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1. INTRODUCTION

Advanced driver assistance systems (ADAS) have been
used to improve vehicle safety and passenger comfort
in the last couple of decades. Vehicle-to-vehicle (V2V)
communication has the potential to further enhance the
performance of these systems by allowing the vehicle to
monitor a larger traffic environment; see (Kianfar et al.,
2012), (di Bernardo et al., 2015), and (Alam et al., 2015).
Recently, connected cruise control (CCC) was proposed to
regulate the longitudinal motion of vehicles, which exploits
V2V information broadcast by multiple vehicles ahead and
allows high flexibility in the structure of vehicle network-
ing; see (Orosz, 2014). While V2V-based ADAS systems
are traditionally applied for platoons composed of digitally
controlled vehicles, CCC can be used to improve traffic
conditions even with low penetration of CCC vehicles
within the human-driven traffic flow.

When mixing CCC vehicles to the flow of human-driven
vehicles, a hybrid system is created since human-driven
vehicles operate in continuous time, while CCC vehicles
are controlled by digital controllers in discrete time. In
previous works, such systems were analyzed either by
converting everything into discrete time by discretizing the
continuous-time dynamics (Qin et al., 2015); or by convert-
ing everything into continuous time by approximating the
time-varying delay imposed by the discrete-time dynamics
with constant time delay (Ge and Orosz, 2014). Both of
these are approximations of the true dynamics that will be
considered in this paper. In particular, we are interested
in the following performance measures: plant stability and
string stability. Plant stability indicates the ability of a
vehicle to approach steady state when no disturbances
are imposed by other vehicles. On the other hand, string
stability indicates the ability of a vehicle to attenuate dis-
turbances imposed by the vehicles ahead. String stability is
typically a stronger condition and in this paper we mainly
focus on string stability.

The paper is organized as follows. In Section 2, a general-
ized modeling framework for the longitudinal dynamics of
connected vehicle systems containing human-driven vehi-

cles and CCC vehicles is presented, together with criteria
for plant stability and head-to-tail string stability. In Sec-
tion 3, we derive the formulae to analyze string stability
of human-driven vehicle networks, CCC vehicle networks,
and general heterogeneous connected vehicle systems that
contain both human-driven and CCC vehicles. In Section
4, we investigate two connected vehicle systems as case
studies to validate our formulae and make some com-
parisons to the two approximation methods. Finally, we
conclude our paper in Section 5.

2. DYNAMICS AND STABILITY

In this section, a general modeling framework for the
longitudinal dynamics of human-driven vehicles and CCC
vehicles is presented.

2.1 Longitudinal Dynamics of Human-driven Vehicles

We assume that a human driver can monitor the motion
of the vehicle immediately ahead and respond to stimuli
like the headway h, the velocity v and the velocity of the
car ahead v1 with a reaction time delay; see Fig. 1(a). We
model human drivers using the continuous-time determin-
istic system

ḣ(t) = v1(t)− v(t),

v̇(t) = αh

(
V (h(t− τ))− v(t− τ)

)
(1)

+ βh

(
v1(t− τ)− v(t− τ)

)
,

where the dot stands for differentiation with respect to
time t, αh represents the gain to match the actual veloc-
ity to a distance dependent reference velocity, while βh

represents the gain to match the velocity to that of the
vehicle ahead. Also, τ represents human reaction time,
which is typically in the range 0.4∼1.0 [s]. The function
V (h) denotes the range policy, which gives the reference
velocity as a function of the headway h. In particular, we
assume the monotonically increasing range policy function

V (h) =




0 if h ≤ hst,
vmax

[
1− cos

(
π h−hst

hgo−hst

)]
if hst < h < hgo,

vmax if h ≥ hgo,
(2)
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which represents the driver’s intention to keep a larger
distance with increasing speed; see (Ge and Orosz, 2014).

In this paper we investigate dynamics in the vicinity of the
equilibrium

h(t) ≡ h∗, v1(t) ≡ v(t) ≡ v∗ = V (h∗). (3)

One may define the perturbations

h̃(t) = h(t)−h∗, ṽ1(t) = v1(t)−v∗, ṽ(t) = v(t)−v∗, (4)

and linearize (1) about (3) to obtain

ẋ(t) = Ah0x(t)+Ah1x(t−τ)+Bh0ṽ1(t)+Bh1ṽ1(t−τ), (5)

where x =
[
h̃ ṽ

]T
and the matrices are given by

Ah0 =

[
0 −1
0 0

]
, Ah1 =

[
0 0

αhN −(αh + βh)

]
,

Bh0 =

[
1
0

]
, Bh1 =

[
0
βh

]
, (6)

and N = V ′(h∗) is the derivative of range policy (2) at the
equilibrium. Note that (5) is a linear system with constant
delay that appears both in the input and in the state.

