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Abstract. Systems of globally coupled phase oscillators can have robust attractors that are heteroclinic net-
works. We investigate such a heteroclinic network between partially synchronized states where the
phases cluster into three groups. For the coupling considered there exist 30 different three-cluster
states in the case of five oscillators. We study the structure of the heteroclinic network and demon-
strate that it is possible to navigate around the network by applying small impulsive inputs to the
oscillator phases. This paper shows that such navigation may be done reliably even in the presence
of noise and frequency detuning, as long as the input amplitude dominates the noise strength and
the detuning magnitude, and the time between the applied pulses is in a suitable range. Further-
more, we show that, by exploiting the heteroclinic dynamics, frequency detuning can be encoded as
a spatiotemporal code. By changing a coupling parameter we can stabilize the three-cluster states
and replace the heteroclinic network by a network of excitable three-cluster states. The resulting
“excitable network” has the same structure as the heteroclinic network and navigation around the
excitable network is also possible by applying large impulsive inputs. We also discuss features that
have implications for related models of neural activity.

Key words. globally coupled oscillators, three-cluster state, heteroclinic connection/network, winnerless com-
petition, excitable dynamics, neural computation
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1. Introduction. Coupled phase oscillators are a simple class of dynamical systems that
can model phenomena such as synchronization between individual neurons [7, 16]. If neurons
are assumed to produce periodic output (e.g., periodic spiking) when uncoupled, then they
may be represented by a scalar phase variable. (In case of spiking a phase can be defined such
that it crosses zero when the neuron spikes.) Coupled oscillators that are subject to external
perturbations can be modeled in many cases by using only the phase variables [8].

Recent work [1] proposes that certain types of neural system are well modeled by what
they call winnerless competition. Such dynamics consists of a number of saddle states in the
phase space that are connected by their unstable manifolds to form a heteroclinic network.
This type of dynamics can robustly produce a number of behaviors in the phase oscillator
system that are of interest for modeling neural systems:

(i) it can generate a sequence of states in response to a sequence of inputs,
(ii) it can act as a very sensitive classifier for inputs, and
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Figure 1. Raster plot showing the spiking of five oscillators in time. The vertical lines indicate when the
phases of oscillators 1, . . . , 5 pass through zero. The figure is obtained using the coupled phase oscillator model
(2.1), (2.2) with parameters (3.1) in the case of low noise (of strength η = 10−5), no input (ε = 0), and no
detuning (δ = 0). Observe that the oscillators form into three-cluster states of two synchronized pairs and one
singleton, and that the cluster formations spontaneously change as time progresses. The dynamics in this figure
is shown also in Figure 9(a2), where clusters are distinguished by color.

(iii) it can convert inputs into spatiotemporal coding;
see [6, 23]. The last behavior may have importance for encoding odor information in antennal
lobes of insects [11].

Attracting robust heteroclinic networks have been recognized in a variety of systems. For
instance, they are found in the Lotka–Volterra dynamics of three or more interacting popula-
tions [18], in many symmetric systems [12], and in systems of four or more globally coupled
phase oscillators [5] where they cause the phenomena of slow oscillations/switching among
cluster states [13, 17, 21]. In case of slow oscillations/switching, the presence of noise causes
a near-periodic switching motion such that the asymptotic period of switching becomes un-
bounded as the noise level reduces to zero.

To motivate our work we present here an example of slow switching. Figure 1 shows a time
series of “spikes” for five oscillators which is a widely accepted representation of the dynamics
in neural systems [23]. This figure is produced using the phase oscillator model studied in this
article with added low noise. Vertical lines show where the phases of oscillators pass through
zero. From this “raster plot” the underlying dynamics is not immediately obvious. However,
one can recognize that three-cluster states are formed consisting of two synchronized pairs
of oscillators and one singleton, and that there are regular switches between these cluster
states as time progresses. This figure corresponds to Figure 9(a2), where the clusters are
colored yellow and blue (and different time scales are used). Our aim is to show the existence
of a heteroclinic network of cluster states which underlies and explains this dynamics. By
exploiting the features of this network we can predict possible transitions between cluster
states and estimate the period of switching.

Even for quite simple coupling between fairly small numbers of globally coupled phase
oscillators one can find attracting robust (structurally stable) heteroclinic networks of high
complexity. For example, a system of five oscillators may possess an attractor with 20 different
two-cluster states linked together as a heteroclinic network [2]. This network can be used to
perform simple computations by applying small inputs to the individual oscillators [3], but
these computations are very sensitive to noise. For this reason, we introduce a modified model
in section 2 which presents a new type of heteroclinic network between three-cluster states
and where the performed computations are considerably less sensitive to noise. The goal of
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this paper is to describe the structure and dynamics of this network and also to investigate
its computational properties.

In section 3 we examine the structure of the proposed heteroclinic network in detail. For
five oscillators we find an open set of parameters such that the system has a robust heteroclinic
attractor comprising 30 symmetrically related three-cluster states of saddle type connected by
their unstable manifolds. We also investigate the behavior of the network under perturbations.
Namely, we consider the effect of noise, the effect of detuning the natural frequencies of the
oscillators, and the effect of (periodic) impulsive inputs.

In section 4 we demonstrate that the heteroclinic network can robustly perform finite-
state computation in the presence of background noise and frequency detuning. By applying
periodic impulsive inputs to the phase oscillators it is possible to induce switches between
cluster states and so predictably navigate around the network. We characterize the bit error
rate of these switches as a function of the input period, the input amplitude, and the noise
strength. It is shown that as long as the input amplitude is large enough (compared to the
noise strength) there exists a range of periods for which the computations are reliable. The
left boundary of this range is proportional to the logarithm of the input amplitude, while its
right boundary is proportional to the logarithm of the noise strength. (Frequency detuning
also brings errors into the finite-state computation similarly to noise.) At the end of section 4
we also discuss that frequency detuning can be encoded as spatiotemporal codes.

Section 5 shows that on varying a single parameter in the coupling function one can achieve
that the above attracting heteroclinic network becomes an attracting network of linearly stable
three-cluster states. These states are excitable: there is a minimum threshold for the input
amplitude to switch from one state to the other. This “excitable network” can perform finite-
state computation similarly to the heteroclinic network, except that the input amplitudes
must be sufficiently large.

We conclude our results in section 6 and discuss future research in section 7.

2. The phase oscillator model. In this section we introduce the globally coupled phase
oscillator model we study in this paper. The first model of this kind was developed by
Kuramoto [19], but models with several different coupling functions have been investigated
in the last three decades; see, e.g., [2, 7, 13]. We consider N oscillators complying with the
equations

(2.1) θ̇n = ωn +
1

N

N∑
m=1

g(θn − θm) + ε In  + η wn, n = 1, . . . , N,

where  θn(t) ε [0 , 2π) is  the  phase  of  the  nth  oscillator,  ωn  is  the  natural  frequency  of  the
nth oscillator, In(t) is an impulsive input with unit magnitude, and wn(t) is uncorrelated white
noise such that the associated random walk has unit growth of variance per unit time. The
quantity ε represents the input amplitude, while η is the noise strength. The globally coupled
system (2.1), (2.2) is represented by the graphs in Figure 2 for N = 3, 5, 7 oscillators (black
dots) with N(N − 1)/2 = 3, 10, 21 bidirectional connections (two-headed arrows). We remark
that we are interested only in the case when N is finite. In particular, N = 5 is studied in
detail, and implications for larger N are discussed in section 7. In some cases we will use the
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Figure 2. Global coupling between N = 3, 5, 7 oscillators with N(N − 1)/2 = 3, 10, 21 bidirectional connec-
tions, respectively. Black dots represent the oscillators, and two-headed arrows represent the mutual coupling
between them.

vector notation θ(t) = col[θ1(t), . . . , θN (t)]. Furthermore, we consider a coupling function

(2.2) g(ϕ) = − sin(ϕ + α) + r sin(2ϕ + β),

where α, β, and r are constants. This function is 2π-periodic containing Fourier modes with
frequencies 1 and 2. Note that in order to find nontrivial clustering behavior in the sys-
tem (2.1), (2.2) it is necessary to include Fourier modes with frequencies higher than 1 [13].
Furthermore, the phase reductions of well-known neural models naturally lead to periodic
functions where several harmonics are included [14]. Function (2.2) is the simplest general-
ization of the functions used in [2, 13, 17].

One may define the average natural frequency by

(2.3) ω =
1

N

N∑
n=1

ωn,

and a uniform detuning of natural frequencies is when

(2.4) ωn+1 − ωn = δ, n = 1, . . . , N − 1.

Here δ � 1 represents the detuning magnitude. Observe that for uniform detuning given ω
and δ we have

(2.5) ωn = ω +
(
n− N+1

2

)
δ, n = 1, . . . , N.

