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Abstract. The dynamics of networked systems with delayed coupling are analyzed in this paper. Two theo-
rems are stated which give conditions for decomposability of the dynamics in the vicinity of cluster
states based on the intracluster and intercluster connectivity. Moreover, a decomposition method is
presented that allows the derivation of delayed modal equations about cluster states even when het-
erogeneity is introduced into the linearized system due the nonlinearities in the coupling. Analytical
tools are applied to these modal equations to derive exact stability conditions: the D-subdivision
method is used to study the stability of equilibria, while the stability of periodic orbits is investigated
using Floquet theory. The coexistence of multiple stable and unstable steady and oscillatory cluster
states is investigated in a system of type II neurons where weakly and strongly asymmetric cluster
oscillations are discovered.
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1. Introduction. One of the important scientific challenges of the 21st century is under-
standing natural and man-made complex systems. Examples include neural networks, gene
regulatory networks in biology, and communication networks and multivehicle systems in the
technological world. The behavior of such systems cannot be determined by simply looking
at the individual elements (neurons, genes, servers, cars), but the system behavior emerges
through the interactions between these elements. One of the major challenges is building par-
simonious mathematical models that can adequately describe the dynamics of these complex
systems and predict the time evolution of the patterns of activity. Such models must capture
the dynamics of the elements, the interconnection structure, and the information transmission
between the elements, while the model must remain scalable for large systems.

For example, in neural systems the dynamics of a single neuron (the time evolution of the
membrane potential and the ion transport at the soma) can be represented by a particular
neuromodel (Hodgkin–Huxley, Morris–Lecar, FitzHugh–Nagumo [16, 23, 39]), that is, by a set
of ordinary differential equations (ODEs), while the connectivity of neurons can be described
using directed graphs [35]. However, to describe signal propagation along the axons in detail,
one needs to use partial differential equations (PDEs), and additional ODEs may be required
to describe the chemical processes at synapses [16]. Such a modeling framework is only feasible
for a relatively small number of neurons. To avoid this problem, signal transmission is often
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1354 GÁBOR OROSZ

considered instantaneous, which significantly reduces the predictive power of the model. In
this paper, we consider a modeling framework where signal transmission is not modeled in
detail, but the time it takes to transmit the signal is accounted for using time delays. This
approach results in delay differential equations (DDEs), which retain the essential infinite
dimensionality of the original dynamics, while the models remain scalable for large networks
[4, 9, 48]. This modeling scenario can be used for a wide range of applications. For example,
in genetic networks, delays represent the time needed for DNA transcription and protein
folding [42, 52], while delays also appear in the immune response when an organism is fighting
pathogens or viruses [3, 32, 55]. In vehicular systems the delay accounts for driver reaction
time [24, 44], and it also appears in digital communications networks due to buffering [26].

Despite the parsimoniousness of the models, the resulting large systems of nonlinear DDEs
require novel mathematical approaches that allow one to extract the skeleton of the dynamics.
Clearly, a large number of stable and unstable spatiotemporal patterns may coexist in a
large nonlinear system, including equilibria, periodic and quasi-periodic oscillations, and even
chaotic motion. It is a difficult task to map these solutions out using straightforward numerical
simulations without having prior knowledge of where they lie in state space.

In the control literature, the defining works [37, 38] on the decomposition of linear time-
invariant networked systems gave rise to a number of extensions that can deal with higher
dimensional node dynamics and can formally analyze the linear stability of the consensus
state (synchronized equilibrium) in the presence of delay [6, 28, 30, 31]. Similar decompo-
sition methods, called the master stability approaches [45], were developed in the physics
literature where nonlinear node dynamics with linear coupling were considered with appli-
cations ranging from laser networks to neural networks [11, 17, 27]. When these systems
are linearized about the synchronized equilibrium, the equations become analogous to those
in consensus problems. Considering special oscillators (e.g., Stuart–Landau oscillators) and
linear coupling, one may still obtain equations with time-independent coefficients when lin-
earizing about periodic orbits [7]. Finally, we remark that in the physics literature, stability is
usually determined numerically by calculating Lyapunov exponents independently of whether
they focus on equilibria, oscillations, or even chaos [25]. This may be difficult to use when
multiple stable and unstable states of different kinds coexist.

While synchronous states are important in many applications, there exists experimen-
tal evidence that neural systems use cluster states to process environmental information and
perform neurocomputation [22, 40]. In such states, neurons within a chosen cluster exhibit
the same temporal behavior, while each cluster exhibits different behavior. (Indeed, the syn-
chronous state can be viewed as a special cluster state.) The existence of different cluster
configurations was linked to symmetries in the network structure (described by symmetry
groups) in [1, 12, 13, 46]. This concept was extended to delayed networks with linear diffu-
sive coupling in [51], where sufficient conditions were provided for the stability of clustering
manifolds using Lyapunov functionals. Symmetries were also identified and the intracluster
dynamics were eliminated in “unidirectional” networks in [2], while in [14] the intracluster
dynamics were analyzed in detail for partitioned networks. These methods allow one to iden-
tify the admissible cluster states in complex systems, but they fail to provide information
on whether the dynamics can be decomposed in the vicinity of cluster states and how such
decomposition should be attempted. Such decomposition tools are necessary if one wishes to
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investigate cluster states in systems of realistic size, and this paper focuses on this challenging
problem.

We apply rigorous mathematical techniques from dynamical systems theory to analyze the
clustering dynamics of nonlinear oscillators connected via nonlinear delayed coupling. First, we
show that one can identify all realizable cluster configurations by using simple set partitioning
algorithms and the coupling matrix of the system. Then, we state theorems of decomposability
around cluster states, which may contain clusters of different sizes, by extending the notions
of tangential stability and transversal stability [41] to delayed networks. Our theorems, for
the first time, give conditions for the intracluster and intercluster connectivity that allows
decomposition of network dynamics in the vicinity of cluster states. Indeed, the existence of
a cluster state does not imply decomposability of the dynamics. We also provide tools for
decomposition that can be applied even when nonlinear coupling introduces heterogeneities
into the corresponding linearized system while considering nonequally sized clusters. We
remark that the decomposition can be performed for networks consisting of large numbers of
elements since no detailed knowledge is required about the symmetries in the system.

By applying such decomposition tools, we provide necessary and sufficient conditions for
the linear stability of equilibria and periodic orbits (as opposed to sufficient conditions for
the stability of clustering manifolds [51] or numerical simulation-based results [25]). The D-
subdivision method and Stépán’s formulae [50] are used to derive the analytical stability charts
for the time-invariant delayed modal equations describing the motion about cluster equilibria.
On the other hand, we utilize Floquet theory [19] to analyze the delayed modal equations with
time-varying coefficients that describe the dynamics in the vicinity of cluster oscillations. We
remark that our analysis is not restricted to phase-locked solutions but allows the investigation
of asymmetric cluster oscillations where both the number of oscillators and the shape of the
oscillation profile can be different in each cluster; this has not been addressed before. To
calculate the spectrum of the arising monodromy operators (i.e., Floquet multipliers) we
utilize numerical continuation [47]. Alternatively, one may also use semi-discretization to
calculate the multipliers [19].