We are interested in the longitudinal velocity of the
vehicle, so we define the output

ṽ = Cx, C = [0 1] . (7)

For a linear time-invariant (LTI) system, we can use a
transfer function to represent the dynamic relationship
between the input and the output. Taking the Laplace
transform of (5,7) with zero initial condition, we obtain

Ṽ (s) = T h(s)Ṽ1(s) (8)

where Ṽ (s) and Ṽ1(s) represent the Laplace transform of
ṽ(t) and ṽ1(t), respectively, and the transfer function is

T h(s) = C
(
sI −Ah0 −Ah1e

−τs
)−1(

Bh0 +Bh1e
−τs

)
. (9)

When driving the system with periodic input ṽ1(t) =
vamp
1 sin(ωt), the steady state output becomes ṽss(t) =
|T h(jω)|vamp

1 sin(ωt + �T h(jω)), where | · | and � denote
the magnitude and the angle of a complex number.

2.2 Longitudinal Dynamics of CCC Vehicles

We assume that a CCC vehicle can monitor the positions
and velocities of multiple vehicles ahead through V2V
communication and use this information to control its own
motion. Fig. 1(b) shows a scenario where the CCC vehicle
monitors the motion of n vehicles ahead, which may be
human-driven or CCC vehicles. In particular, we assume
that it monitors the headway h and the velocities v1, ..., vn.
We also assume that the clocks of the connected vehicles
are synchronized and no packets are dropped.

We assume that the CCC vehicle uses a similar control
algorithm as the human drivers but applies a zero-order
hold (ZOH). Thus, at the time interval t ∈ [k∆t, (k+1)∆t)
its dynamics is governed by

ḣ(t) = v1(t)− v(t),

v̇(t) = u
(
(k − 1)∆t

)
, (10)

u(t) = α
(
V (h(t))− v(t)

)
+

n∑
i=1

βi

(
vi(t)− v(t)

)
,

where α is the gain for the difference between the velocity
and the reference velocity given by range policy (2), while

(a)

(b)

h

v v1

αh, βh

h h1 h2

v v1 v2 vn
1 2 n

α, β1

β2

βn

Fig. 1. (a) Human-driven vehicle monitors the vehicle im-
mediately ahead. (b) CCC vehicle at the tail receives
information from n vehicles ahead. The velocities
and the headways are denoted by v, v1, ..., vn and
h, h1, ..., hn−1, respectively. The gain parameters are
displayed along the communication links.

βi, i = 1, ..., n are the gains for the velocity differences. We
remark that if vehicle i does not broadcast its velocity, we
set the corresponding gain βi = 0. Finally, ∆t represents
the sampling period of the digital controller, which is set to
be larger than the time needed for sampling, broadcasting,
receiving and processing the information. The sampling
frequency should satisfy the Nyquist criterion, i.e., 2π

∆t >
2ωmax, where ωmax is the largest meaningful angular
frequency for longitudinal vehicle dynamics. Setting ∆t =
0.1 [s], which is common in V2V communication, the
Nyquist criterion is typically satisfied.

vi

t0 ∆t 2∆t 3∆t 4∆t 5∆t 6∆t 7∆t

u

t0 ∆t 2∆t 3∆t 4∆t 5∆t 6∆t 7∆t

tdelay

t0 ∆t 2∆t 3∆t 4∆t 5∆t 6∆t 7∆t

(a)

(b)

(c)

Fig. 2. (a) The velocity of vehicle i (solid blue line) as a
function of time with sampled data (red dots). (b)
The control signal of a CCC vehicle as a function
of time. (c) The change of the delay in the control
loop as a function of time, where the average delay is
represented by the red horizontal line.