Permuting the oscillators in (2.4), and consequently in (2.5), gives detunings which we also
call uniform. In the case of nonuniform detunings the frequencies ωn are not uniformly spaced
and the detuning magnitude may be defined by

(2.6) δ = max
n

{
min
m�=n

{|ωn − ωm|}
}
.

In this article we investigate only the effects of uniform detunings. Note that δ = 0 if and
only if ωn = ω for n = 1, . . . , N .
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One may consider the detuning as a steady external input applied to the “ideal” system
of identical oscillators (ωn = ω for all n) in addition to impulsive inputs and noise in (2.1).
The effects of the external perturbations in the form of impulsive inputs (when ε �= 0), noise
(when η �= 0), and detuning (when δ �= 0) will be discussed in section 3.3.

In the “unperturbed” case

(2.7) ε = η = δ = 0,

the systems of coupled oscillators (2.1), (2.2) can be thought of as ODEs on the N -torus
T
N with symmetry SN of all permutations of the oscillators. The codimension one invariant

subspaces

(2.8) θn(t) ≡ θm(t) for n �= m

form barriers to the flow. These divide the torus up into (N − 1)! invariant regions that are
symmetric images of the canonical invariant region

(2.9) {θ1 ≤ θ2 ≤ · · · ≤ θN ≤ θ1 + 2π};

see [5] for more details. Subspaces (2.8) are essential for the formation of the robust hetero-
clinic network, as will be explained in section 3.1.

We refer to an �-cluster state of type (N1, . . . , N�) as a state where each oscillator has one
of only � different phases φ1, . . . , φ�: for each r there are Nr oscillators that have the same
phase φr such that

∑�
r=1 Nr = N . In this way we can think of full synchrony as a one-cluster

state of type (N) and full asynchrony as an N -cluster state of type (1, . . . , 1) with N entries.
Note that choosing a clustered distribution of frequencies ωn can give rise to cluster states of
similar type. However, this is not necessary as cluster states may appear spontaneously as
stable behavior, even for identical oscillators (ωn = ω for all n), as will be discussed in detail
in section 5.

We wish to emphasize the importance of the parameter β in the coupling function (2.2). In
[2, 13, 17] β = 0 was considered; i.e., only the odd part of the second harmonic was included.
Due to this “degeneracy” of the coupling function it appears that any attracting heteroclinic
network contains only two-cluster states. In this paper we unfold the above “degeneracy” by
considering β �= 0 and find heteroclinic networks between three-cluster states.

Because the right-hand side of (2.1) depends only on phase differences, there is an extra
S1 continuous rotational symmetry given by performing an identical phase shift to all oscil-
lators. If there is a solution θ̃(t) = col[θ̃1(t), . . . , θ̃N (t)] of (2.1) then θ̃(t) + ϕ col[1, . . . , 1] =
col[θ̃1(t)+ϕ, . . . , θ̃N (t)+ϕ] is also a solution for any ϕ ∈ R. Consequently, it is sufficient to ex-
amine phase differences to determine the long-term behavior of the system. We will introduce
the phase differences γn = θn− θN for n = 1, . . . , N . Note that similar continuous symmetries
appear in many other applications, e.g., in car-following models of highway traffic [22].

3. Attracting network of three-cluster states. In the unperturbed case ε = η = δ = 0
system (2.1), (2.2) displays a wide range of robust dynamics. This includes synchrony (r, α
small regardless of β), antisynchrony (r small α near π regardless of β), and cluster states
(typically in the region where α is close to π/2). In the last case one can find robust heteroclinic
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Figure 3. Three of the 30 three-cluster states of Table 1 are represented by color. The pairs marked “y”
are shown as yellow, the pairs marked “b” are shown as blue, and the single oscillators are displayed as white.

connections. For β = 0 these connections are between two-cluster states [2, 17], but the system
with β �= 0 can have connections between three-cluster states.

Considering N = 5 the system (2.1), (2.2) has an attracting heteroclinic network for an
open set of parameters near

(3.1) r = 0.2, α = 1.8, β = −2.0, ω = 1.0,

as explained below. Considering the invariant subspace

(3.2)

⎡
⎢⎢⎢⎢⎣

θ1(t)
θ2(t)
θ3(t)
θ4(t)
θ5(t)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

θ1(t)
θ1(t)
θ3(t)
θ4(t)
θ4(t)

⎤
⎥⎥⎥⎥⎦ ,

where the first two oscillators form a cluster (θ1(t) ≡ θ2(t)) and the last two oscillators form
another cluster (θ4(t) ≡ θ5(t)), one can find a three-cluster state of type (2, 1, 2)

(3.3)

⎡
⎢⎢⎢⎢⎣

θ1(t)
θ2(t)
θ3(t)
θ4(t)
θ5(t)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

Ωt + φy

Ωt + φy

Ωt + φw

Ωt + φb

Ωt + φb

⎤
⎥⎥⎥⎥⎦ := Syywbb

for some constants φy < φw < φb < φy + 2π. Note that the subscripts of Syywbb correspond
to the subscripts of the coordinates where “y”, “w”, and “b” stand for yellow, white, and
blue, respectively; see the coloring applied in the leftmost panel of Figure 3. In this article
we refer to this coloring by using terms such as yellow oscillator/cluster, white oscillator, and
blue oscillator/cluster.

In addition there are a number of states given by permutation of the subscripts of Syywbb,
that is, by permutation of the coordinates in (3.3). This symmetry gives a total of 5!/(2!1!2!) =
30 possible states listed in Table 1. Some of these states are also represented by the graphs
in Figure 3 with corresponding coloring.
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Table 1
List of three-cluster states. Each column may be generated from another by cyclic permutation of the

subscripts of Si1,...,i5 .

s1 = Syywbb s7 = Sbyywb s13 = Sbbyyw s19 = Swbbyy s25 = Sywbby

s2 = Sbbwyy s8 = Sybbwy s14 = Syybbw s20 = Swyybb s26 = Sbwyyb

s3 = Sybwyb s9 = Sbybwy s15 = Sybybw s21 = Swybyb s27 = Sbwyby

s4 = Sbywby s10 = Sybywb s16 = Sbybyw s22 = Swbyby s28 = Sywbyb

s5 = Sybwby s11 = Syybwb s17 = Sbyybw s23 = Swbyyb s29 = Sbwbyy

s6 = Sbywyb s12 = Sbbywy s18 = Sybbyw s24 = Swybby s30 = Sywybb

Notice that the three-cluster state (3.3) (and each symmetric copy in Table 1) has full
frequency synchrony with frequency Ω and clustering into three-cluster states with phases φy,
φw, and φb. One of these phases can be chosen arbitrarily corresponding to the S1 continuous
rotational symmetry of the system. This means that the three-cluster state (3.3) (and each
symmetric copy in Table 1) is determined by the phase differences

(3.4)
χ := φy − φw, where −π < χ < 0,

ψ := φb − φw, where 0 < ψ < π,

up to application of the continuous rotational symmetry. Substituting the solution (3.3) into
(2.1), (2.2) when ε = η = δ = 0 and using (3.4), one obtains

Ω = ω + 1
5

(
g(0) + 2g(−χ) + 2g(−ψ)

)
,

Ω = ω + 1
5

(
2g(0) + g(χ) + 2g(χ− ψ)

)
,

Ω = ω + 1
5

(
2g(0) + g(ψ) + 2g(ψ − χ)

)
,

(3.5)

which determine χ, ψ, and Ω. Note that when solving (3.5) the frequency ω does not appear
in the phase differences χ and ψ. For parameters (3.1) there is a unique solution:

(3.6) χ = −1.8212, ψ = 1.1041, Ω = 0.8468.