To demonstrate the power of the mathematical approach, we apply our results to a
neurosystem where the delay represents the signal propagation time along the axons. An-
alyzing periodic orbits that represent different clustering behavior is particularly relevant for
this example because neural systems consist of nonlinear elements and use various rhythmic
patterns to perform computation and encode information [34, 22, 54]. In the seminal work [8],
the oscillations of piecewise smooth neuromodels were investigated with gap junction (without
delay), and the Floquet multipliers were calculated analytically for the synchronized state. We
adopt a smoothed version of the type II model derived in [8], extend it by adding signal trans-
mission delays, and analyze the corresponding cluster states (both equilibria and oscillations).
We show that where the phase oscillator approach [5, 15, 21, 36, 41] only predicts phase-locked
solutions, our method reveals weakly and strongly asymmetric cluster oscillations.

The remainder of the paper proceeds as follows. After presenting the general modeling
framework in section 2, we state a theorem for decomposability based on the network structure
and provide mathematical tools for decomposition in section 2.1. These theoretical results
are illustrated in section 2.2 through an example. In section 2.3 we state a theorem for
semidecomposability by relaxing some conditions required for decomposability. The tools
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used for stability analysis are explained in section 2.4, while the special case of all-to-all
coupling is presented in section 2.5. The theoretical results are applied to a neural system
in section 3: synchronous dynamics is discussed in section 3.1 followed by the analysis of
two-cluster states in section 3.2. Finally, we conclude our results and state future research
directions in section 4.

2. Decomposition of networks about cluster states. In this paper, a system consisting
of N identical nonlinear oscillators coupled with identical nonlinear couplings is considered in
the form

(2.1) ẋi(t) = f
(
xi(t)

)
+

1

N

N∑
j=1

aij g
(
xi(t), xj(t− τ)

)
for i = 1, . . . , N , where the dot represents differentiation with respect to time t. The internal
state of oscillator i is captured by the vector xi ∈ R

n, and the internal dynamics consist
of a set of nonlinear ODEs ẋi = f(xi). The coupling terms are described by the nonlinear
function g(xi, xj) that depends on the states of the interacting nodes. The time delay τ is the
time needed for the “unmodeled” signal transmission processes to take place (e.g., to transmit
signals along the axons in neural systems). The coupling structure of the system is captured
by a directed graph, whose elements are represented by the coefficients of the N -dimensional
interconnection/adjacency matrix defined as

(2.2) aij =

{
1 if node j is connected to node i,

0 otherwise,

i, j = 1, . . . , N . We will use the abbreviated notation AN = [aij ]. Referring to the graph
representation of the network, the oscillators are often called nodes, and the connections
between them are called edges. For weighted graphs, definition (2.2) may be generalized
by allowing aij to be a real number representing the coupling strength between two nodes.
In this paper we assume that AN is diagonalizable; that is, if an eigenvalue has algebraic
multiplicity m, then it also has geometric multiplicity m, resulting in m linearly independent
eigenvectors. Our decomposition method is still applicable when this condition does not hold,
but the algebraic calculations become more involved. In addition, one may consider external
inputs, which are omitted here for simplicity.

System (2.1) may admit a variety of different cluster solutions. Let us consider the K-
cluster configuration where the clusters contains [ b1 b2 · · · bK ] oscillators, such that∑K

k=1 bk = N . Note that each bk can be different. Indeed, 1 ≤ K ≤ N , where K = 1
corresponds to full synchrony, while for K = N no oscillators are grouped together; see also
[41]. To simplify the notation we introduce

(2.3) B� =
�∑

k=1

bk .

Indeed, B1 = b1, BK = N , and, by definition, B0 = 0. Thus, a K-cluster state can be defined
as

(2.4) xi(t) = xc�(t), i = B�−1 + 1, . . . , B�, � = 1, . . . ,K,
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for all t. In state space this corresponds to an invariant manifold that we call the clustering
manifold. By substituting (2.4) into (2.1) one obtains the DDEs

(2.5) ẋc�(t) = f
(
xc�(t)

)
+

1

N

K∑
k=1

m�k g
(
xc�(t), xck(t− τ)

)

for � = 1, . . . ,K. Here the subrow sum

(2.6) m�k =

Bk∑
j=Bk−1+1

aij

must be the same for all i = B�−1 + 1, . . . , B� to ensure the existence of the K-cluster state.
In fact, the K-dimensional matrix MK = [m�k] can be viewed as a weighted adjacency matrix
for the tangential dynamics [2].

To find the cluster configurations that can be realized by the system (2.1), the constant
subrow sum condition (2.6) has to be checked for all admissible cluster configurations. These
can be identified by partitioning a set of N distinguishable elements into K indistinguishable
nonempty sets. The number of K-cluster configurations is given by the Stirling number of the
second kind

(2.7) S(N,K) =
1

K!

K−1∑
�=0

(−1)�
(
K

�

)
(K − �)N ,

while the total number of clusters is given by the Bell number

(2.8) B(N) =

N∑
K=0

S(N,K).

In Appendix A all possible cluster configurations are determined for two different networks of
seven oscillators by using a simple set partitioning algorithm [29] and (2.6). These examples
will be used in sections 2.2 and 2.3 to demonstrate our decomposition method.

We remark that one may try to identify the realizable cluster configurations by studying
the action of permutation matrices on the adjacency matrix (2.2). In particular, if there
exists an N -dimensional permutation matrix PN , such that PNANP−1

N = AN , then there
exists a corresponding invariant manifold in state space; see the examples in [51]. However,
the reverse may not hold; that is, the existence of a clustering manifold may not imply the
invariance of the adjacency matrix under permutation. This is demonstrated by the examples
in Appendix A. The same two-cluster configuration can be realized by both systems, but in
the second case no permutation matrix leaves the adjacency matrix invariant. Without such
a property it is difficult to identify the symmetry since it requires one to show the existence
of solution for a matrix equation; see Lemma 3 in [51]. Below we present a decomposition
method that relies on the cluster configurations but does not require detailed knowledge of
symmetries. We emphasize again that the existence of a clustering manifold does not guarantee
decomposability of dynamics around the cluster states embedded in the manifold. Finally,
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we remark that both (2.1) and (2.4) require infinite dimensional state spaces, and the initial
conditions are functions on the time interval [−τ, 0]. This means that the clustering manifold
(2.4) is infinite dimensional.

Notice that definition (2.4) allows cluster states to be equilibria, periodic orbits, and
even more complicated orbits. The only restriction is that the motion must remain in the
corresponding (infinite dimensional) subspace. For example, cluster equilibria can be defined
as

(2.9) xc�(t) ≡ x∗c�, � = 1, . . . ,K,

and can be derived from the algebraic equations

(2.10) 0 = f
(
x∗c�

)
+

1

N

K∑
k=1

m�k g
(
x∗c�, x

∗
ck

)
;

cf. (2.5). Indeed, the solution may not be unique, and, even if it is unique, there may exist
multiple K-cluster configurations that can be obtained via the permutation of oscillations.
Notice that the delay does not influence the existence of these states but can influence their
stability, as explained below.