Again, we consider the dynamics about equilibrium

h(t) ≡ h∗, v(t) ≡ vi(t) ≡ v∗ = V (h∗), i = 1, ..., n, (11)

define the perturbations

h̃(t) = h(t)− h∗, ṽ(t) = v(t)− v∗,

ṽi(t) = vi(t)− v∗, i = 1, ..., n, (12)

and integrate (10) between k∆t and (k + 1)∆t to obtain
the linear difference equation
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where x =
[
h̃ ṽ
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ḣ(t) = v1(t)− v(t),

v̇(t) = u
(
(k − 1)∆t

)
, (10)

u(t) = α
(
V (h(t))− v(t)

)
+

n∑
i=1

βi

(
vi(t)− v(t)

)
,

where α is the gain for the difference between the velocity
and the reference velocity given by range policy (2), while

(a)

(b)

h

v v1

αh, βh

h h1 h2

v v1 v2 vn
1 2 n

α, β1

β2

βn

Fig. 1. (a) Human-driven vehicle monitors the vehicle im-
mediately ahead. (b) CCC vehicle at the tail receives
information from n vehicles ahead. The velocities
and the headways are denoted by v, v1, ..., vn and
h, h1, ..., hn−1, respectively. The gain parameters are
displayed along the communication links.

βi, i = 1, ..., n are the gains for the velocity differences. We
remark that if vehicle i does not broadcast its velocity, we
set the corresponding gain βi = 0. Finally, ∆t represents
the sampling period of the digital controller, which is set to
be larger than the time needed for sampling, broadcasting,
receiving and processing the information. The sampling
frequency should satisfy the Nyquist criterion, i.e., 2π

∆t >
2ωmax, where ωmax is the largest meaningful angular
frequency for longitudinal vehicle dynamics. Setting ∆t =
0.1 [s], which is common in V2V communication, the
Nyquist criterion is typically satisfied.

vi

t0 ∆t 2∆t 3∆t 4∆t 5∆t 6∆t 7∆t

u

t0 ∆t 2∆t 3∆t 4∆t 5∆t 6∆t 7∆t

tdelay

t0 ∆t 2∆t 3∆t 4∆t 5∆t 6∆t 7∆t

(a)

(b)

(c)

Fig. 2. (a) The velocity of vehicle i (solid blue line) as a
function of time with sampled data (red dots). (b)
The control signal of a CCC vehicle as a function
of time. (c) The change of the delay in the control
loop as a function of time, where the average delay is
represented by the red horizontal line.

Again, we consider the dynamics about equilibrium

h(t) ≡ h∗, v(t) ≡ vi(t) ≡ v∗ = V (h∗), i = 1, ..., n, (11)

define the perturbations

h̃(t) = h(t)− h∗, ṽ(t) = v(t)− v∗,

ṽi(t) = vi(t)− v∗, i = 1, ..., n, (12)

and integrate (10) between k∆t and (k + 1)∆t to obtain
the linear difference equation
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x[k+1] = Ac0x[k]+Ac1x[k−1]+

n∑
i=1

Bciṽi[k−1]+B∆ (13)

where x =
[
h̃ ṽ

]T
and the matrices are given by

Ac0 =

[
1 −∆t
0 1

]
, Ac1 =

[
− 1

2
αN∆t2 1

2

(
α+

∑n

i=1
βi

)
∆t2

αN∆t −
(
α+

∑n

i=1
βi

)
∆t

]
,

Bci =

[
− 1

2
βi∆t2

βi∆t

]
, B∆ =

[∫ (k+1)∆t

k∆t
ṽ1(t)dt

0

]
. (14)

Again, we are most interested in the longitudinal velocity
of the vehicle, so we use the output ṽ, cf. (7).

Notice that in (13) velocity of each vehicle ahead is
considered as an input. Similarly to the continuous-time
system, we can use transfer functions to represent the
dynamic relationship between each input and the output.
To refer to the network structure on Fig. 1(b), we call these
link transfer functions.

In particular, the link transfer function T c
i (z) represents

the dynamic relationship between the input ṽi(t) and the
output ṽ(t) when all other inputs are 0. Taking the Z-
transform of (7,13) with zero initial condition, one may
obtain

Ṽ (z) =
n∑

i=1

T c
i (z)Ṽi(z), (15)

where Ṽ (z) and Ṽi(z) represent the Z-transform of ṽ[k]
and ṽi[k], respectively, and

T c
i (z) ={
C(zI −Ac0 −Ac1z−1)−1

(
Bc1z−1 + (B̃c0 + B̃c1z−1)

)
if i = 1,

C(zI −Ac0 −Ac1z−1)−1Bciz
−1 otherwise.

(16)

Again, considering the periodic input ṽi(t) = vamp
i sin(ωt+

φi) ⇒ ṽi[k] = vamp
i sin(ωk∆t+φi), the steady state output

can be obtained by ṽss[k] = |T c
i (e

jω∆t)|vamp
i sin(ωk∆t +

φi + �T c
i (e

jω∆t)).

