) and when it is
driven by the CCC algorithm (dark blue curve). Notice that even though the limits for acceleration and braking are not explicitly
included in the optimal control setup (17), (20), the CCC vehicle is able to avoid the harsh braking and acceleration maneuvers.

We also compare the spacing, speed, and acceleration histograms of vehicle 1 when it is driven by a human driver (Fig. 10(d,e,f))
with when it is driven by the CCC algorithm (Fig. 10(g,h,i)). The CCC-driven spacing h; has significantly fewer instances when it is
above 40 [m] or below 5 [m]; see Fig. 10(d,g). While the CCC speed histogram Fig. 10(h) is slightly improved compared with the
human-driven Fig. 10(e), the acceleration histogram Fig. 10(i) has much fewer harsh braking instances compared with Fig. 10(f). In
particular, the CCC-driven vehicle 1 has no instances when it brakes more than —1.5 [m/s?]. Therefore, we conclude that the CCC
controller demonstrates significant performance improvements compared with the human-driven vehicle.

6. Conclusion

In this paper we first designed an estimation algorithm for a connected automated vehicle to identify the dynamics of preceding
vehicles via vehicle-to-vehicle communication. This algorithm can be implemented in real time, and is able to cope with time-varying
human parameters. Both characteristics are crucial for application in connected automated vehicle design. Based on experiments on
public roads we saw that human parameters are time-varying, and appear to follow certain distributions. While the distributions vary
between different drivers, a nominal set of distributions may be assumed for connected automated vehicle design. Then we designed a
connected cruise controller using the mean values of human gains and the distribution function of human reaction time. The optimal
CCC controller is tested using spacing and velocity data collected in a four-car experiment, and it is shown to reject traffic dis-
turbances much better than a human driver. In the future, more experiments will be conducted under different driving conditions to
further understand human car-following behaviors, and data-driven methods will be exploited to describe a richer set of human
driving behaviors for better connected automated vehicle design.
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Appendix A

We consider the linearized human car-following model (4) with stochastic variations in the human feedback gains a;, §,, range
policy function slope x; and reaction time 7; (see Figs. 6 and 7) and take the expected value

E[h:(5)] = E a1 (O1-E [ ®)],

E[vi(0)] = Efa;(0) (o () by (t=7())—vi (=7 (O))] + E[B; () Wig1 (=7 (0)—v; ((=7:())]. 27)
We denote the state variables and parameters
L =E[m®], 50O =ENM®] @&=E[la®] B=EBO] =”=EK®] (28)

and assume there exist independent and stationary distributions of the parameters «;, 3, x; and 7; and their autocorrelation functions
decay fast. Then (27) can be simplified as

i(0) = Bia (DT (0),

5(6) = @ (RiE [y (t=7 ()] [, (t=5(E)]) + B (E [vir (=7(6) 1= [vi (t=7,(0)]). 29
We assume
E(-m@)] = [ vi(—mwi(@)ds, (30)

where 7,y is the maximum human driver reaction time, and w;(z) is the probability density function of 7 (t) € [0, Tmay]; see (Gomez
et al., 2016) for more details behind this assumption. Then we have

hi () = B (-7 (0),

() =& [ wO®h(+ 0)-vi(t +6)d0 + B [ wi(O)(Fvi(t + O)-Fi(t + 6))d, 31
where w;(0) is the probability density function of the delay 6 € [—Ty., 0]. In this way, we modify (4) so that it contains the expected

values of the human gains and the distribution of human driver reaction time. In (13), the bars above h; and v; are dropped for
simplicity.

Appendix B

In order to solve (24), (25), we denote

Py - Py Qu(®) -+ Qu.(6)
P=|: - |l Q®= : : )
By - By in(e) an(e) (32)

where Py, Q;(6) € R¥>? for i, j = 1, ...,n, and the CCC controller (23) becomes
1 0
u@ =0l Y, (Pux+ [ Quem+e)de),
i=1 rmax (33)

where x;(t) is defined in (15). Note that we only need to derive Py;, Qy;(6) fori = 1, ..,n to construct the controller, cf. (18), (19).
Substituting (32) into (24), (25), we obtain equations for each block Py, Q;(8), Ry(¢, 6) for i, j = 1, ..,n, and then solve them re-
cursively.