Oscillatory cluster states can be defined as

(2.11) xc�(t) = xpc�(t) = xpc�(t+ Tp), � = 1, . . . ,K,

for all t, where Tp denotes the period of oscillations. These states can be obtained by solving
the boundary value problem (2.5), (2.11) with periodic boundary conditions. Here the delay
influences the shape as well as the stability of these orbits. Similar to equilibria, there may
exist multiple solutions for a given parameter set. Notice that (2.11) incorporates phase-locked
solutions where the oscillation profiles of the individual clusters differ only in phase. However,
apart from this special case, our definition also incorporates cases where this spatiotemporal
symmetry is broken and oscillation profiles are different for each cluster. Moreover, (2.5)
also allows “mixed” cluster states where some clusters are in equilibrium while others are
oscillating. In section 3 we will show examples of such symmetry breaking and mixed cluster
states. Finally, we remark that more complicated motion (e.g., quasi-periodic and chaotic)
may also appear for certain parameter sets, but these are not analyzed in this paper.

In order to linearize the system around the K-cluster state (2.4), we define the perturba-
tions

(2.12) yi = xi − xc�, i = B�−1 + 1, . . . , B�, � = 1, . . . ,K,

so the Taylor expansion of (2.1) yields

(2.13) ẏi(t) = L� yi(t) +
K∑
k=1

R�k

( Bk∑
j=Bk−1+1

aij yj(t− τ)

)
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for i = 1, . . . , N . When linearizing about cluster equilibria (2.9) the n × n matrices L�, R�k

are time-independent, that is,

L∗
� = Df

(
x∗c�

)
+

1

N

K∑
k=1

m�k D
(1)g

(
x∗c�, x

∗
ck

)
,

R∗
�k =

1

N
D(2)g

(
x∗c�, x

∗
ck

)
,

(2.14)

where and D(1) and D(2) represent derivatives with respect to the first and second variables,
respectively. This means that (2.13) is a linear time-invariant system allowing the use of
analytical techniques like the D-subdivision method and Stépán’s formulae [50]. However,
when linearizing about oscillatory cluster states (2.11), the matrices become time-periodic
with period Tp, i.e.,

Lp
� (t) = Df

(
xpc�(t)

)
+

1

N

K∑
k=1

m�k D
(1)g

(
xpc�(t), x

p
ck(t− τ)

)
= Lp

� (t+ Tp) ,

Rp
�k(t) =

1

N
D(2)g

(
xpc�(t), x

p
ck(t− τ)

)
= Rp

�k(t+ Tp) .

(2.15)

To analyze these equations one must use Floquet theory. As the corresponding monodromy
operators usually cannot be written in closed form, numerical techniques like full discretization
[47] or semi-discretization [19] must be deployed.

Defining y = col [ y1 y2 . . . yN ] ∈ R
nN , the linear system (2.13) can be rewritten as

(2.16) ẏ(t) = (IN ⊗ L�)y(t) + (AN ⊗R�k)y(t− τ) ,

where IN is the N -dimensional unit matrix, AN is the adjacency matrix given in (2.2), and
the subscripts � and k are kept to emphasize that the blocks depend on which cluster is
considered; see the example (2.27). For linear node dynamics (with identical nodes), L�

would be independent of �. Similarly, if the coupling were linear [7, 51], then R�k would be
independent of � and k, while nonlinear coupling introduces heterogeneity into the linearized
system. Finally, we emphasize that we consider the general case of nonequally sized clusters.

2.1. Two-step decomposition. Instead of analyzing the stability of system (2.16) directly,
we apply a two-step decomposition method. Our goal is to block diagonalize the matrix
AN ⊗R�k while keeping IN ⊗L� block diagonal. The first step is based on the generalization
of the concepts of tangential stability and transversal stability for delay networks that has been
established for phase oscillators in [41]. This relies on the observation that a cluster state may
lose stability in two qualitatively different ways. Tangential stability loss occurs when the
cluster state loses stability so that the cluster configuration is kept. Such behavior occurs
within the clustering manifold (2.4) and is characterized by the linearization of (2.5). On the
other hand, transversal stability loss corresponds to splitting at least one cluster, which drives
the system away from the clustering manifold. We remark that similar ideas can be used when
analyzing the synchronized equilibrium of networks with hierarchical structures [10, 20, 49].

First, we separate the tangential dynamics and the transversal dynamics so that the
transversal dynamics of individual clusters are also separated from each other. The following
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theorem gives the condition of separability based on the adjacency matrix (2.2) that describes
the network structure.

Theorem 1 (decomposability). Assume that the intracluster connectivity within each cluster
is represented by a regular graph; that is, the subrow and the subcolumn sums satisfy

(2.17) m�� =

B�∑
j=B�−1+1

aij =

B�∑
i=B�−1+1

aij

for all admissible i, j = B�−1+1, . . . , B�, � = 1, . . . , K. Moreover, assume that the intercluster
connectivity is either complete or missing; that is,

(2.18) aij = 1 or 0 ⇒ m�k = bk or 0

for all i = B�−1+1, . . . , B� and j = Bk−1+1, . . . , Bk when � �= k, �, k = 1, . . . ,K. Then there
exists a coordinate transformation that separates the tangential and transversal subspaces.

We propose the coordinate transformation

(2.19) y = (TK
N ⊗ I) z ,

where the N -dimensional matrix TK
N can be chosen so that the first K column vectors are

defined by

(2.20)
(
TK
N

)
ij
=

{
1 if i = B�−1 + 1, . . . , B� and j = � ,

0 otherwise

for � = 1, . . . ,K, and the remaining N −K column vectors are defined as

(2.21)
(
TK
N

)
ij
=

⎧⎪⎨
⎪⎩
1 if i = B�−1 + 1 and j = K +B�−1 − (�− 1) + p ,

−1 if i = B�−1 + 1 + p and j = K +B�−1 − (�− 1) + p ,

0 otherwise

for p = 1, . . . , b� − 1, � = 1, . . . ,K; see (2.28), where N = 7, K = 2, [ b1 b2 ] = [ 3 4 ].
The detailed proof of Theorem 1 is given in Appendix B. The key idea behind (2.19),

(2.20), (2.21) is that (2.20) spans the subspace corresponding to tangential dynamics, while
for each � (2.21) spans the subspace corresponding to transversal dynamics of that particular
cluster. Note that this transformation does not require the calculation of the eigenvectors
of AN (that may be challenging for large systems) and that the decomposed system consists
of equations that have clear physical meaning in terms of the clustering dynamics. The
tangential dynamics correspond to motions that keep the cluster configuration intact. For
example, equilibria may lose stability and create periodic oscillations without breaking the
clusters. Further bifurcations may lead to more complicated (e.g., quasi-periodic or even
chaotic) motions that are still contained by the clustering manifold. On the other hand,
the transversal dynamics for each cluster describe the ways the cluster can be split, leading
the system away from the clustering manifold (toward cluster states embedded in “higher-
dimensional” manifolds).
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We remark that if the intercluster connectivity is complete between all clusters (i.e., all
aij’s are 1’s in (2.18)), then the whole system is described by a regular graph; that is, all row
sums and column sums of the adjacency matrix (2.2) are equal. This also holds if the connec-
tivity is missing everywhere (i.e., all aij ’s are 0’s in (2.18)). These are the only ways to obtain
regular graphs (except if one considers the special case of equally sized clusters). However,
in general, regularity does not imply decomposability: for regular graphs the transformation
(2.19), (2.20), (2.21) separates the tangential dynamics from the transversal dynamics but
does not separate the transversal dynamics of individual clusters from each other.