As a matter of fact, we already assumed periodic input
when defining the matrices B̃c0 and B̃c1 in (16). In
particular, plugging ṽ1(t) = vamp

1 sin(ωt + φ1) into B∆ in
(14), we have

B∆ =

[
sin(ω∆t)

ω vamp
1 sin(ωk∆t + φ1) +

1−cos(ω∆t)
ω vamp

1 cos(ωk∆t + φ1)

0

]
.

(17)

Using trigonometric identities, vamp
1 cos(ωk∆t+φ1) can be

expressed with the help of ṽ1[k] and ṽ1[k−1], which yields

B∆ = B̃c0ṽ1[k] + B̃c1ṽ1[k − 1], (18)

where

B̃c0 =

[
sin(ω∆t)

ω
+

1−cos(ω∆t)
ω tan(ω∆t)

0

]
, B̃c1 =

[
cos(ω∆t)−1
ω sin(ω∆t)

0

]
. (19)

2.3 Plant Stability and Head-to-tail String Stability

Plant stability indicates the ability of a vehicle to approach
steady state when no disturbances are imposed by other
vehicles. For LTI systems, we can evaluate plant stability
by the locations of poles of the transfer function. Specifi-
cally, for continuous-time LTI systems, all the poles must
be on the left half complex plane, while for discrete-time
LTI systems, all the poles must be inside the unit circle.

String stability is the ability of a vehicle to attenuate
disturbances imposed by the vehicles ahead. To be more
specific, in this paper we apply the concept of head-to-
tail string stability, which requires that the disturbances
of head vehicle are attenuated by the tail vehicle. Note
that this definition allows vehicles in the string to in-
crease disturbances, which makes it feasible to evaluate the
behavior of connected vehicle systems containing human-
driven vehicles whose dynamics cannot be designed.

Fourier’s theory states that any periodic signal can be
represented as an infinite sum of sinusoidal functions,
which can also be extended to any absolutely integrable
non-periodic signals. Hence, we assume the head vehicle’s
velocity to be

vn(t) = v∗n+vamp
n sin(ωt) ⇔ ṽn(t) = vamp

n sin(ωt), (20)

which results in the steady state velocity response of the
tail vehicle

ṽss(t) = vamp sin(ωt+ φ), (21)

where vamp and φ depend on the excitation frequency ω.

Based on the setup above, a vehicle string is head-to-tail
string stable if

vamp(ω) < vamp
n , for ∀ω > 0. (22)

For LTI systems, we can use the norm of frequency
response function to evaluate string stability:

|H(ω)| = vamp(ω)

vamp
n

< 1, (23)

where H is a complex number. For continuous-time LTI
systems, H(ω) = Gh(jω), where Gh(s) is the continuous-
time head-to-tail transfer function, while for discrete-time
LTI systems, H(ω) = Gc(ejω∆t), where Gc(z) is the
discrete-time head-to-tail transfer function.

In the following section we will show how to compute
Gh(s) and Gc(z) for vehicle systems made of human-
driven vehicles and made of CCC vehicles, respectively.
Then we will give a method to analyze heterogeneous
connected vehicle systems containing both human-driven
vehicles and CCC vehicles.

3. STRING STABILITY OF HETEROGENEOUS
CONNECTED VEHICLE SYSTEMS

In this section, we discuss head-to-tail string stability for
strings of human-driven vehicles and for strings of CCC
vehicles. Then, we derive a general formula that allows
us to analyze connected vehicle systems that include both
human-driven vehicles and CCC vehicles.

3.1 Human-driven Vehicle Network

A human-driven vehicle is modeled as a continuous-time
single input single output (SISO) system, cf. (5). When
assuming a chain of (n + 1) human-driven vehicles with
identical drivers, one may use the T h(s) defined in (9)
to describe the dynamical interaction between consecutive
vehicles. That is, we may set up a dynamic coupling matrix
T(s) = [Ti,k(s)], such that

Ti,k(s) =




1 if i = k,
T h(s) if i = k − 1,
0 otherwise,

(24)
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for i, k = 1, ..., n+ 1. Or equivalently,

T(s) =




1 T h(s) 0 . . . 0
0 1 T h(s) . . . 0

0 0 1
. . .

...
...

...
...