To start with, P;; and Q,;(6) are given by

AP, +PyA + Qu(0) + Qf1(0) + diag[y,, %1 =0,
36Q11(6) = A1Qui(8) + Ru(0, 6),

(3 + %e)Ru(£, 6) = —Q1,(£)DD'Qy (6), 34
with boundary conditions

Q11(—Tmax) = 0, Ri1(—Tmax, 6) = 0, (35)
where

A, = AT-P;,D,D]. (36)

455



J.I. Ge, G. Orosz Transportation Research Part C 95 (2018) 445-459

The solution of (34), (35) is

Py = [PH Pu], Qu) =0, Ry 0 =0,

P12 P» (37)
where
P = \/K_Pn’

Py = 2%+t %+ 28K + D (38)

which is the only solution satisfying the condition P;; > 0. Notice that the matrix P;; only depends on the weights y,, %, and the CCC
vehicle’s range policy slope 7.
Then, to obtain Py;, Q;(6), Qi (6) fori = 2, ...,n, we need to solve
APy + PyA; + Q;(0) + Qf(0) = 0,
65Q1:(8) = A,Qui(8) + Py (i-1)Gi-1)i(0) + Py;G;(8) + Ry;(0, 6),
9:Qu1 (6) = A{Qu(6)-P[D,D{Q11(6) + R{i(6, 0),
(O + )Ry(€, 0) = Q5_1)1(9)G(i—1)i + QL (©)Gi—Qf (§)D; DI Qy;(6), (39)
with boundary conditions
Qli(_fmax) =0, Qu(-Tma) =0,
Rli(e, _Tmax) =0, Rli(_rmax, 6) =0. (40)
Now (39), (40) give the solution
Qu(®) =0, Ry 0)=0, (41)
while the equations for Qy;(0) simplify to

35Qu () = A,Qy(8) + Pyi-1)G(-1)i(0) + Py;G;i(0),

Qli(_fmax) =0, (42)
yielding the solution
2] ~
Qu® = [ NP Py Guonilp) + PuGu(e)) dp, 43)

fori = 2, ...,n. Thus, the equation for P;; becomes

0 " ~
'/:T e PAM(Py 1y G—1)i(0) + PuiGii(p))dp + APy; + PyA; = 0. (44)

Applying this recursively yields the solution

vec(Py) = [ [ Mjvec(Pyy),
=2 (45)

fori = 2, ...,n. Here vec(-) gives a column vector by stacking the columns of the matrix on the top of each other, and M; € R** is
given by

~ 0 N -1 0 N
M, = —(1® A+AT® 1+ [ Gl e‘F’Aldp) ( S Glye® e‘F’Aldp). 46)

We recall (18), (19), and note that

L,
—Tmax

Gl e ehdo=Blo (x [

—Tmax

wi(p)e=idp K‘l), “7)

where J; is the Jordan form of A, and K the corresponding transformation matrix. For simplicity, we assume that A, has a trivial
Jordan form. Then (46) becomes

M=-0I® A+Af® I+Bl® (KL(OKH) (Bl ® (KLOKM), (48)
with

oy | 0 ) _re ‘ —oy ) _[° ) —pX

Ll<e)—[ o liz(e)], L@ = [ weedo, @)= [ weertdp, )

where 4; and 4, are eigenvalues of f\l and the diagonal elements of 31.
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Similarly (43) simplifies to
Qui(6) = Ke®L;(6)K(Py—1)By—1yi + PuiBy). (50)

With (37), (38), (45), (48), (49), (50), we have the analytical expression for P;; and Qy;(6). Recalling the controller (23), we have
the CCC gains and kernels

o Byl =11 1]Py, [£(O) &©)] =11 1]Qu(®), (51)
wherei =1, ..,n, 0 € [~Tnax 0]. We note that the CCC kernels take the form

£0) = (aip + an8)eMl;(6) + ai,e®%;,(0),

g,(6) = (bio + bn6)e"%;1(8) + by, e™°1;,(6), (52)
and the coefficients a;, a;;, a;, and by, bi1, by, can be calculated using the same procedure as in Ge and Orosz (2017). Here we provide
a calculation of [;; (), l;;(6) under the assumption that the driver reaction time follows Gamma distribution
T_ai—l e—Ti/bi

i

wWilt) = o o T
( ) ‘/(‘) max sa;—l e—S/bids (53)

where 7; € [0, Tnax], a; is the shape parameter and b; is the scale parameter. Thus, using 6 € [—1,,, 0] we have
I'(a;, Tmax/bi_/ljfmax)_r(aia —6/b; + ﬂje)
(l_ljbi)air(ai) Tmax/bi) ' (54)

;) =
for j =1, 2, where I'(a, b) = fob ta-le~tdt is the lower incomplete Gamma function.
Appendix C

Here we discuss how to tune the weighting factors y; and y, to ensure that the optimal CCC design (26) responds well to speed
perturbations ahead; see Fig. 8. In particular, we require the optimal controller to be head-to-tail string stable (Zhang and Orosz,
2016). That is, when the motion of human-driven vehicles 2, ...,n oscillates around the steady state (3), the connected automated
vehicle should have smaller speed fluctuations compared with vehicle n, the farthest vehicle ahead whose motion information is used.
Most human drivers are unable to suppress speed fluctuations propagating through vehicles due to large reaction time (Orosz, 2016).
Therefore, speed fluctuations at vehicle 2 is very likely to be more severe than at vehicle n. However, using motion information from
vehicles farther ahead, the connected automated vehicle may be able to regulate its speed fluctuations to the same level or even less
than at vehicle n.