Linearizing system (2.1), (2.2) about the three-cluster state s1 = Syywbb in (3.3) (or about
any symmetric copy in Table 1) and using (3.4), one can investigate the linear stability of
three-cluster states, that is, determine the eigenvalues

λ1 = 0,

λ2 = 1
5

(
2g′(0) + g′(χ) + 2g′(χ− ψ)

)
,

λ3 = 1
5

(
2g′(0) + g′(ψ) + 2g′(ψ − χ)

)
,

λ4 = λ∗
5 = μ + i

√
ν

(3.7)

of the linearized system. The rather complicated expressions of  μ, ν ∈ R  in terms of g′(χ),
g′(−χ), g′(ψ), g′(−ψ), g′(χ−ψ), and g′(ψ−χ) are given by (A.1), (A.2) in Appendix A. For
parameters (3.1) (that is, for the phase differences (3.6)) we have the eigenvalues

(3.8) λ2 = −0.2834, λ3 = 0.1703, λ4,5 = −0.1012 ± i 0.2848,
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Figure 4. Dynamics around a saddle three-cluster state for parameters (3.1) in the unperturbed case
ε = η = δ = 0. In panel (a) the eigenvalues (3.7), (3.8) are displayed in the complex plane. Panel (b) shows
the local dynamics in phase space in the vicinity of the three-cluster state s16 = Sbybyw (red dot): The unstable
eigendirection v3 and the stable eigendirections Re(v4) = Re(v5), Im(v4) = −Im(v5) given in (3.9) can be
visualized by the outgoing and spiralling-in trajectories, respectively.

shown in Figure 4(a). For the three-cluster state s1 = Syywbb the corresponding eigenvectors
are

(3.9) v1 =

⎡
⎢⎢⎢⎢⎣

1
1
1
1
1

⎤
⎥⎥⎥⎥⎦ , v2 =

⎡
⎢⎢⎢⎢⎣

1
−1
0
0
0

⎤
⎥⎥⎥⎥⎦ , v3 =

⎡
⎢⎢⎢⎢⎣

0
0
0
1
−1

⎤
⎥⎥⎥⎥⎦ , v4 = v∗5 =

⎡
⎢⎢⎢⎢⎣

ry + i py

ry + i py

1
rb + i pb

rb + i pb

⎤
⎥⎥⎥⎥⎦ ,

where the expressions of ry, py, rb, pb ∈ R contain g′(χ), g′(−χ), g′(ψ), g′(−ψ), g′(χ−ψ), and
g′(ψ − χ) as given by (A.3)–(A.6) in Appendix A. For the other 29 states in Table 1, the
eigenvectors can be obtained by permuting the components in (3.9) (in the same manner as
the subscripts of s1 = Syywbb to obtain these symmetric copies).

In order to eliminate the S1 continuous rotational symmetry we use the phase differences

(3.10)

⎡
⎢⎢⎢⎢⎣

γ1

γ2

γ3

γ4

γ5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

θ1 − θ5

θ2 − θ5

θ3 − θ5

θ4 − θ5

0

⎤
⎥⎥⎥⎥⎦

to plot the dynamics of the system. In the phase space of these coordinates the three-cluster
state s1 = Syywbb in (3.3) and its symmetrical copies in Table 1 are equilibria. Furthermore,
in many of the subsequent figures we project the phase space T

4 of the phase differences γn
into [−1, 1]4 by taking sin γn.
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The eigenvector v1 with zero eigenvalue corresponds to translation along the S1 group
orbit of the system. The eigenvectors v2 and v3 correspond to splitting the yellow and the
blue clusters, respectively. (These clusters are marked by subscripts “y” and “b” in (3.3)
and Table 1, and are colored yellow and blue in Figures 3 and 4.) The eigenvectors v4 and
v5 correspond to motion in the subspace (3.2). In Figure 4(b) the eigendirection v3 and the
eigendirections Re(v4) = Re(v5), Im(v4) = −Im(v5) can be visualized by the outgoing and
spiralling-in trajectories, respectively, for the three-cluster state s16 = Sbybyw (red dot).

For parameters (3.1) we have λ1 = 0, λ2 < 0, λ3 > 0, and Re(λ4) = Re(λ5) < 0 as
given by (3.8) and plotted in Figure 4(a). Consequently, the eigendirection v2 is attracting;
that is, perturbations that involve splitting the yellow cluster will decay in time. Hence we
say that the yellow cluster is stable. On the other hand, the eigendirection v3 is repelling
as the outgoing trajectories demonstrate in Figure 4(b). That is, perturbations that involve
splitting the blue cluster grow in time. Hence we say that the blue cluster is unstable. The
eigendirections Re(v4) = Re(v5) and Im(v4) = −Im(v5) are attracting, as demonstrated by
the inward spiralling trajectories in Figure 4(b). That is, the three-cluster state is attracting
in the subspace (3.2). In summary, the only perturbations giving rise to motion away from the
saddle three-cluster state are those in the direction v3 that involve splitting the blue cluster.

3.1. Heteroclinic connections between three-cluster states. One can verify numerically
that the branches of the one-dimensional unstable manifold of the three-cluster state s1 =
Syywbb are contained wholly within the stable manifolds of the three-cluster states s12 =
Sbbywy and s13 = Sbbyyw. The former branch corresponds to the direction where the 4th
oscillator is advanced relative to the 5th one, i.e., “starts in direction v3”, while the latter
branch corresponds to the opposite direction, i.e., “starts in direction −v3”; see (3.9). These
connections occur within the invariant subspace

(3.11)

⎡
⎢⎢⎢⎢⎣

θ1(t)
θ2(t)
θ3(t)
θ4(t)
θ5(t)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

θ1(t)
θ1(t)
θ3(t)
θ4(t)
θ5(t)

⎤
⎥⎥⎥⎥⎦ ,

and the connections are source-to-sink and hence robust (persistent) to sufficiently small
symmetry-preserving perturbations. Note that on the connecting orbit the first two oscillators
remain synchronized (θ1(t) ≡ θ2(t)), but this cluster becomes unstable (changes from yellow
to blue).

Similarly, one branch of the one-dimensional unstable manifold of each of the three-cluster
states s19 = Swbbyy and s29 = Sbwbyy connects to s1 = Syywbb. These branches “arrive from
directions ∓v2”,  and they are embedded in the invariant subspace

(3.12)

⎡
⎢⎢⎢⎢⎣

θ1(t)
θ2(t)
θ3(t)
θ4(t)
θ5(t)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

θ1(t)
θ2(t)
θ3(t)
θ4(t)
θ4(t)

⎤
⎥⎥⎥⎥⎦ ,
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Figure 5. In panel (a) the heteroclinic connections originated in and terminated at the three-cluster state
s16 = Sbybyw are shown in phase space for parameters (3.1) in the unperturbed case ε = η = δ = 0. The
three-cluster states are represented by red dots. In panel (b) a simple graph representation is displayed such
that the nodes and directed edges correspond to three-cluster states and heteroclinic connections, respectively.

where the last two oscillators are synchronized (θ4(t) ≡ θ5(t)).
Indeed, the above argument can be interpreted for any three-cluster state in Table 1. For

example, considering the three-cluster state s16 = Sbybyw, one may verify that the branches of
its unstable manifold connect to the three-cluster states s5 = Sybwby and s22 = Swbyby, while
the unstable manifolds of the three-cluster states s10 = Sybywb and s30 = Sywybb connect to
it, as shown in Figure 5(a). The connected three-cluster states can be represented as nodes,
while the connections can be represented as directed edges between them, as shown by the
graph in Figure 5(b).

3.2. Graph structure of the heteroclinic network. Let us now examine all connections
between three-cluster states in Table 1. We find that there is a heteroclinic network consisting
of the 30 three-cluster states si = Si1...i5 and their 60 connecting heteroclinic orbits; see
Figure 6(a), where all states and connections are shown in phase space. The network can be
represented as the directed graph shown in Figure 6(b). The nodes si of the graph correspond
to the three-cluster states si = Si1...i5 , and there is a directed edge from node si to sj if
and only if there is connecting orbit from the three-cluster state si = Si1...i5 to sj = Sj1...j5 .
Notice the five-fold cyclic symmetry of the graph that reflects a five-fold cyclic permutation
symmetry of the oscillators; see the middle panel in Figure 2.

Starting at a certain three-cluster state of the heteroclinic network in Figure 6(a) (or
equivalently at the corresponding node of the graph in Figure 6(b)), we can choose which
connection (or corresponding edge) we wish to follow. More precisely, an arbitrarily small
perturbation with a component in the direction v3 or −v3 initiates a transition along one or
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Figure 6. Panel (a) shows the entire heteroclinic network in phase space for parameters (3.1) in the
unperturbed case ε = η = δ = 0. Some of the three-cluster states (red dots) are labeled according to Table 1. In
panel (b) the graph representation is depicted where each node represents a three-cluster state and each directed
edge represents a heteroclinic connection from one state to the other.

the other heteroclinic connection. Indeed, these perturbations correspond to advancing one
oscillator of the unstable blue cluster (marked by “b” in the subscript of si = Si1...i5 in (3.3)
and Table 1 and shown as blue in Figures 3–5). This means that a small advance of phase of
the pth oscillator gives rise to a transition from si to sj if ip = b (we perturb the unstable blue
cluster) and there exists a heteroclinic connection between the three-cluster states si = Si1,...,i5

and sj = Sj1,...,j5 . To formalize this we define operator Op such that

(3.13) Op(si) = sj ⇔ Op(Si1...i5) = Sj1...j5

if and only if there is a transition from si to sj obtained by a small advance of the phase of
the pth oscillator. The action of Op is characterized by the subscript changes:

(3.14)
if ip = b, then

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

in = y → jn = b,

in = w → jn = y,

in = b → jn = y for n �= p,

in = b → jn = w for n = p,

if ip ∈ {y,w}, then jn = in for all n.