. . . T h(s)
0 0 0 . . . 1



. (25)

According to (Zhang and Orosz, 2016), the head-to-tail
transfer function Gh(s) can be calculated by constructing

T̃(s) = R1T(s)R2 (26)

where R1 = [In,0n×1] and R2 = [0n×1, In]
T that corre-

spond to to deleting the first column and last row of T(s).
Then one shall use the determinant with no sign changes

Gh(s) =
∑

σi∈Sn

n∏
i=1

T̃i,σi
(s) =

(
T h(s)

)n
, (27)

where the sum is computed over all permutations of the
set Sn = {1, 2, ..., n}. Indeed, (27) shows that the stability
of a human-driven vehicle is equivalent to that of a vehicle
chain.

Fig. 3(a) shows the stability chart in the (αh, βh) plane for
τ = 0.15[s] for a 2-vehicle string where Gh(s) = T h(s). In
the light pink domain only plant stability is guaranteed,
while the light blue domain is plant and string stable. To
compute the plant stable region, we check that all poles
of T h(s) are located on the left half complex plane, while
to compute the string stable region, we check |T h(jω)| < 1
for all ω > 0; see (Zhang and Orosz, 2016).

3.2 CCC Vehicle Network

A CCC vehicle is represented by a discrete-time multiple
inputs single output (MISO) system, cf. (13). For a chain
of (n + 1) CCC vehicles where each vehicle monitors the
motion of all vehicles ahead, we use T c

i (z) defined in (16)
to create the dynamic coupling matrix T(z) = [Ti,k(z)]
such that

Ti,k(z) =




1 if i = k,
T c
k−i(z) if i < k,

0 otherwise,
(28)

which is equivalent to the upper triangular matrix

T(z) =




1 T c
1 (z) T c

2 (z) . . . T c
n(z)

0 1 T c
1 (z) . . . T c

(n−1)(z)

0 0 1
. . .

...
...

...
...

. . . T c
1 (z)

0 0 0 . . . 1



. (29)

Again, the head-to-tail transfer function is given by

T̃(z) = R1T(z)R2, (30)

Gc(z) =
∑

σi∈Sn

n∏
i=1

T̃i,σi
(z), (31)

cf. (26,27). Fig. 3(b) shows the stability chart in the
(α, β1) plane for ∆t = 0.1[s] for a 2-vehicle string, where
Gc(z) = T c

1 (z). The same notation is used as in Fig. 3(a).
To compute the plant stable region, we check that the poles
of T c

1 (z) are located inside the unit circle, while to compute

the string stable region, we check that |T c
1 (e

jω∆t)| < 1 for
all ω > 0; see (Qin et al., 2015). Notice that Fig. 3(a) and
Fig. 3(b) look very similar. Fig. 2(c) explains the reason:
the CCC vehicle discrete dynamics can be approximated
by a continuous system using the average delay τ = 3

2∆t.

In order to highlight the difference between the stability
charts, we mark point P at (2.27, 4.00) in Fig. 3(a) and
(b) and plot the corresponding frequency responses on
Fig. 3(c) and (d). On panel (c) H(ω) = Gh(jω) and P
is at the string stability boundary, while on panel (d)
H(ω) = Gc(ejω∆t) and point P is slightly in the string
unstable domain.

Fig. 3. (a) Stability chart in the (αh, βh) plane for a human-
driven vehicle. (b) Stability chart in the (α, β1) plane
for a CCC vehicle monitoring one car ahead. (c,d)
frequency response at point P.

3.3 Heterogeneous Vehicle Networks

Here we consider a string composed of (n+1) vehicles and
assume each vehicle may be either human-driven vehicle
or CCC vehicle. For simplicity, we assume all human
drivers are identical and all CCC vehicles are driven by
the same controller, but the method shown here can be
easily extended to handle the cases with higher levels of
heterogeneity.

To unify the mathematical description, we compute the
Laplace transform of (10) with zero initial condition. In
this case the Laplace transform of ṽ(t) can be written as

Ṽ (s) = Ṽ ∗(s)
es∆t(1− e−s∆t)2

s2∆t
, (32)

where the starred transform is given by

Ṽ ∗(s) =

∞∑
k=0

ṽ(k∆t)e−sk∆t. (33)

We can construct a pulse transfer function T ∗
i (s) to repre-

sent the dynamic relationship between the input ṽi(t) and
the output ṽ(t) at the sampled instants when all other
inputs are 0. That is, similar to (15), we have
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for i, k = 1, ..., n+ 1. Or equivalently,

T(s) =




1 T h(s) 0 . . . 0
0 1 T h(s) . . . 0

0 0 1
. . .