Applying (2.19), (2.20), (2.21) to (2.16), the first K tangential equations take the form

(2.22) ż�(t) = L�z�(t) +
K∑
k=1

m�k R�k zk(t− τ)

for � = 1, . . . ,K, which is indeed the linearization of (2.5). The corresponding eigenvalues Λ�,
� = 1, . . . ,K, of AN are called tangential eigenvalues as these correspond to eigendirections
that keep the K-cluster formation. However, these eigenvalues do not appear explicitly in
(2.22), and this system is typically not block diagonalizable: even if one is able to find a
transformation that block diagonalizes the delayed part, such a transformation usually makes
the nondelayed part non–block diagonal.

In the remaining N − K transversal equations each cluster � is represented by b� − 1
equations. In particular, defining ẑ� = col [ zK+B�−1−�+2 . . . zK+B�−� ],∈ R

n(b�−1), one may
write these in the form

(2.23) ˙̂z�(t) = (Ib�−1 ⊗ L�) ẑ�(t) + (A� ⊗R��) ẑ�(t− τ)

for � = 1, . . . ,K, where A� is a b� − 1-dimensional (weighted) cluster adjacency matrix. As
the second decomposition step we block diagonalize (2.23) by using the transformation

(2.24) ẑ� = (T� ⊗ I) q̂� ,

where T� = [ f�,1 . . . f�,b�−1 ] so that f�,i is the ith eigenvector of the cluster adjacency matrix
A�. Using this transformation, one may derive the modal equations

(2.25) q̇i(t) = L� qi(t) + ΛiR�� qi(t− τ)

for i = K + B�−1 − � + 2, . . . ,K + B� − �, � = 1, . . . K, where Λi is the eigenvalue of A�. It
can be shown that Λi are also the eigenvalues of AN , and we refer to these as transversal
eigenvalues as they correspond to splitting the K-cluster state.

2.2. Illustrative example. Let us illustrate the above two-step decomposition method
using a simple example of a two-cluster state with cluster sizes [ b1 b2 ] = [ 3 4 ], i.e., K = 2,
N = b1 + b2 = 7. Now let us consider a network with connectivity

(2.26) A7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 1 1 1
1 0 0 1 1 1 1
0 1 0 1 1 1 1

1 1 1 0 0 1 1
1 1 1 1 0 0 1
1 1 1 1 1 0 0
1 1 1 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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1362 GÁBOR OROSZ

which indeed allows the existence of two-cluster states with b1 = 3 and b2 = 4 as indicated by
the constant subrow sums; cf. (2.6). (For completeness, all realizable cluster configurations
are listed in Appendix A.) In this case (2.16) yields

ẏ(t) = (I7 ⊗ L�)y(t) + (A7 ⊗R�k)y(t− τ)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

L1 O O O O O O
O L1 O O O O O
O O L1 O O O O
O O O L2 O O O
O O O O L2 O O
O O O O O L2 O
O O O O O O L2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
y(t) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

O O R11 R12 R12 R12 R12

R11 O O R12 R12 R12 R12

O R11 O R12 R12 R12 R12

R21 R21 R21 O O R22 R22

R21 R21 R21 R22 O O R22

R21 R21 R21 R22 R22 O O
R21 R21 R21 O R22 R22 O

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
y(t− τ) ,

(2.27)

where O is the n-dimensional matrix with zero elements.
The transformation matrix (2.20), (2.21) is constructed as

(2.28) T 2
7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 1 0 0 0
1 0 −1 0 0 0 0
1 0 0 −1 0 0 0

0 1 0 0 1 1 1
0 1 0 0 −1 0 0
0 1 0 0 0 −1 0
0 1 0 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Indeed, the first two columns correspond to keeping the two-cluster configuration (tangential
directions), while the next two blocks span the subspaces corresponding to splitting the first
or the second cluster, respectively (transversal directions). One can show that

(2.29) (T 2
7 ⊗ I)−1(I7 ⊗ L�)(T

2
7 ⊗ I) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

L1 O O O O O O
O L2 O O O O O

O O L1 O O O O
O O O L1 O O O

O O O O L2 O O
O O O O O L2 O
O O O O O O L2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

that is, only the order of the matrices in the diagonal changes. Moreover, one can also show
that
(2.30)

(T 2
7 ⊗ I)−1(A7 ⊗R�k)(T

2
7 ⊗ I) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

R11 4R12 O O O O O
3R21 2R22 O O O O O

O O −R11 −R11 O O O
O O R11 O O O O

O O O O −R22 −R22 O
O O O O O −R22 −R22

O O O O R22 R22 O

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Thus, the tangential dynamics (2.22) are given by

(2.31)

[
ż1(t)
ż2(t)

]
=

[
L1 O
O L2

] [
z1(t)
z2(t)

]
+

[
R11 4R12

3R21 2R22

] [
z1(t− τ)
z2(t− τ)

]
,

while the transversal equations in (2.23) are given by

(2.32)

[
ż3(t)
ż4(t)

]
=

[
L1 O
O L1

] [
z3(t)
z4(t)

]
+

[−R11 −R11

R11 O

] [
z3(t− τ)
z4(t− τ)

]

and

(2.33)

⎡
⎣ż5(t)ż6(t)
ż7(t)

⎤
⎦ =

⎡
⎣L2 O O
O L2 O
O O L2

⎤
⎦[

z3(t)
z4(t)

]
+

⎡
⎣−R22 −R22 O

O −R22 −R22

R22 R22 O

⎤
⎦
⎡
⎣z5(t− τ)
z6(t− τ)
z7(t− τ)

⎤
⎦ .

Using the eigenvectors of the cluster adjacency matrices

(2.34) A1 =

[−1 −1
1 0

]
, A2 =

⎡
⎣−1 −1 0

0 −1 −1
1 1 0

⎤
⎦

results in the transformations

(2.35) T1 =

[
1 1

−1
2 + i

√
3
2 −1

2 − i
√
3
2

]
, T2 =

⎡
⎣ 1 1 1
−1 i −i
1 −1 −1

⎤
⎦

in (2.24), and thus, we obtain the block diagonal equations

(2.36)

[
q̇3(t)
q̇4(t)

]
=

[
L1 O
O L1

] [
q3(t)
q4(t)

]
+

[
−(

1
2 + i

√
3
2

)
R11 O

O −(
1
2 − i

√
3
2

)
R11

][
q3(t− τ)
q4(t− τ)

]

and

(2.37)

⎡
⎣q̇5(t)q̇6(t)
q̇7(t)

⎤
⎦ =

⎡
⎣L2 O O
O L2 O
O O L2

⎤
⎦
⎡
⎣q5(t)q6(t)
q7(t)

⎤
⎦+

⎡
⎣O O O
O −(1 + i)R22 O
O O −(1− i)R22

⎤
⎦
⎡
⎣q5(t− τ)
q6(t− τ)
q7(t− τ)

⎤
⎦ ;

cf. (2.25). Notice that some of the above equations contain complex coefficients. One may
take the real and imaginary parts of these equations and obtain 2n-dimensional systems with
real coefficients [6, 39].