According to (3.14) there are two “qualitatively” different choices of p ∈ {1, . . . , 5}. Choos-
ing an oscillator from the unstable blue cluster (ip = b) gives Op(si) = sj with j �= i, while
choosing an oscillator from the stable yellow cluster (ip = y) or choosing the single white
oscillator (ip = w) gives Op(si) = si. Formula (3.14) evaluated for all si is presented as Ta-
ble 2 in Appendix B. According to this, one can follow arbitrary paths on the directed graph
in Figure 6(b) by making a sequence of arbitrarily small perturbations to the appropriate
oscillators. We will exploit this feature of the network in sections 3.3 and 4.

We can define an adjacency matrix A with elements Aij ∈ {0, 1}, where Aij = 1 if and
only if there is a directed edge from node si to sj in the graph Figure 6(b). The number
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Figure 7. The logarithm of the number of distinct cyclic paths log2

(
tr(Ak)

)
as a function of the path length

k (red crosses) for the graph shown in Figure 6(b). Note that the shortest cycle length is 5 and there are no
cycles of length 7. The blue line corresponds to the growth 2k.

of cyclic paths of any given length can be calculated from the adjacency matrix as follows.
The elements of the matrix Ak give the number of distinct paths of length k from node si
to node sj ; see [15]. Thus, the diagonal elements of Ak give the number of distinct cyclic
paths of length k from a node back to itself, and the trace tr(Ak) represents the total number
of cyclic paths of length k in the network. In Figure 7 the logarithm of tr(Ak) is plotted as
a function of k (red crosses). One can observe that there are no cycles of length 1, 2, 3, 4, 7
and that tr(Ak) ≈ 2k for large k (the blue line represents the exact relation tr(Ak) = 2k).
We remark that cycles with path length k = 6 become relevant when the natural frequencies
of the oscillators are detuned in (2.1) according to (2.5) with δ �= 0, as will be discussed in
sections 3.3 and 4.2.

3.3. Dynamics of the attracting heteroclinic network. For parameters (3.1) in the un-
perturbed case ε = η = δ = 0 the heteroclinic network described above is asymptotically
stable/attracting (even though each three-cluster state is saddle). (Recall that the contract-
ing eigenvalue is stronger than the expanding one, i.e., |λ2| > λ3 as given by (3.8) and plotted
in Figure 4(a); so by [18] the network is asymptotically stable.) This attractivity is essen-
tial if one wishes to perform reliable computations by using the heteroclinic network: small
perturbations do not drive the system away from the network as time progresses, allowing
navigation along a chosen path on the network.

In Figure 8 the attractivity is demonstrated for an arbitrary initial condition. Figure 8(a)
shows the dynamics in phase space. The trajectory approaches the network such that it
approaches a sequence of three-cluster states (labeled red dots) and “travels close” to the
heteroclinic connections from one state to the other while spending longer and longer periods
of time close to the three-cluster states. This well-known slowing down of cycling [18] is seen
in time profiles in Figure 8(b), where the plateaux correspond to “being close to” the three-
cluster states and the quick transitions between them correspond to “traveling close to” the
heteroclinic connections. In this panel a color code is also applied: yellow oscillators form
the stable cluster, blue oscillators form the unstable cluster, and labels on the top identify
the three-cluster states according to Table 1. Regions of quick transitions are colored light
green. The length of time intervals spent close to the three-cluster states, i.e., the length of
the plateaux, increases as

(3.15) lim
k→∞

Tk

Tk−1
=

|λ2|
λ3

,
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Figure 8. Approaching the heteroclinic network from an arbitrary initial condition in the unperturbed
case (as labeled on the top left) for parameters (3.1). Panel (a) shows the dynamics in phase space: The
labeled red dots show the three-cluster states approached by the trajectory that “travels close to” the heteroclinic
connections. In panel (b) the time profiles are displayed: Plateaux of sin γn correspond to three-cluster states
and transitions between them correspond to heteroclinic connections. Lining up the colored regions vertically
reveals which oscillators form the stable yellow and unstable blue clusters, and the labels on the top identify the
three-cluster states according to Table 1. Transition regions are colored light green. Panel (c) shows the path
followed on the graph in Figure 6(b). See also the accompanying animation (68396 01.avi [3.9MB]).

which corresponds to the strength of attraction of the heteroclinic connections [18]. Notice in
Figure 8(b) that the limit (3.15) is almost achieved even for small values k = 3, 4, 5. Figure 8(c)
shows the path followed on the graph in Figure 6(b) by the above dynamics.

The heteroclinic behavior changes when external perturbations such as noise (η �= 0),
detuning (δ �= 0), or impulsive inputs (ε �= 0) are applied; see (2.1)–(2.5). Figure 9 shows
the response of the system to such perturbations; i.e., the effects of noise, detuning, and
periodic impulsive inputs are shown in panels (a), (b), and (c), respectively, where exactly
the same notation is used as in Figure 8. The precise dynamics followed depends on the
initial condition, although after an initial transient the dynamics enters a neighborhood of
the heteroclinic attractor. To avoid transient effects the initial condition is set close to the
three-cluster state s1 = Syywbb. We assume that ε, η, and δ are small enough so that the
only attractors of the system are in a neighborhood of the heteroclinic attractor for the
unperturbed case ε = η = δ = 0. When the system is close to a three-cluster state it is sensitive
to perturbations; that is, the perturbations determine which oscillator in the unstable blue
cluster is advanced with respect to the other and, consequently, which of the two outgoing
heteroclinic connections should be followed. The asymptotic stability of the network ensures
that, after a transient, trajectories remain close to the heteroclinic network. This means
that we can describe the dynamics by the itinerary of the heteroclinic network in Figure 6(a)
(or the corresponding graph in Figure 6(b)). According to this we use the expressions “at
a three-cluster state” and “at a node” to mean that the system is close to a three-cluster
state. Furthermore, for the perturbed system the formula (3.15) does not hold. Instead, a
characteristic time of transition between states can be assigned as shown by the length of
plateaux in Figure 9(a2), (b2), (c2). This time is inversely proportional to the logarithm of

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/68396_01.avi
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Figure 9. Dynamics of the system in the presence of noise (a), detuning (b), and periodic impulsive
inputs (c) for parameters (3.1). Panels (a1), (b1), and (c1) show the dynamics in phase space; panels (a2),
(b2), and (c2) depict the time profiles; and panels (a3), (b3), and (c3) show the paths followed in Figure 6(b).
The same notation is used as in Figure 8. Panel (a2) corresponds to the raster plot in Figure 1. In panel (c2) red
stars in every t = k T = k 52.0 indicate which oscillator receives the impulsive input. See also the accompanying
animations (68396 02.avi [6.4MB]), (68396 03.avi [6.4MB]), and (68396 04.avi [6.7MB]).
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the magnitude of perturbations; see section 4.

In Figure 9(a) noise of strength η = 10−5 forces the system to follow a randomly chosen
path on the heteroclinic network. At each three-cluster state/node the noise randomly chooses
which of the two oscillators in the unstable blue cluster is advanced with respect to the
other and, consequently, which of the two outgoing heteroclinic connections/directed edges is
followed. Note that the whole network is explored with probability 1 if the simulation is run
for long enough. The time domain t ∈ [0, 350] in Figure 9(a2) corresponds to the raster plot
in Figure 1, where vertical lines indicate when the individual phases θn(t) go through zero.

Figure 9(b) shows the dynamics when oscillators are detuned according to the uniform
detuning (2.5), which for N = 5 means

(3.16) ω1 = ω − 2δ, ω2 = ω − δ, ω3 = ω, ω4 = ω + δ, ω5 = ω + 2δ.

Here the detuning magnitude δ = 10−6 is considered. Since the heteroclinic attractor is only
robust to perturbations that preserve the symmetries of the system, it is generically destroyed
by this detuning. More precisely, at a three-cluster state/node the detuning (3.16) always
advances the blue oscillator with larger index (the one which changes its color to white in
Figure 9(b2)). Consequently, one particular outgoing heteroclinic connection/directed edge is
followed. This results (after a transient path) in the system reaching a cyclic path of length 6
(which is followed as t → ∞). This path corresponds to limit cycle oscillations of the phase
differences in the detuned system. Note that this limit cycle is not unique; i.e., for different
initial states we can see different attractors, as discussed in section 4.2.