...
...

...
...

. . . T h(s)
0 0 0 . . . 1



. (25)

According to (Zhang and Orosz, 2016), the head-to-tail
transfer function Gh(s) can be calculated by constructing

T̃(s) = R1T(s)R2 (26)

where R1 = [In,0n×1] and R2 = [0n×1, In]
T that corre-

spond to to deleting the first column and last row of T(s).
Then one shall use the determinant with no sign changes

Gh(s) =
∑

σi∈Sn

n∏
i=1

T̃i,σi
(s) =

(
T h(s)

)n
, (27)

where the sum is computed over all permutations of the
set Sn = {1, 2, ..., n}. Indeed, (27) shows that the stability
of a human-driven vehicle is equivalent to that of a vehicle
chain.

Fig. 3(a) shows the stability chart in the (αh, βh) plane for
τ = 0.15[s] for a 2-vehicle string where Gh(s) = T h(s). In
the light pink domain only plant stability is guaranteed,
while the light blue domain is plant and string stable. To
compute the plant stable region, we check that all poles
of T h(s) are located on the left half complex plane, while
to compute the string stable region, we check |T h(jω)| < 1
for all ω > 0; see (Zhang and Orosz, 2016).

3.2 CCC Vehicle Network

A CCC vehicle is represented by a discrete-time multiple
inputs single output (MISO) system, cf. (13). For a chain
of (n + 1) CCC vehicles where each vehicle monitors the
motion of all vehicles ahead, we use T c

i (z) defined in (16)
to create the dynamic coupling matrix T(z) = [Ti,k(z)]
such that

Ti,k(z) =




1 if i = k,
T c
k−i(z) if i < k,

0 otherwise,
(28)

which is equivalent to the upper triangular matrix

T(z) =




1 T c
1 (z) T c

2 (z) . . . T c
n(z)

0 1 T c
1 (z) . . . T c

(n−1)(z)

0 0 1
. . .

...
...

...
...

. . . T c
1 (z)

0 0 0 . . . 1



. (29)

Again, the head-to-tail transfer function is given by

T̃(z) = R1T(z)R2, (30)

Gc(z) =
∑

σi∈Sn

n∏
i=1

T̃i,σi
(z), (31)

cf. (26,27). Fig. 3(b) shows the stability chart in the
(α, β1) plane for ∆t = 0.1[s] for a 2-vehicle string, where
Gc(z) = T c

1 (z). The same notation is used as in Fig. 3(a).
To compute the plant stable region, we check that the poles
of T c

1 (z) are located inside the unit circle, while to compute

the string stable region, we check that |T c
1 (e

jω∆t)| < 1 for
all ω > 0; see (Qin et al., 2015). Notice that Fig. 3(a) and
Fig. 3(b) look very similar. Fig. 2(c) explains the reason:
the CCC vehicle discrete dynamics can be approximated
by a continuous system using the average delay τ = 3

2∆t.

In order to highlight the difference between the stability
charts, we mark point P at (2.27, 4.00) in Fig. 3(a) and
(b) and plot the corresponding frequency responses on
Fig. 3(c) and (d). On panel (c) H(ω) = Gh(jω) and P
is at the string stability boundary, while on panel (d)
H(ω) = Gc(ejω∆t) and point P is slightly in the string
unstable domain.

Fig. 3. (a) Stability chart in the (αh, βh) plane for a human-
driven vehicle. (b) Stability chart in the (α, β1) plane
for a CCC vehicle monitoring one car ahead. (c,d)
frequency response at point P.

3.3 Heterogeneous Vehicle Networks

Here we consider a string composed of (n+1) vehicles and
assume each vehicle may be either human-driven vehicle
or CCC vehicle. For simplicity, we assume all human
drivers are identical and all CCC vehicles are driven by
the same controller, but the method shown here can be
easily extended to handle the cases with higher levels of
heterogeneity.