Recall the dynamics of the connected automated vehicle (14), (26) and human-driven vehicles (13). For vehiclei =1, ...,n in
Fig. 8 (where n = 3), we define the corresponding spacing and speed perturbations

hi(6) = ROk, D0 = (D", (55)
and obtain the linearized dynamics for the connected automated vehicle and its predecessors as
hu(6) = D (0-91(0),

1(0) = D) (ot @i (D=7 (0)) + By Praa (D-D1(1)))

i=1

+ 2 L0 FO®RE+ 0N+ 0)de + Y [ g (@)@t + 0)-Di(t + 6)d6,
i=1 i=1

(1) = D (-9 (0),
i) =@ [ wO®h+ 0=+ 6)d0 + B [ wi(O)Fiyi(t + O)-F(t + 6)d, (56)

where i = 2, ...,n. In (56), we consider the speed perturbation ¥, of the farthest vehicle ahead as the input, and the speed per-
turbation v of the connected automated vehicle as the output. Then the head-to-tail transfer function is given by

n+1 n
N >, Hu(s) [ Hasni(s)
Higr = A6 _ j=2 i=j
i) 82+ (a1 + Fi(s) + By + Gi(s))s + (e + Fi ()@ (57)

where ¥ () = Z¥;(t)) denotes the Laplace transform of the speed perturbation ¥;(¢). In (57), the pairwise transfer function between
human-driven vehicle i and its predecessor (vehicle i + 1) is

ﬁ,-;?i + Bl-s
S2IW(s) + @ + B)s + &k (58)

Hipyi =
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fori = 2, ...,n. The transfer link from vehicle j to the connected automated vehicle is

Hj = (oag-1) + Fo1()x1—(ayy + ()% + (By-1y + Gi-1(8)—o—F($)—p;—G;(5))s, (59)
for j =2, ..,n, and

Hnyr = (i + B ()% + (B, + Gu(9))s, (60)
with W (s), F(s) and G;(s) given by

Wi(s) = [0 wi(0)e¥ds, i=2,..n,

E(s)= [0 [(6)e?dd, Gils) = [ g(8)e¥dd, i=1,.,n. 1)

At the linear level, the criterion for head-to-tail string stability is the amplitude of head-to-tail transfer function (57) being smaller
than one for all positive frequencies, that is,

|HH2.T (ICO)l <1, (62)

for all w > 0. Note that given the feedback gains &;, E, range policy gradient %; and delay distribution w;(6) of human driven vehicles,
the feedback gains oy;, ,; and kernels f;(6), g;(6) in the optimal controller (26) depend on the design parameters y,, ¥,.

To demonstrate the influence of the design parameters y;, %, on the head-to-tail string stability, we consider the scenario when the
parameters of vehicles 2 and 3 are the same, i.e., & = & = 0.2 [1/s], EZ = 53 =04 [1/s], % = & = 0.6 [1/s]; cf. Fig. 7(b,d,f). We also
assume the human reaction time % and 7 follow the same Gamma distribution (53) with parameter a, = a; = 6.08, b, = b; = 0.15; cf.
Fig. 6. Based on the optimal controller calculation (37), (38), (45), (48)-(51) and the transfer function formulation (57)-(61), we
obtain and plot the string stable region (shaded) in the (3, %)-plane in Fig. 11(a).

15 12 12 12
Y l(a C d) case C
v ( |HH2T‘ ( ) I ‘
1 1 1 1 ———-‘ -
1 038 038 0.8
0.6 0.6 0.6
0.5 0.4 0.4 0.4
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0 0.05 0.1 0.15 02 1 2 2 0 1 2
Th w w w

Fig. 11. (a) Head-to-tail string stable region in the (3, %,)-plane assuming human gains & = & = 0.2 [1/s], B, = B, = 04 [1/5], ' = I = 0.6 [1/s]
and reaction time delay (53) with parameter a, = a; = 6.08, b, = b; = 0.15. (b-d) Bode plots at case A (y, =0.01, y, =0.04), case B
(0, = 0.15, ¥, = 0.04), and case C (y, = 0.15, y, = 1.50).

To illustrate the string stable criterion (62), we mark a string-stable case (y, = 0.01, ¥, = 0.04), and two string-unstable cases
(, = 0.15, %, = 0.04, and y;, = 0.15, %, = 1.50) in Fig. 11(a), and plot their corresponding amplification ratios against the frequency w.
As demonstrated by case A, choosing the design parameters from the shaded region ensures attenuated speed variations for all
frequencies. However, when the design parameters are not in the string-stable region, the connected automated vehicle will not be
able to attenuate speed variations at certain frequencies. For example, an optimal CCC design at case B will amplify speed variations
at low frequencies, while the design at case C will amplify speed variations in a higher frequency range.
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