In Figure 9(c) the system is forced by periodic impulsive inputs of the form

(3.17) Ii(t) =

∞∑
k=0

δ(t− k T ) δipk ,

where δ(t − k T ) is a Dirac delta function while δipk is a Kronecker delta. The kth term of
this sum represents a unit impulse applied to the pkth oscillator at time k T , where pk ∈
{0, 1, . . . , 5} (pk = 0 corresponds to no input). That is, the phase of the oscillator receiving
the input is simply advanced by the input amplitude ε. Here the input amplitude ε = 10−3

and period T = 52.0 are considered, and a red star is plotted in Figure 9(c2) when an
oscillator receives an input. At a three-cluster state/node si = Si1,...,i5 at time t = k T we
can choose which of the two oscillators in the unstable blue cluster should receive the input
(that is, ipk = b can be chosen) and, consequently, which of the two outgoing heteroclinic
connections/directed edges should be followed. In Figure 9(c2) we always choose the blue
oscillator with the smaller index to have its phase advanced (the blue oscillator with the red
star changes its color to white). This results (after following the transient path) in a cyclic
path of length 6 (which is followed as t → ∞). Note that different input configurations lead
to different paths and that repeated input sequences correspond to cyclic paths. This shows
that by exploiting the natural dynamics of the system we can drive it along a chosen path
on the heteroclinic network: we can think of the dynamics as an input-output system which
is capable of performing finite-state computation [3]. The reliability of such computations is
investigated in detail in the next section.
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Figure 10. Dynamics of the system in the presence of periodic impulsive inputs, noise, and detuning (as
labeled on the top left) for parameters (3.1). The same notation is used as in Figure 8. In panel (b) red stars
in every t = k T = k 52.0 indicate which oscillator receives the impulsive input. In panels (a) and (c) the light
green sections of the trajectory and the graph show the dynamics after an incorrect switch at the three-cluster
state s5 = Sybwby.

4. Reliability of switching along the heteroclinic network. In this section we illustrate
that it is possible to reliably drive the system around the heteroclinic network of three-cluster
states using small impulsive inputs. This can be managed even when noise and detuning
are present if the input amplitude is large enough relative to the noise strength and detuning
magnitude. From now on we will use the term switch to mean a transition along a heteroclinic
orbit between three-cluster states.

For example, one may check that by applying the same noise as in Figure 9(a) (with
strength η = 10−5), the same detuning as in Figure 9(b) (with magnitude δ = 10−6), and the
same input as in Figure 9(c) (with amplitude ε = 10−3 and period T = 52.0), the obtained
trajectory, time profiles, and, consequently, the path followed are indistinguishable from those
in Figure 9(c), where neither noise nor detuning are present. This means that the dynamics
is still determined by the sequence of inputs.

Figure 10 shows the response of the system to perturbations with noise increased to the
extent that the switches are not all determined by the inputs. (The same notation is used as
in Figure 8 and the initial condition is at the three-cluster state s1 = Syywbb.) Again the same
detuning is applied as in Figure 9(b) (with magnitude δ = 10−6), the same input is applied
as in Figure 9(c) (with amplitude ε = 10−3 and period T = 52.0), but the noise (of strength
η = 6 · 10−5) is larger than in Figure 9(a). The trajectory and the time profiles are initially
close to those in Figure 9(a) and (b).

Figure 10(b) shows that the first “incorrect” switch happens at time t = 6T = 312.0,
where the first blue oscillator receives an impulsive input but the system stays at the three-
cluster state s3 = Sybwyb instead of switching to s27 = Sbwyby. Another impulsive input has
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to be applied to the same oscillator at time t = 7T = 364.0 in order to force the system to
switch. The next “incorrect” switch takes place at time t = 10T = 520.0, where an impulsive
input is applied to the first blue oscillator of the three-cluster state s5 = Sybwby; that is,
a switch to s26 = Sybwby is initiated. Instead, a switch to s7 = Sbyywb is observed (the
blue oscillator without a red star changes its color to white; i.e., the “wrong” heteroclinic
connection/directed edge is followed). This “incorrect” switch leads the system away from
the cyclic path of length 6, as shown by the green part of the trajectory in Figure 10(a) and
by the green part of the graph in Figure 10(c).

In order to measure the accuracy of switching, at each three-cluster state we randomly
choose which blue oscillator receives the impulsive input (i.e., choose which heteroclinic con-
nection/directed edge should be followed), and then detect whether the expected switch
happens. To be more precise, we classify the system as being at a three-cluster state si
if θ(t) ∈ Bξ(si), where Bξ(si) denotes the ξ-neighborhood of si. The detection tolerance ξ > 0
is chosen such that the ξ-neighborhoods of different three-cluster states do not intersect each
other, that is, Bξ(si) ∩ Bξ(sj) = ∅ if i �= j. In this article we fix ξ = 0.5, but no qualitative
change is observed when using different ξ.

Suppose that we are at the three-cluster state si = Si1,...,i5 at time t = k T and randomly
choose an oscillator pk in the unstable blue cluster for input (that is, ipk = b). Then we
predict sj = Opk(si) to be the state we expect after a time T ; see definitions (3.13), (3.14)
and Table 2. We declare a switch to be correct if θ(t + T ) is at the expected three-cluster
state sj and otherwise incorrect. An incorrect switch can occur for one of the three reasons:

(i) we cannot classify the state of θ(t) (i.e., there is no i such that θ(t) ∈ Bξ(si)),
(ii) we cannot classify the state of θ(t + T ), or
(iii) we can classify both states but the switch is not as expected (i.e., Opk(si) �= sj), as

can be observed in Figure 10(b).
Figure 11 shows 14 randomly chosen switches for perturbations ε = 10−3, η = 10−7,

and δ = 0 with T = 85.0. (Again the same notation is used as in Figure 8 and the initial
condition is the three-cluster state s1 = Syywbb.) The system follows the randomly chosen path
expected from the provided sequence of impulsive inputs; that is, all switches are correct (the
blue oscillators with red stars change their color to white in Figure 11(a), and the sequence
of three-cluster states can be predicted by sj = Opk(si)). In the next section we compute the
rate of incorrect switches as a function of input period T , input amplitude ε, noise strength
η, and detuning magnitude δ.

4.1. Error rates for switching. In order to check how reliable the switches are when
driving the system with impulsive inputs in the presence of noise and detuning, we perform
long simulations and count the proportion of correct and incorrect switches. The error rate
0 ≤ E ≤ 1 is calculated as the proportion of incorrect switches for a large number of attempts
(2000 switches) for a random choice of the possible switches at each state. The random choice
is uniformly chosen between the two possible inputs that initiate switching at each step. More
precisely, if we are at the three-cluster state si = Si1,...,i5 , we choose with equal probability one
of the two pk such that ipk = b; that is, an oscillator in the unstable blue cluster is perturbed.
If no three cluster-state si is identified we choose pk = 0; i.e., no input is provided. The error
rate clearly depends on the exact values of the parameters in (2.2), which here are fixed as
in (3.1). It also depends on the input period T , the input amplitude ε, the noise strength η,
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Figure 11. Driving the system along a randomly chosen path in the heteroclinic network for parameters (3.1)
with perturbations labeled on the top. The same notation is used as in Figure 8. In panels (a) and (b) the time
profiles and the followed path are shown for the 14 switches. In panel (a) red stars in every t = k T = k 85.0
indicate which oscillator receives the impulsive input. See also the accompanying animation (68396 05.avi
[10.2MB]).

and the detuning magnitude δ; that is, E = E(T, ε, η, δ). We will assume that the error rate
converges for our assumptions on random choice of {pk}.

One can maintain a periodic orbit near the heteroclinic network with period T > Tε

between successive states by application of impulsive inputs of amplitude ε, where

(4.1) Tε = − 1

λe
ln ε + O(1) = − ln(10)

λe
log10 ε + O(1),

as ε → 0. Here λe is the expanding eigenvalue of the three-cluster states (for parameters (3.1)
we have λe = λ3 = 0.1703, as given by (3.8) and shown in Figure 4(a)). Scaling (4.1) can be
seen by the following argument. Consider a transition from the three-cluster state si to the
three-cluster state sj with symmetrically related surfaces of section Σi and Σj , intersecting
the stable manifolds of si and sj , respectively. If we provide an impulse of amplitude ε in the
unstable direction at Σi, this will grow proportionally to ε eλet, meaning that it saturates and
causes a switch when ε eλeT = O(1). This in turn implies (4.1). If we perturb a three-cluster
state si in its unstable direction, then the unstable direction for sj is not affected, meaning
that by choosing to perturb on a section Σi closer to si, we can provide impulses of amplitude
ε to obtain periodic orbits with any period T > Tε.

Similarly, it can be shown [24] that the addition of noise of strength η will transform the
heteroclinic attractor into an approximately periodic attractor with period T ≈ Tη, where

(4.2) Tη = − 1

λe
ln η + O(1) = − ln(10)

λe
log10 η + O(1),

as η → 0. In consequence, we conclude that one can navigate around the network with error

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/68396_05.avi
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Figure 12. In panels (a) and (b) the error rate E is shown as a function of the input period T for
parameters (3.1). In panel (a) several different values of the input amplitude ε are considered for fixed noise
strength η, while in panel (b) several different values of η are taken for fixed ε. No detuning is added (δ = 0).
The leftmost curves in panels (a) and (b) correspond to the largest values of ε and η, respectively. In panels
(c) and (d) the shaded domains show where the error rate is below the threshold 0.2 in the (T, log10 ε)-plane
and in the (T, log10 η)-plane, respectively. Notice that the fitted red lines have approximately the same gradient
in both panels (c) and (d).

rate E close to zero as long as T is in the range

(4.3) Tε < T < Tη.