For completeness, we mention that one may change the intercluster coupling in (2.26) as
shown by the matrices (B.12) in Appendix B that still satisfy Theorem 1. This only changes
the tangential dynamics according to (B.13), while the transversal dynamics remain the same.
Notice that matrix (2.26) also allows full synchrony as the row sums are constant, but none of
matrices in (B.12) allow this state. Finally, we remark that even if the conditions of Theorem
1 are not satisfied, the transformation (2.19), (2.20), (2.21) still simplifies the system, as
demonstrated in the next section.
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2.3. Semidecomposability. Theorem 1 is quite restrictive regarding the connectivity struc-
ture of the system. In this section we relax some of these conditions and state a theorem that
allows one to semidecompose the system, that is, to bring the corresponding matrices into an
upper block triangular form.

First, to illustrate the idea, we modify example (2.26) shown in the previous section so
that the conditions of Theorem 1 do not hold. In particular, we consider a network with
connectivity

(2.38) A7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 0 1 1
1 0 0 1 1 0 1
0 1 0 1 1 1 0

1 0 0 0 1 1 0
1 0 0 1 0 1 0
1 0 0 1 0 0 1
1 0 0 1 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This, similarly to (2.26), allows the existence of a two-cluster state with cluster sizes [ b1 b2 ] =
[ 3 4 ], as indicated by the corresponding constant subrow sums; cf. (2.6). (For completeness,
all realizable cluster configurations are listed in Appendix A.)

In this case, using (2.28), we obtain
(2.39)

(T 2
7 ⊗ I)−1(A7 ⊗R�k)(T

2
7 ⊗ I) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

R11 3R12 O O 1
3R12

1
3R12

1
3R12

R21 2R22 R21 R21
1
4R22

1
4R22

1
2R22

O O −R11 −R11
1
3R12 −2

3R12
1
3R12

O O R11 O 1
3R12

1
3R12 −2

3R12

O O O O −3
4R22

1
4R22 −1

2R22

O O O O −3
4R22 −3

4R22
1
2R22

O O O O 1
4R22 −3

4R22 −1
2R22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The blocks outside the “diagonal” correspond to how (2.38) violates Theorem 1. The 4 × 4
block at the bottom right of (2.38) is not regular as the subcolumn sums are not constant.
Consequently, the orthogonality condition (B.7) does not hold, which results in the terms
R22 in the upper triangle in (2.39). Similarly, the 4 × 3 block at the bottom left of (2.38) is
neither full of zeros nor full of ones. In particular, having nonconstant subcolumn sums leads
to the violation of the orthogonality condition (B.11). Consequently, the terms R21 appear
in the upper triangle. Notice that (B.10) still holds for this block since each column is either
full of zeros or full of ones. Finally, the 3 × 4 block at the top right of (2.38) violates both
orthogonality conditions (B.10), (B.11) and leads to the terms R12 in the upper triangle.

We remark that violating (B.7) or (B.10) always results in terms in the upper triangle. On
the other hand, violating (B.11) in a block in the lower triangle of (2.38) results in terms in
the upper as well as in the lower triangles of (2.39). Still, by rearranging the order of clusters
one may “transfer” everything to the upper triangle. In general, such rearrangement is only
possible if there are no loops in the aggregated graphs consisting of intercluster connections
that violate (B.11). Based on these arguments we can state the following theorem.

Theorem 2 (semidecomposability). Assume that the subrow sum (2.6) is constant and the
intercluster connections that violate (B.11) do not form loops; then the transformation (2.19),
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(2.20), (2.21) and appropriate reordering of clusters result in an upper block triangular matrix
in front of the delayed term.

We remark that since the blocks at the diagonal have different sizes, (2.30) and (2.39)
do not have the same eigenvalues, and, consequently, the elements in the upper triangle can
influence stability.

2.4. Stability of cluster equilibria and cluster oscillations. In this section we present the
analytical tools we use to derive necessary and sufficient conditions for the linear stability
of cluster states. These allow us to derive a stability chart while focusing on a given type
of cluster state (e.g., equilibrium or periodic orbit) as opposed to numerical tools based on
Lyapunov exponents that only quantify the average attractivity in state space [25]. Lyapunov
functionals may also be used to derive sufficient conditions of stability [51], but, with the neural
applications in mind, we are interested in exact stability. The results below are explained
for the fully decomposable systems presented in sections 2.1 and 2.2, but they can also be
generalized for the semidecomposable systems discussed in section 2.3.

As mentioned above, when linearizing about cluster equilibria (2.9), the matrices L�, R�k

(2.14) are time-independent. Thus, in order to determine the stability of equilibria, the trial
solutions z�(t) = Z� e

λt, qi(t) = Qi e
λt, λ ∈ C, Z�, Qi ∈ C

n are substituted into (2.22), (2.25),
which results in the characteristic equations

(2.40) det

⎛
⎜⎝
⎡
⎢⎣
λ I − L1 · · · O

...
. . .

...
O · · · λ I − LK

⎤
⎥⎦− 1

N

⎡
⎢⎣
m11R11 · · · m1KR1K

...
. . .

...
mK1RK1 · · · mKKRKK

⎤
⎥⎦ e−λτ

⎞
⎟⎠ = 0

and

(2.41) det(λ I − L� − ΛiR�� e
−λτ ) = 0

for i = K + B�−1 − � + 2, . . . ,K + B� − �, � = 1, . . . ,K. The equilibrium is
tangentially/transversally stable when all the infinitely many characteristic roots λ, given
by (2.40)/(2.41), are located in the left-half complex plane. Indeed, the cluster equilibrium is
linearly stable if both tangential and transversal stability are satisfied. Substituting λ = iω,
ω ≥ 0, into the above equations, one may obtain the tangential and transversal stability
boundaries that divide the parameter space into stable and unstable domains. Stability can
be evaluated by applying Stépán’s formulae derived in [50]. The obtained stability bound-
aries also have clear physical meaning: crossing a tangential stability boundary from stable
to unstable keeps the cluster configuration, while crossing a transversal boundary leads to
cluster split. We remark that the oscillations arising from these instabilities may be studied
analytically using normal form calculations in the vicinity of the stability boundaries [43]. As
these calculations require approximation of nonlinearities, here we use numerical techniques
to find the periodic orbits and evaluate their stability as explained below.

When linearizing about cluster oscillations (2.11), the matrices L�, R�k (2.15) are time-
periodic with period Tp. Instead of exponential trial solutions, one must use Floquet theory
to determine stability; see [19]. This requires the reformulation of (2.22), (2.25) using the
state variables z�,t(θ) = z�(t + θ), qi,t(θ) = qi(t + θ), θ ∈ [−τ, 0], that are contained by the
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infinite dimensional space of continuous functions. These states can be obtained from the
initial functions as

(2.42)

⎡
⎢⎣
z1,t
...

zK,t

⎤
⎥⎦ = U0(t)

⎡
⎢⎣
z1,0
...

zK,0

⎤
⎥⎦

and

(2.43) qi,t = Ui(t) qi,0

for i = K+1, . . . , N , where the solution operators U0(t) and Ui(t) usually cannot be written in
closed form. The eigenvalues of the monodromy operators U0(Tp) and Ui(Tp) are called Floquet
multipliers, and they determine the tangential and transversal stability of oscillations: if all
these multipliers are smaller than 1 in magnitude, then the periodic solution is stable. Again
(2.42) corresponds to tangential stability, while (2.43) corresponds to transversal stability,
and crossing the corresponding stability boundaries in parameter space leads to qualitatively
different behaviors.