To unify the mathematical description, we compute the
Laplace transform of (10) with zero initial condition. In
this case the Laplace transform of ṽ(t) can be written as

Ṽ (s) = Ṽ ∗(s)
es∆t(1− e−s∆t)2

s2∆t
, (32)

where the starred transform is given by

Ṽ ∗(s) =

∞∑
k=0

ṽ(k∆t)e−sk∆t. (33)

We can construct a pulse transfer function T ∗
i (s) to repre-

sent the dynamic relationship between the input ṽi(t) and
the output ṽ(t) at the sampled instants when all other
inputs are 0. That is, similar to (15), we have
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Ṽ ∗(s) =

n∑
i=1

T ∗
i (s)Ṽ

∗
i (s), (34)

and (32,34) yields

Ṽ (s) =
es∆t(1− e−s∆t)2

s2∆t

n∑
i=1

T ∗
i (s)Ṽ

∗
i (s). (35)

For a complex function W (s) one may use the Residual
Theorem to directly calculate

W ∗(s) =
∑
i

Res

(
W (λ)

1− e−(s−λ)∆t
, pi

)

=
∑
i

1

(mi − 1) !

d(mi−1)

dλ(mi−1)

(
(λ− pi)

miW (λ)

1− e−(s−λ)∆t

)∣∣∣
λ=pi

,

where the sum is over the poles pi of W (s) and mi denotes
the algebraic multiplicity of the pole pi. Note that the
starred transform has the following three properties:

• W ∗(s) = W (z)|z=es∆t ;

•
(
W1(s)W

∗
2 (s)

)∗
= W ∗

1 (s)W
∗
2 (s);

•
(
e−sk∆tW (s)

)∗
= e−sk∆tW ∗(s).

The proofs of these are given in (Phillips and Nagle, 2007).

Now we can construct a head-to-tail pulse transfer function
that can be used to calculate the steady state velocity
response of the tail vehicle imposed by the velocity fluc-
tuation of the head vehicle at the sampled instants. For a
vehicle string of (n+1) vehicles, we can use the adjacency
matrix Γ = [γi,k] to represent the connectivity structure,
where

γi,k =

{
1 if vehicle (i− 1) utilizes data of vehicle (k − 1),
0 otherwise.

(36)
Since each vehicle only utilizes the motion information of
vehicles ahead, Γ is an upper triangular matrix.

We define the dynamic coupling matrix T(s, z) = [Ti,k],
where

Ti,k =

{
γi,kTi,k(s) if vehicle (i− 1) is human− driven,
γi,kTi,k(z) if vehicle (i− 1) is CCC,

(37)
and the modified dynamic coupling matrix

T̃(s, z) = R1T(s, z)R2, (38)

cf. (26,30). Now we define a link operator ⊗ to indicate
the cascading structure of subsystems:

• Ta,b(s)⊗ Tb,c(s) = Ta,b(s)Tb,c(s) := Ta,c(s);
• Ta,b(z)⊗ Tb,c(s)⊗ Tc,d(z) =

Ta,b(z)

(
es∆t(1− e−s∆t)2

s2∆t
Tb,c(s)

)∗∣∣∣∣
s=

ln(z)
∆t

Tc,d(z).

Note that ⊗ is not commutative.

Then we can calculate the head-to-tail pulse transfer
function by

G(s, z) =
∑

σi∈Sn

n∏
i=1

⊗ T̃i,σi
(39)

where the ordered product is given by
n∏

i=1

⊗ T̃i,σi = T̃1,σi ⊗ T̃2,σi ⊗ · · · ⊗ T̃n,σi , (40)

and the sum in (39) is computed over all permutations of
the set Sn = {1, 2, ..., n}, cf. (27,31).
For example,

T0,1(z)⊗ T1,2(s)⊗ T2,3(s)⊗ T3,5(z) (41)

= T0,1(z)

(
es∆t(1− e−s∆t)2

s2∆t
T1,2(s)T2,3(s)

)∗∣∣∣
s=

ln(z)
∆t

T3,5(z).

Formula (39) yields the head-to-tail frequency response

H(ω) = G(jω, ejω∆t). (42)

To be consistent with (37) and (39), for vehicle (i− 1) in
the string we can generalize (14) as

Ac1 =

[
− 1

2αN∆t2 1
2

(
α+

∑n+1
k=i+1 γi,kβk−i

)
∆t2

αN∆t −
(
α+

∑n+1
k=i+1 γi,kβk−i

)
∆t

]
(43)

4. CASE STUDIES

To represent the construction above, we provide two case
studies. First, we look at a vehicle string composed of 3
vehicles shown in Fig. 4: vehicle 0 at the tail and vehicle 2
at the head are CCC vehicles, while vehicle 1 in the middle
is human-driven. Also, we compare the exact frequency
response of this system derived from our approach to those
obtained by discrete-time approximation and continuous-
time approximation.

v0

h0

v1

h1

v2
0 1 2

α, β1

β2

αh, βh

Fig. 4. Vehicle string model composed of 3 vehicles. Blue
dashed links indicate digital control, while red contin-
uous link indicates continuous-time control.