If T < Tε, then errors take place because the time is not long enough to permit the connections
to be followed. If T > Tη, then the noise will be the dominant influence in determining when
transitions take place, and hence the error rate will be large. Note that a range of possible T
in (4.3) is available as long as

(4.4) ε � η.

If both noise η > 0 and detuning δ > 0 are present in the system, then the same argument
holds except one must write max(δ, η) in place of η in formulae (4.2)–(4.4).

In Figure 12(a) and (b) the error rates (obtained from 2000 switches) are shown as a
function of the input period T for several different values of input amplitude ε and noise
strength η, respectively (with no detuning, δ = 0). The leftmost curves in Figure 12(a)
and (b) correspond to the largest values of ε and η, respectively. These panels clearly show
that when (4.4) is satisfied there exists an interval of T (4.3) where E ≈ 0. Also notice that
left and right boundaries of this interval move proportionally to log10 ε in Figure 12(a) and
proportionally to log10 η in Figure 12(b). In order to measure these boundaries more precisely
we detect where the curves intersect the error rate E = 0.2 (denoted by horizontal dashed
lines in Figure 12(a) and (b)). We plot the corresponding data in Figure 12(c) and (d), where
the low error rate domains (E < 0.2) are shaded. The least square fitted red lines in Figure
12(c) and (d) with gradients

(4.5) gε = −0.0749 ± 0.0014 and gη = −0.0740 ± 0.0005,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DYNAMICS ON NETWORKS OF CLUSTER STATES 747

s19

s29
s1

s22

s27

s11

s13 s25 s7

s18 s4

s10

s16s5

s30 s2

s20

s24

s23

s26

s14 s12 s28 s17

s8 s6

s15

s9s3

s21

Figure 13. The network in Figure 6(b) collapses to this network with two connected components on applying
the uniform detuning (3.16). Observe that there are two eventually periodic paths of length 6, indicating that
detuning results (after a transient path) in one of two “periodic spatiotemporal codes” depending on initial state.

respectively, agree well with the predicted gradients in (4.1) and (4.2), namely,

(4.6) g = − ln(10)

λe
= − ln(10)

λ3
= −0.0740.

This shows that the accuracy of navigation around the heteroclinic network can be predicted
by the stability properties of the three-cluster states.

4.2. Detuning-driven spatiotemporal coding. In addition to giving a network that can
perform finite-state computations, the system (2.1), (2.2) can give spatiotemporal coding of
steady external inputs that are in the form of detuning. Assuming the uniform detuning (3.16)
and setting the initial condition at s1 = Syywbb the system reaches a cyclic path of length 6
(after some transient path) as shown in Figure 9(b). In fact, this path encodes information
about the form of the detuning, as discussed below.

Here we assume the uniform detuning (3.16) and consider the system starting at different
three-cluster states. Whenever the system is at a three-cluster state si = Si1,...,i5 there will be
a “preferred” direction along the graph in Figure 6(b). Namely, if ip = iq = b are the unstable
blue oscillators, then if ωip > ωiq the detuning will tend to initiate a switch to Oip(si), while if
ωip < ωiq the initiated transition will be to Oiq(si); see definitions (3.13), (3.14) and Table 2.
Hence, uniform detuning causes a bias to the switchings, meaning that one of the outgoing
edges is removed from each node and the network with the graph in Figure 13 remains for
the original network. This “detuned” graph consists of two connected components, each of
which has an absorbing cyclic path of length 6 and transient paths that are asymptotic to
these circuits after a finite number of switches. Which of the cyclic paths is reached depends
on the initial state. The sequences of three-cluster states along the circuits can therefore be
considered as spatiotemporal encodings of the applied detuning.

Notice that the magnitude of δ does not change the graph in Figure 13, but it does
affect the average period between switches Tδ in a similar way to (4.1). Different detuning
configurations obtained by permutation of the indices in (3.16) result in different cyclic paths
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Figure 14. Bifurcation diagrams showing the phase differences γ4 = θ5 − θ4 (a), γ1 − γ3 = θ1 − θ3 (b),
and γ4 − γ3 = θ4 − θ3 (c) as the parameter β is varied for r = 0.2, α = 1.8, ω = 1 with ε = η = δ = 0. The
three-cluster state s1 = Syywbb and the bifurcated cluster states Syywlb, Syywbl are labeled on the corresponding
red and light green branches. Solid curves denote stable states and dashed curves denote saddle states. The blue
star at β = −2.6840, blue cross at β = −2.5933, and blue circle at β = −1.7515 denote the Hopf, pitchfork,
and resonance bifurcations, respectively. The network shown in Figure 6 is attracting between the pitchfork and
the resonance bifurcations.

of length 6, that is, different spatiotemporal codes. One may check that 120 cyclic paths of
length 6 exist (using the adjacency matrix defined in section 3.2 we obtain tr(A6) = 120).
However, only 20 of these paths are possible absorbing cycles when one considers all possible
5! = 120 permutations of (3.16).

5. Excitable dynamics. The dynamics described in sections 3 and 4 is robust (structurally
stable); i.e., there is an open set of parameters around (3.1) where such an attracting hetero-
clinic network exists. We observe the network on varying β in the range (−2.5933,−1.7515)
and now analyze the bifurcations at the boundaries of this regime. At the lower boundary the
saddles within the network are stabilized at a pitchfork bifurcation to become stable three-
cluster states that remain arranged in a network as in Figure 6. At the upper boundary the
heteroclinic network persists but loses stability at a resonance bifurcation [9].

As verification of this, Figure 14 shows bifurcation diagrams for the three-cluster state
s1 = Syywbb. The parameters r, α, and ω are given by (3.1) except that β is varied, and
we set ε = η = δ = 0. The figure was generated by the continuation package AUTO [10].



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DYNAMICS ON NETWORKS OF CLUSTER STATES 749

−0.4 −0.2 0 0.2 
−0.4

−0.2

0   

0.2 

0.4 

0.9 

0.95

1   

−1   
−0.95

−0.9 
0.9 

0.95

1   

λ1

sin γ1

λ2

sin γ2

λ3 sin γ3

λ4

λ5

(a) (b)

s16 = Sbybyw

Sbylyw

Slybyw

Figure 15. Dynamics around a stable three-cluster state for parameters (5.1) in the unperturbed case
ε = η = δ = 0. In panel (a) the eigenvalues (3.7), (5.3) are displayed in the complex plane. Panel (b) shows
the local dynamics in phase space in the vicinity of the three-cluster state s16 = Sbybyw (red dot). Light green
dots show the bifurcated saddle cluster states Slybyw and Sbylyw. One branch of the unstable manifold of each
of these states connects to s16 = Sbybyw.

In Figure 14 the phase differences are plotted as a function of the parameter β. Solid lines
correspond to stable states, and dashed lines correspond to saddle states. Blue star, blue
cross, and blue circle represent Hopf, pitchfork, and resonance bifurcations, respectively, from
the three-cluster state. Between the pitchfork and the resonance bifurcation the heteroclinic
network is attracting because |λ2| > λ3 (as in Figure 4(a)); that is, the contracting eigenvalue
is stronger than the expanding one for the robust connection. The pitchfork bifurcation occurs
when λ3 = 0 (β = −2.5933), while the resonance occurs when |λ2| = λ3 (β = −1.7515).

Figure 14(a) shows the phase difference γ4 = θ5 − θ4 as a function of β. For the sad-
dle three-cluster state s1 = Syywbb (horizontal red line) the phase difference γ4 = θ4 − θ5

is zero, indicating that the 4th and the 5th oscillators are synchronized. At the pitchfork
bifurcation (blue cross at β = −2.5933) the three-cluster state s1 = Syywbb becomes stable
with Re(λn) < 0 for n = 2, 3, 4, 5 (see Figure 15(a)). The bifurcation creates two branches of
saddle cluster states (light green curves) where γ4 �= 0, i.e., the 4th and the 5th oscillators are
not synchronized. If γ4 > 0, for this cluster state we write Syywlb (and Syywbl if γ4 < 0). The
subscript “l” stands for the light blue color used in Figures 15–16 and indicates the oscillator
in the unstable blue cluster whose phase has been advanced. These new cluster states are
located in the subspace (3.11), and their unstable manifolds are connected to the three-cluster
states s1 = Syywbb, s12 = Sbbywy, and s13 = Sbbyyw, as detailed further below.