To calculate the stability boundaries one needs to use numerical techniques. The first
step is to compute the periodic orbit which is the solution of the boundary value problem
(2.5), (2.11). This can be done by using numerical collocation, which can be merged with
arc-length continuation to find the orbit when parameters are varied [47]. Since (2.22) is the
linearization of (2.5), collocations provide a discretization of the monodromy operator U0(Tp)
in (2.42), and the corresponding eigenvalues (the tangential Floquet multipliers) can be com-
puted numerically. Alternatively, semi-discretization can be used to compute the multipliers
[19]. However, (2.25) also has to be evaluated at the periodic solution in order to compute
the transversal Floquet multipliers which are the eigenvalues of Ui(Tp) in (2.43). To solve this
problem we create augmented systems consisting of (2.5), (2.11), (2.25) which give the same
periodic orbit as (2.5), (2.11) for the variables xpc� while resulting in qi ≡ 0. Each augmented
system contains the tangential multipliers as well as transversal multipliers corresponding to
the chosen cluster.

2.5. All-to-all coupled systems. In this section we consider all-to-all coupling without
self-coupling. This admits the maximal number of cluster states and allows the derivation of
general results without specifying the numbers of oscillators [ b1 b2 · · · bK ] in each cluster
or even the total number of oscillators N . Interaction between different cluster states can also
be investigated as parameters are varied. The equations derived in this section will be applied
in section 3 to study the cluster states of a neuromodel.

Let us consider the adjacency matrix

(2.44) aij =

{
1 if j �= i,

0 if j = i,

which implies

(2.45) m�k =

{
bk − 1 if k = �,

bk if k �= �.
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Moreover, the eigenvalues of the adjacency matrix are

(2.46) Λ1 = N − 1, Λi = −1, i = 2, . . . , N,

and the corresponding eigenvectors are

(2.47) e1 =

⎡
⎢⎢⎢⎢⎢⎣

1
1
1
...
1

⎤
⎥⎥⎥⎥⎥⎦ , e2 =

⎡
⎢⎢⎢⎢⎢⎣

1
−1
0
...
0

⎤
⎥⎥⎥⎥⎥⎦ , e3 =

⎡
⎢⎢⎢⎢⎢⎣

1
0
−1
...
0

⎤
⎥⎥⎥⎥⎥⎦ , . . . , eN =

⎡
⎢⎢⎢⎢⎢⎣

1
0
...
0
−1

⎤
⎥⎥⎥⎥⎥⎦ .

The eigenvalue −1 has algebraic and geometric multiplicity N − 1, and the eigenvectors
e2, . . . , eN span the corresponding subspace. Indeed, any linear combination of the eigen-
vectors also spans the subspace.

For the adjacency matrix (2.44) Theorem 1 holds for all possible cluster states. However,
depending on which cluster state we focus on, the transformation matrix (2.19), (2.20), (2.21)
must be chosen differently. For example, considering the fully synchronized state xi(t) = xc(t),
i = 1, . . . , N , with K = 1, b1 = N , m11 = N − 1, (2.5) simplifies to

(2.48) ẋc(t) = f
(
xc(t)

)
+

N − 1

N
g
(
xc(t), xc(t− τ)

)
.

When linearizing about the synchronous state, (2.13) yields

(2.49) ẏi(t) = Lyi(t) +R
N∑

j=1,j �=i

yj(t− τ)

for i = 1, . . . , N , where the index 1 of the matrices has been dropped for simplicity.
To separate the tangential and transversal dynamics we choose the transformation matrix

(2.50) T 1
N =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1
1 −1 0 0
... 0 −1

. . .
...

...
...

...
. . . 0

1 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎦
,

which results in the modal equations

ż1(t) = Lz1(t) + (N − 1)R z1(t− τ),

żi(t) = Lzi(t)−Rzi(t− τ), i = 2, . . . , N ;
(2.51)

cf. (2.22), (2.23), (2.25). The first equation (which is indeed the linearization of (2.48))
describes the tangential stability of the synchronized state, while the second equation describes
transversal stability. Notice that the transversal part is already block diagonal; that is, no
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further transformations are needed. This is because the corresponding columns of T 1
N are in

fact the eigenvectors of the adjacency matrix AN .
For a general two-cluster state defined by xi(t) = xc1(t), i = 1, . . . , b1, and xi(t) = xc2(t),

i = b1 + 1, . . . , b1 + b2 = N, we have K = 2 and

(2.52)

[
m11 m12

m21 m22

]
=

[
b1 − 1 b2
b1 b2 − 1

]
;

cf. (2.45). That is, (2.5) gives

ẋc1(t) = f
(
xc1(t)

)
+

b1 − 1

N
g
(
xc1(t), xc1(t− τ)

)
+

b2
N

g
(
xc1(t), xc2(t− τ)

)
,

ẋc2(t) = f
(
xc2(t)

)
+

b1
N

g
(
xc2(t), xc1(t− τ)

)
+

b2 − 1

N
g
(
xc2(t), xc2(t− τ)

)
,

(2.53)

while (2.13) yields

ẏi(t) = L1 yi(t) +R11

b1∑
j=1,j �=i

yj(t− τ) +R12

N∑
j=b1+1

yj(t− τ), i = 1, . . . , b1,

ẏi(t) = L2 yi(t) +R21

b1∑
j=1

yj(t− τ) +R22

N∑
j=b1+1,j �=i

yj(t− τ), i = b1 + 1, . . . , N.

(2.54)

Indeed, tangential and transversal directions are defined differently for a two-cluster state
than for the synchronous state. Here, to separate the tangential and transversal dynamics we
use

(2.55) T 2
N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 1 · · · 1 0 0 · · · 0
1 0 −1 0 0 0 0 · · · 0
...

... 0 −1
. . .

...
...

...
...

...
...

...
...

. . . 0
...

...
...

1 0 0 0 −1 0 0 · · · 0

0 1 0 0 · · · 0 1 1 · · · 1
0 1 0 0 · · · 0 −1 0 0
...

...
...

...
... 0 −1

. . .
...

...
...

...
...

...
...

...
. . . 0

0 1 0 0 · · · 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which results in the modal equations[
ż1(t)
ż2(t)

]
=

[
L1 O
O L2

] [
z1(t)
z2(t)

]
+

[
(b1 − 1)R11 b2R12

b1R21 (b2 − 1)R22

] [
z1(t− τ)
z2(t− τ)

]
,

żi(t) = L1 zi(t)−R11 zi(t− τ), i = 3, . . . , b1 + 1,

żi(t) = L2 zi(t)−R22 zi(t− τ), i = b1 + 2, . . . , N.