By applying (36-42), one can show that the amplitude
ratio of v0(t) and v2(t) is given by |H(ω)|, where
H(ω) = G(jω, ejω∆t) (44)

= T c
2 (e

jω∆t) + T c
1 (e

jω∆t)

(
es∆t(1− e−s∆t)2

s2∆t
Th(s)

)∗∣∣∣
s=jω

Note that T h(s) has infinitely many poles, cf. (9). When
applying the Residual Theorem, we use DDE-BIFTOOL
(Engelborghs et al., 2001) to compute the leading poles
numerically. In fact, using the leading 3 poles and using
the leading 20 poles give very close results.

In Fig. 5 solid blue curves indicate |H(ω)| in case of
sampling time ∆t = 0.1 [s], human reaction time τ = 0.45
[s] and human gains αh = 0.6 [1/s], βh = 0.9 [1/s] for
different values of α, β1, β2 as indicated. We compare these
to the results of two different approximations. Dashed
red curves represent the case when the discrete dynamics
of the CCC vehicle is approximated by continuous time
system containing the average delay τ = 3

2∆t = 0.15
[s]; see Fig. 2(c). On the other hand, dotted green curves
represent the case when the constant human reaction
time is substituted with time varying delay similar to
those in Fig. 2(c) but with minimum value 4∆t = 0.4
[s] and maximum value 5∆t = 0.5 [s]. Observe that
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(c) (d)

α = 3 [1/s]
β1 = 1 [1/s]
β2 = 1 [1/s]

α = 2 [1/s]
β1 = 2 [1/s]
β2 = 2 [1/s]

α = 1 [1/s]
β1 = 3 [1/s]
β2 = 3 [1/s]

Fig. 5. (a,b,c) Frequency response (44) for human delay
τ = 0.45 [s], human gains αh = 0.6 [1/s], βh = 0.9
[1/s], and sampling time ∆t = 0.1 [s] and different
values of gain parameters as indicated, corresponding
to the system in Fig. 5. Solid blue curves correspond
to the exactH(ω), while dashed red curves correspond
to the continuous-time approximation and dotted
green curves to the discrete-time approximation.

v0

h0

v1

h1

v2

h2

v3

h3

v40 1 2 3 4

α, β1

β2

β4

αh, βh α, β1

β2

αh, βh

Fig. 6. Vehicle string model composed of 5 vehicles. Blue
dashed links indicate digital control, while red contin-
uous links indicate continuous-time control.

the approximations capture the real case well. The small
differences are shown by the zoom in Fig. 5(d).

Now we consider a more complex vehicle network and
analyze the string stable domain of the control gains. Fig. 6
show a string where vehicles 0, 2, 4 are CCC vehicles, while
vehicles 1, 3 are human-driven vehicles.

By applying (39), we obtain

H(ω) = G(jω, ejω∆t) (45)

= T c
4 (e

jω∆t) +
(
T c
2 (e

jω∆t)
)2

+
(
T c
1 (e

jω∆t)
)2(( es∆t(1− e−s∆t)2

s2∆t
Th(s)

)∗∣∣
s=jω

)2

+ 2T c
1 (e

jω∆t)T c
2 (e

jω∆t)
( es∆t(1− e−s∆t)2

s2∆t
Th(s)

)∗∣∣
s=jω

.

Here we use our method to design the gains β1 and β2 while
fixing the human parameters as τ = 0.45 [s], αh = 0.6 [1/s],
βh = 0.9 [1/s] and the other parameters as ∆t = 0.1 [s],
α = 0.6 [1/s] and β4 = 0. In the blue shaded domain shown
in Fig. 7, the string stability condition (23) is satisfied.

5. CONCLUSIONS

In this paper we proposed a method to obtain the steady
state dynamics of heterogeneous connected vehicle systems
containing CCC vehicles that are controlled in discrete

-1 0 1 2 3 4

0

1

2

3

4
β2 [ 1s ]

β1 [ 1s ]

Fig. 7. Stability chart for string in Fig. 6.

time and human-driven vehicles that are controlled in
continuous time. The proposed approach allowed us to
evaluate the head-to-tail string stability for complex ve-
hicle networks in an efficient manner. It also serves as
a benchmark to justify the analyses conducted by two
approximation methods discussed in this paper.
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