Figure 14(b) and (c) show the phase differences γ1−γ3 = θ1−θ3 and γ4−γ3 = θ4−θ3 as a
function of β for the relevant cluster states. For s1 = Syywbb (red curve) we have γ1 − γ3 = χ
and γ4 − γ3 = ψ; see definitions (3.3), (3.4). Notice that in Figure 14(b) the branches of
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Figure 16. In panel (a) the heteroclinic connections originated in and terminated at the three-cluster state
s16 = Sbybyw are shown in phase space for parameters (5.1) in the unperturbed case ε = η = δ = 0. The cluster
states are represented by red and light green dots. In panel (b) a simple graph representation is displayed
such that the nodes and directed edges correspond to cluster states and heteroclinic connections, respectively.
Panel (c) shows a further simplified graph representation where only the three-cluster states are displayed and
the directed edges represent possible large-input-triggered switches between them.

cluster states Syywlb and Syywbl overlap (light green curve), which indeed shows that these
cluster states are embedded in the subspace (3.11). The symmetric copies of s1 = Syywbb, as
in Table 1, behave in a corresponding way at the pitchfork bifurcation.

On reducing β further, the complex conjugate pair of eigenvalues moves to the right-hand
side of the imaginary axis at the Hopf bifurcation (blue star at β = −2.6840), and the three-
cluster state s1 = Syywbb becomes a saddle again since λ2, λ3 < 0 and Reλ4 = Reλ5 > 0.
However, the resulting dynamics is different from that on the right side of the pitchfork
bifurcation (the oscillatory branches emerging at the Hopf bifurcation are not studied further
in this paper).

At the resonance bifurcation (blue circle at β = −1.7515) the contracting eigenvalue
becomes weaker than the expanding eigenvalue, i.e., |λ2| < λ3. Consequently, the heteroclinic
network becomes repelling; see [9]. Note that the three-cluster states persist as saddles and
the network still persists on the right side of the resonance bifurcation. However, since it is
not attracting, general initial conditions may approach long-period stable limit cycles or even
chaotic attractors (see section 7).

5.1. Network of excitable three-cluster states. We now investigate in detail the network
of stable excitable states that replaces the heteroclinic network to the left side of the pitchfork
bifurcation, by considering the parameters

(5.1) r = 0.2, α = 1.8, β = −2.6, ω = 1.0.
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Note that only β has been changed compared to parameters (3.1). Solving (3.5) for parameters
(5.1), one can find a three-cluster state (3.3), (3.4) with

(5.2) χ = −1.7638, ψ = 1.4594, Ω = 0.9343,

and symmetric copies as in Table 1. Substituting (5.1), (5.2) into (3.7), the eigenvalues are

(5.3) λ2 = −0.3746, λ3 = −0.0158, λ4,5 = −0.0493 ± i 0.0709,

as displayed in Figure 15(a). Notice that all eigenvalues are to the left of the imaginary axis
indicating that the three-cluster states are stable, but λ3 is close to zero as the system is close
to the bifurcation point.

In Figure 15(b) the stable three-cluster state s16 = Sbybyw (red dot) and the bifurcated
saddle cluster states Slybyw and Sbylyw (light green dots) are displayed (with the oscillators
corresponding to the subscript “l” colored light blue). The latter cluster states are located
in the symmetric copy of the subspace (3.11). Observe that now s16 = Sbybyw is attracting
from all directions. In particular, Re(v4) = Re(v5) and Im(v4) = −Im(v5) correspond to
the spiralling directions, while v3 and −v3 are the directions toward the three-cluster states
Slybyw and Sbylyw. (The latter two directions are indeed the opposite of each other, but the
curvature of the projection (sin γ1, sin γ2, sin γ3) is large in the vicinity of the three-cluster
state s16 = Sbybyw as it is close to (1,−1, 1).)

It can be verified numerically that one branch of the one-dimensional unstable manifold of
the cluster state Slybyw returns to s16 = Sbybyw while the other branch connects to the three-
cluster state s22 = Swbyby. Similarly, the unstable manifold of Sbylyw connects to s16 = Sbybyw

and s5 = Sybwby; this is illustrated in Figure 16(a). There are saddle cluster states Sybywl and
Sywybl near s10 = Sybywb and s30 = Sywybb, respectively. These are located in the symmetric
copy of the subspace (3.12) and their unstable manifolds connect to s16 = Sbybyw. This means
that there are connections as shown in the graph Figure 16(b), where again the dots represent
cluster states and directed edges represent heteroclinic connections between them.

Hence, by providing a large enough perturbation when the system is near s16 = Sbybyw

in the direction of Slybyw, it is possible to “jump over” the stable manifold of Slybyw and
then approach s22 = Swbyby. We say that the stable three-cluster states are excitable to large
perturbations that separate the blue cluster. Taking these large perturbations into account
we can obtain the simplified graph of connections in Figure 16(c). Notice that this graph is
close to the one in Figure 5(b) for the original heteroclinic network with the difference that
in Figure 5(b) infinitesimally small perturbations can trigger transitions while in Figure 16(c)
the perturbations have to be of finite size.

Considering all three-cluster states the graph in Figure 6(b) is obtained again as a rep-
resentation of the system when finite size perturbations are applied. We stress that in the
resulting network of excitable three-cluster states, the excitability is a property of the three-
cluster states and not a property of the individual oscillators. We will use the term excitable
network to describe this dynamics.

5.2. Reliable switching in the excitable network. We now demonstrate that it is possible
to reliably navigate around the graph of three-cluster states by applying finite size impulsive
inputs in precisely the same way as described in section 4. Figure 17(a) shows an example
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Figure 17. Driving the system along a randomly chosen path of the network of excitable three-cluster states
for parameters (5.1) with perturbations labeled on the top. The same notation is used as in Figure 8. In
panels (a) and (b) the time profiles and the followed path are shown for the first 14 switches. In panel (a)
red stars in every t = k T = k 85.0 indicate which oscillator receives the input. Notice that on providing the
same sequence of inputs as in Figure 11 the same path is followed. See also the accompanying animation
(68396 06.avi [11.0MB]).

where 14 correct switches are performed for parameters (5.1) and perturbations ε = 0.2,
η = 10−4, δ = 0 with T = 85.0. (Again the same notation is used as in Figure 8 and the initial
condition is at the three-cluster state s1 = Syywbb.) Comparing Figure 17 to Figure 11 the
same sequence of impulsive inputs are provided (red stars in panel (a)) and the system follows
the same randomly chosen path (panel (b)). Even though relatively high noise is applied in
Figure 17, the switching pattern is reliably followed.

We test the reliability of switching by following random paths of the network when impulses
of amplitude ε are provided with period T as in section 4.1. The error rate E is obtained
(from 2000 switches again) when varying the input period T for several different values of
noise strength η and fixed input amplitude ε. When the input amplitude ε is above some
threshold, i.e., ε > εc (εc ≈ 0.18 for parameters (5.1)), then there exist ranges of input period
where reliable switching is possible as shown in Figure 18 by regions where E ≈ 0. If the
input amplitude is below the threshold, i.e., ε < εc, then no switches can be triggered by the
input so the error rate E(T, ε, η, δ) ≡ 1.

Figure 18 shows that for noise strength η � ε the error rate E ≈ 0 is achievable when T
exceeds some critical period. That is, reliable switching is possible when a sufficiently long
time is provided to travel along the connections described above. However, there also exists a
window of input period in Figure 18 which corresponds to the case when the system gets close
to a symmetrical copy of the subspace (3.11) but it is not in close vicinity of the three-cluster
state embedded in the subspace. There exist regions in the subspace (e.g., the region around
(−0.95, 0.95,−0.9) in Figure 15(b)) where the provided inputs effectively place the system
“on the other side” of the stable manifold of the symmetric copy of the cluster state Syywlb or
Syywbl and thus lead to correct switches.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/68396_06.avi
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Figure 18. The error rate E is shown as a function of the input period T for the excitable network with
parameters (5.1) when several different values of the noise strength η are considered for fixed input amplitude
ε and no detuning δ = 0. Observe that the boundaries where the error rate rapidly drops do not move as the
noise strength is varied (except for strong noise).

The boundaries of these low error rate regions do not move much when the noise strength
is varied except for very strong noise which increases the error rate for any T . This behavior
can be explained by the stability of the three-cluster states and by the fact that ε is close to
εc, that is, ε � εc. Small noise η � εc does not provide enough perturbation to excite a switch
between three-cluster states, while large enough noise η > εc violates the condition η � ε;
that is, reliable switching is not expected for any T .