(2.56)
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The first equation (which is indeed the linearization of (2.53)) describes the tangential stability,
while the second and third equations correspond to transversal stability of the first and the
second clusters, respectively. Again, the transversal part is already block diagonal, as the
transformation T 2

N also uses the transversal eigenspace of the adjacency matrix AN . Indeed,
(2.55) and (2.56) can be generalized for any K, and the dynamics of the all-to-all coupled
system can be understood by analyzing the different cluster configurations. To demonstrate
the power of our approach we apply the techniques discussed above to a system of all-to-all
coupled neurons in the next section.

3. Dynamics of type II neurons. Populations of neurons encode information and carry
out computation by using spatiotemporal patterns of activity [34]. Stable and unstable clus-
ter states and transitions between cluster states play an important role in this information
processing [22, 40, 41]. In order to understand the underlying dynamics, the stability of
cluster equilibria and cluster oscillations needs to be determined. Indeed, different cluster
configurations may coexist for a chosen set of parameters, and multiple states may coexist
in the corresponding subspaces. In this section we apply the methods described above to
classify the admissible cluster states in a neurosystem and build up the dynamical elements
of neurocomputation in a systematic way.

Mathematical models that describe the temporal dynamics of neurons are categorized
as type I and type II neuromodels; see [8]. Type I neurons display arbitrarily low firing
frequencies at firing threshold, which quickly increase as the magnitude of the applied current
is increased. Type II neurons, on the other hand, exhibit a nonzero, “critical” firing frequency
at threshold and have a much shallower slope in terms of the frequency changes as a function
of the applied current. Here we consider a type II neuromodel, namely, a FitzHugh–Nagumo
type model with direct electronic coupling (gap junctions):

Cv̇i(t) = h
(
vi(t)

)− wi(t) + I +
1

N

N∑
j=1

aij κ · (vj(t− τ)− vi(t)
)
,

ẇi(t) = vi(t)− γ wi(t),

(3.1)

where

(3.2) h(vi) = vi(1− vi)(vi − a).

We remark that while linear coupling is considered here for simplicity, all results can be
generalized to nonlinear coupling as the decomposition method explained above is capable of
handling the general case.

Each neuron is described by two scalar variables—the membrane potential at the soma vi
and a so-called gating variable wi which represents the ion transport through the membrane.
Comparing (3.1) with the general model (2.1), one can see that xi = col [ vi wi ]. The model
also contains the following (scaled) parameters:

C = 0.1 — membrane capacitance,

I = 0.5 — applied current,

γ = 0.5,

a = 0.25.

(3.3)
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Figure 1. Stable periodic solution of model (3.1), (3.2) for parameters (3.3) without coupling κ = 0. Panel
(a) shows the variation of the voltage v as a function of time t, while panel (b) depicts the periodic orbit in
state space where the equilibrium (v∗, w∗) = (0.25, 0.5) is unstable.

Without coupling, i.e., for κ = 0, equations (3.1), (3.2) with parameters (3.3) produce sus-
tained oscillations of period Tp ≈ 2.173; see the stable periodic orbit in Figure 1. The coupling
term κ ·(vj(t−τ)−vi(t)

)
represents a direct electronic connection between the axon of the jth

neuron and the dendrites of the ith neuron. Here vi(t) is the postsynaptic potential, vj(t− τ)
is the presynaptic potential, κ is the conductance of the gap junction, and τ represents the
signal propagation time along the axon of the jth neuron (dendritic delays are omitted here).
That is, the presynaptic potential is equal to what the potential of the soma of the jth neuron
was τ time before.

We consider a neurosystem with a high degree of connectivity, and, for simplicity, we
assume all-to-all coupling without self-coupling, which was discussed in the previous section.
This indeed allows all possible cluster configurations, but here we focus our attention on
synchronous and two-cluster states (with nonequally sized clusters).

3.1. Synchrony of type II neurons. Consider the synchronous solutions [ vi wi ] = [ vc wc ],
i = 1, . . . , N , for the neurosystem (3.1) with all-to-all coupling without self-coupling; cf. (2.44).
In this case (2.48) results in the tangential dynamics

Cv̇c(t) = h
(
vc(t)

) − wc(t) + I +
N − 1

N
κ · (vc(t− τ)− vc(t)

)
,

ẇc(t) = vc(t)− γ wc(t).
(3.4)
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When linearizing the system about a synchronous state one obtains the matrices

(3.5) L =

[
1
Ch

′(vc)− N−1
N

κ
C − 1

C
1 −γ

]
, R =

[
1
N

κ
C 0
0 0

]
,

which appear in (2.49) as well as in the decomposed system (2.51).
To obtain the synchronous equilibrium we substitute [ vc(t) wc(t) ] ≡ [ v∗c w∗

c ] into (3.4),
which results in the algebraic equations

0 = h(v∗c )−w∗
c + I,

0 = v∗c − γ w∗
c .

(3.6)

Notice that the coupling term disappears, and, consequently, the synchronized equilibrium is
the same as the equilibrium of an uncoupled neuron (which may not be the case for more
general nonlinear coupling). For parameters (3.3), we have a unique unstable equilibrium as
shown by the red dot in Figure 1(b) at the intersection of the gray nullclines given by (3.6).

Using the notation z1 = [ ṽc w̃c ] and zi = [ ṽb w̃b ], i = 2, . . . , N , where the tilde
represents perturbations and the subscripts c and b refer to synchronous and synchrony-
breaking perturbations, the first equation in (2.51) yields

(3.7)

[
˙̃vc(t)
˙̃wc(t)

]
=

[−p− q − 1
C

1 −γ

] [
ṽc(t)
w̃c(t)

]
+

[
q 0
0 0

] [
ṽc(t− τ)
w̃c(t− τ)

]
,

which is the linearization of (3.4), while the second equation in (2.51) results in

(3.8)

[
˙̃vb(t)
˙̃wb(t)

]
=

[−p− q − 1
C

1 −γ

] [
ṽb(t)
w̃b(t)

]
+

[−r 0
0 0

] [
ṽb(t− τ)
w̃b(t− τ)

]
,

where

p = − 1

C
h′(vc) =

1

C

(
3(vc)

2 − 2(a + 1)vc + a
)
,

q =
N − 1

N

κ

C
,

r =
1

N

κ

C
.

(3.9)

In order to determine the tangential and transversal stability of the equilibrium, one must
evaluate the matrices (3.5) at [ v∗c w∗

c ], which means that p = − 1
Ch

′(v∗c ) becomes a constant.
The corresponding tangential and transversal characteristic equations become

(3.10)
(
λ+ p+ q(1− e−λτ )

)
(λ+ γ) +

1

C
= 0

and

(3.11)
(
λ+ p+ q + r e−λτ )

)
(λ+ γ) +

1

C
= 0;
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Figure 2. Panel (a) depicts the stability chart representing changes in tangential stability (lobes) and
transversal stability (horizontal curve) of the synchronized equilibrium. The green and red arrows show the
variation of angular frequency ω along the curves. This change is also represented in panel (b), and a zoom
is shown in panel (c). In the dashed domain in panel (a) the synchronized equilibrium is both tangentially and
transversally stable.

cf. (2.40) and (2.41). To find the stability boundaries we substitute λ = iω into (3.10) and
(3.11), separate the real and imaginary parts, and, after some algebraic manipulation, we
obtain the boundaries for tangential stability,

τ =
2

ω

(
arctan

[
β

α

]
+ �π

)
, � = 0, 1, 2, . . . ,

κ = − CN

2(N − 1)

δ

β
,

(3.12)

and for transversal stability,

τ =
2

ω

(
arctan

[
−β/α±

√
β2/α2 − (N − 2)

N − 2

]
+ �π

)
, � = 0, 1, 2, . . . ,

κ =
C

N − 2

(
−(N − 1)β ±√

(N − 1)2β2 − (N − 2)δ
)
,

(3.13)

where

α = ω − 1

C

ω

γ2 + ω2
,

β = p+
1

C

γ

γ2 + ω2
,

δ = p2 + ω2 +
1

C

1

γ2 + ω2

( 1

C
+ 2pγ − 2ω2

)
.