6. Conclusions. We investigated a globally coupled phase oscillator system as a simple
model for a highly connected neural system. We generalized the coupling considered in [2, 13,
17] and found an attracting robust heteroclinic network between partially synchronized three-
cluster states of saddle type. A graph representation of the network was given that can be
used to explain much of its dynamical behavior, and we studied its response to perturbations
such as noise, frequency detuning, and impulsive inputs, each of which can drive the system
around the heteroclinic network. One may interpret this dynamics as a form of winnerless
competition [1, 6, 23] between three-cluster states since each of these states may be visited
when tracking around the heteroclinic network but no state is an attractor for the system.

We found that the characteristic switching time between the three-cluster states is inversely
proportional to the logarithm of the magnitude of perturbations. Broadly speaking, the
bigger the perturbation, the faster the system “reacts” to it. We demonstrated that it is
possible to reliably navigate the system along any chosen path on the heteroclinic network
by providing small impulsive inputs to the appropriate oscillators, i.e., to perform finite-state
computation as in [3]. Moreover, this can be done accurately in the presence of background
noise and frequency detuning if the input amplitude dominates the noise strength and the
detuning magnitude for a suitable range of input periods determined by these quantities. The
boundaries of this range may be computed by considering the eigenvalues of the three-cluster
states. In contrast, a steady input to the system (i.e., frequency detuning) resulted in a reduced
network with attracting cyclic paths corresponding to a spatiotemporal output of the system.

We illustrated that on changing parameters in the coupling one can stabilize the three-
cluster states at a pitchfork bifurcation. This results in a robust network of excitable states
with the same graph structure as the heteroclinic network. Hence, it is still possible to navigate
around this excitable network by applying finite size impulsive inputs to the appropriate
oscillators.
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Figure 19. Chaotic attractor through a Poincaré section taken at γ3 = θ3 − θ5 = 1.2 by projecting into the
plane of γ1 = θ1 − θ5 and γ2 = θ2 − θ5. The parameters (7.1) are considered and no external perturbation is
added ε = η = δ = 0.

The studied dynamics shows that complex phase clustering can occur by spontaneous
symmetry breaking in globally coupled systems, even in the absence of any inhomogeneity.
Both the heteroclinic network (which is sensitive to arbitrarily small inputs) and the excitable
network (which is only sensitive to finite amplitude inputs) can be used to represent the
dynamics of systems that are sensitive to inputs but robust against background noise and
imperfections. In these systems encoding via phase differences can be used for reliable finite-
state computation as well as for producing spatiotemporal codes from steady inputs [23].
These features mimic the information processing capabilities of relating neural systems, such
as the antennal lobes of insects [11]. In these neural systems the encoding is not in average
frequencies of the oscillators but in their phases; i.e., effectively it is a form of spike-time
coding.

7. Discussion of future directions. In this paper a region of parameter space was studied
for the model (2.1), (2.2) of N = 5 oscillators. The significance of N = 5 is that this is
the smallest number of oscillators that permits nontrivial cluster formations and switching
between them [4]. Although the dynamics discussed for N = 5 is robust, it does raise further
questions:

(i) What other robust dynamics are possible for this system?
(ii) How does the dynamics change when the number of oscillators N is increased?
Concerning (i), we illustrate that in the vicinity of the explored parameter regime there

is chaotic behavior. Recall that to the right of the resonance bifurcation in Figure 14 the
heteroclinic network is unstable. This unstable network may coexist with a chaotic attractor
at the same parameter values. Figure 19 depicts a chaotic attractor for

(7.1) r = 0.2, α = 1.6, β = −1.58, ω = 1.0

near to (3.1) in the unperturbed case ε = η = δ = 0. The chaotic attractor is shown in a
Poincaré section projected into the (γ1, γ2)-plane when γ3 = 1.2; many symmetrical copies of
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the same attractor coexist in phase space. We believe this is the first example of a chaotic
attractor in a system of globally coupled identical phase oscillators with no detuning (δ = 0).
(For example, the chaos observed in [20] for N ≥ 4 oscillators of the Kuramoto system requires
large detuning in relation to the coupling strength.)

Concerning (ii), preliminary investigations show that systems of N > 5 phase oscillators
also possess very rich dynamics including heteroclinic and excitable networks and chaotic at-
tractors. In particular, for parameters (3.1) and moderate odd numbers of oscillators N = 7, 9
the only apparent attractor is a robust heteroclinic network of three-cluster states of type
((N − 1)/2, 1, (N − 1)/2). These are connected analogously to section 3 for N = 5: one of
the clusters of (N − 1)/2 oscillators is unstable to perturbations while the other is stable.
These cluster states are well separated in phase space (the detection tolerance ξ may be kept
the same when N is increased). We expect that most of the considerations in this paper
will therefore follow through for these cases, except that the number of available three-cluster
states/nodes and heteroclinic connections/directed edges are much larger (e.g., 140 states and
420 connections are available for N = 7, while 630 states and 2520 connections are available
for N = 9). This combinatorial growth makes a thorough analysis much more difficult in the
cases of N > 5. Note that for other parameters we have found heteroclinic networks between
cluster states of other types. However, in order to find a certain �-cluster state, more Fourier
harmonics may need to be included in the coupling function. These preliminary results predict
that the number of available cluster states can be enormously large for real neural ensembles.

Appendix A. Constants for eigenvalues and eigenvectors. The real part of (3.7) can be
expressed as

(A.1) μ = 1
10

(
g′(χ) + 2g′(−χ) + g′(ψ) + 2g′(−ψ) + 2g′(χ− ψ) + 2g′(ψ − χ)

)
,

while its imaginary part contains

ν = −μ2 + 4
100

(
g′(χ)g′(ψ) + 2g′(χ)g′(−ψ) + 2g′(−χ)g′(ψ)

+ 2g′(χ− ψ)
(
g′(ψ) + 2g′(−χ) + 2g′(−ψ)

)

+ 2g′(ψ − χ)
(
g′(χ) + 2g′(−χ) + 2g′(−ψ)

))
.

(A.2)

The real parts of the components of (3.9) are

ry = − 1

4Q

(
N1

(
g′(χ) − g′(ψ) − 2g′(−χ) − 2g′(−ψ) + 2g′(χ− ψ) + 2g′(ψ − χ)

)

− 4g′(χ)g′(−ψ)g′(ψ − χ) + 4g′(−χ)g′(ψ)g′(χ− ψ)

)
,

rb =
1

4Q

(
N3

(
−g′(χ) + g′(ψ) − 2g′(−χ) − 2g′(−ψ) + 2g′(χ− ψ) + 2g′(ψ − χ)

)

+ 4g′(χ)g′(−ψ)g′(ψ − χ) − 4g′(−χ)g′(ψ)g′(χ− ψ)

)
,

(A.3)
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while the imaginary parts are

py = − 1

4Q
N1

√
P ,

pb =
1

4Q
N3

√
P ,

(A.4)

where

N1 = g′(χ)g′(−ψ) + 2g′(χ− ψ)
(
g′(−χ) + g′(−ψ)

)
,

N3 = g′(−χ)g′(ψ) + 2g′(ψ − χ)
(
g′(−χ) + g′(−ψ)

)
,

(A.5)

and

P = −
(
g′(χ) − g′(ψ)

)2
− 4

(
g′(−χ) + g′(−ψ)

)2
− 4

(
g′(χ− ψ) + g′(ψ − χ)

)2

− 4
(
g′(χ) − g′(ψ)

)(
g′(−χ) − g′(−ψ)

)
− 4

(
g′(χ) − g′(ψ)

)(
g′(χ− ψ) − g′(ψ − χ)

)

+ 8
(
g′(−χ) + g′(−ψ)

)(
g′(χ− ψ) + g′(ψ − χ)

)
,

Q = g′(−χ)g′(−ψ)
(
g′(χ) − g′(ψ)

)
+

(
g′(−χ) + g′(−ψ)

)(
2g′(−χ)g′(χ− ψ)

− 2g′(−ψ)g′(ψ − χ)
)
.

(A.6)
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Appendix B. The operator Op.

Table 2
The effects of operator Op, p = 1, . . . , 5, in (3.13) on the three-cluster states si, i = 1, . . . , 30. The resulting

states are shown only when i �= j for Op(si) = sj; in all other cases Op(si) = (si).

O1(si) O2(si) O3(si) O4(si) O5(si)

s1 s12 s13

s2 s20 s30

s3 s27 s17

s4 s23 s10

s5 s26 s7

s6 s22 s15

s7 s19 s18

s8 s26 s6

s9 s23 s3

s10 s29 s16

s11 s2 s13

s12 s21 s28

s13 s24 s25

s14 s2 s12

s15 s29 s9

s16 s22 s5

s17 s19 s8

s18 s27 s4

s19 s30 s1

s20 s8 s18

s21 s5 s15

s22 s28 s11

s23 s25 s14

s24 s3 s10

s25 s6 s7

s26 s24 s14

s27 s21 s11

s28 s4 s17

s29 s20 s1

s30 s9 s16
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