(3.14)

The corresponding curves are plotted for N = 33 in the (τ, κ)-plane in Figure 2(a). These
are parameterized by the angular frequency ω as shown by the green and red arrows. The
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curves for tangential stability (3.12) form lobes, and the angular frequency along the lobes
changes from ω = π/2 to ω → ∞, as shown by the green arrows in panel (a) and by the
green curve in panel (b). Notice that the tips of the lobes are at ω ≈ π. For transversal
stability, the boundaries (3.13) form a single horizontal curve in the (τ, κ)-plane. Along this
curve the angular frequency varies in a narrow frequency domain around ω ≈ π, as shown
by the red arrows in panel (a) and by the red oval in panels (b) and (c). The stability of
the synchronized equilibrium changes via Andronov–Hopf bifurcation when crossing either a
tangential or a transversal stability curve. That is, a pair of complex conjugate eigenvalues
crosses the imaginary axis. The angular frequency of the arising oscillation is approximated by
the imaginary part of the crossing roots ω. Depending on whether a tangential or a transversal
stability curve is crossed, the arising spatiotemporal patterns will differ; in the former case
the system remains synchronous, while in the latter case synchrony is broken.

Considering (3.10) and applying the analytical stability criteria in [50], it can be shown
that the system is transversally stable within the leftmost lobe. Similar investigations for
(3.11) reveal that the system is transversally stable above the wavy curve. For stability,
both tangential and transversal stability are required; this requirement is only satisfied in the
dashed domain in Figure 2(a). We remark that, when increasing the number of neurons, the
lobes as well as the wavy curve move downward, while the “amplitude” of the wavy curve
decreases. However, N = 33 is already very close to the limit N → ∞; that is, no significant
changes are observed when increasing N further.

Neural systems typically encode information using rhythmic patterns, which corresponds
to periodic orbits. To obtain synchronous periodic solutions, one must solve (3.4) considering
[ vc(t) wc(t) ] = [ vc(t+Tp) wc(t+Tp) ], where Tp is the period of oscillations. When linearizing
(3.1) about synchronous oscillations, the matrices (3.5) must be evaluated at the periodic
orbits. In this case, L becomes time-dependent through p(t) = − 1

Ch
′(vc(t)), which appears in

the modal equations (3.7) and (3.8). (For nonlinear coupling R would also be time-dependent.)
By analyzing the corresponding monodromy operators one can determine the tangential and
transversal stability of oscillations by calculating the location of the tangential and transversal
Floquet multipliers; cf. (2.42) and (2.43) with t = Tp.

Figure 3 shows the peak-to-peak voltage amplitude of the oscillations when the time delay
τ is varied. The corresponding value of the coupling constant is spelled out in each panel.
Stable and unstable oscillations are depicted as green and red curves, respectively, and the
same color code is used for the equilibrium (horizontal axis). Fold and pitchfork bifurcations
(when a real multiplier crosses the unit circle at 1) are marked by crosses, while Neimark–
Sacker bifurcations (when a complex conjugate pair of multipliers crosses the unit circle) are
marked by stars. Blue and magenta symbols represent tangential and transversal stability
losses.

For weak coupling (Figure 3(a)) the amplitude of oscillations does not change significantly
with the delay, and stability is lost via transversal pitchfork bifurcations (magenta crosses).
Branches of symmetry-breaking periodic solutions arise through these bifurcations (not shown
in the figure) that correspond to cluster states. As the coupling strength is increased (Fig-
ure 3(b)), tangential fold bifurcations (blue crosses) appear for larger delay values, and the
amplitude varies significantly with the delay. In particular, the amplitude of unstable os-
cillations decreases, which can also be observed in Figure 4, depicting stable and unstable
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Figure 3. Bifurcation diagrams showing the peak-to-peak voltage amplitude of synchronized oscillations
as a function of the delay τ for different values of the coupling strength κ. The horizontal axis represents
the equilibrium. Stable and unstable states are depicted by green and red curves. Black stars represent Hopf
bifurcations of equilibria, while blue and magenta stars represent tangential and transversal Neimark–Sacker
bifurcations of periodic orbits, respectively. Tangential fold and transversal pitchfork bifurcations are denoted
by blue and magenta crosses, respectively.
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Figure 4. Stable and unstable periodic orbits corresponding to the points A and B marked in Figure 3(b).

oscillations corresponding to the points A and B. When the coupling strength exceeds the
minimum of the lobes in Figure 2(a), the periodic branches “touch the ground” and connect
to the equilibrium branch via Hopf bifurcations (black stars); see Figure 3(c). In this case
both tangential and transversal stability losses occur mostly via Neimark–Sacker bifurcations
(blue and magenta stars). At these bifurcations branches of quasi-periodic oscillations are
created (not shown in the figure) that lead to more complicated spatiotemporal patterns. Fi-
nally, when the coupling strength exceeds the maximum of the wavy curve in Figure 2(a), all
transversal bifurcations disappear, and only tangential Neimark–Sacker bifurcations remain;
see Figure 3(d). For large delays the arising quasi-periodic oscillations may undergo further
bifurcations, leading to synchronized chaos; see [11].
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τ

κ

Figure 5. Stability charts for synchronous periodic orbits. Black curves show the locations of Hopf bifurca-
tions of the synchronized equilibrium, and in the dashed domain the equilibrium is stable; cf. Figure 2(a). Dashed
blue and dashed magenta curves represent tangential and transversal Neimark–Sacker bifurcations, respectively.
Solid blue curves represent tangential fold bifurcations, while solid magenta curves represent transversal pitch-
fork bifurcations. Light gray and dark gray regions correspond to having one stable and two stable synchronous
oscillatory solutions, respectively, while stable and unstable oscillations coexist in the light blue domains.

All bifurcations of synchronized equilibria and periodic orbits are summarized in Figure 5.
Hopf bifurcations of the equilibrium are shown as black curves, and the domain where the
equilibrium is stable is shown as dashed; cf. Figure 2(a). Tangential bifurcations of synchro-
nous oscillations are shown as blue curves that are solid for fold and dashed for Neimark–
Sacker bifurcations. Similarly, magenta curves represent transversal pitchfork (solid) and
Neimark–Sacker (dashed) bifurcations. Notice that as κ is increased, the transversal bifurca-
tions “switch” from pitchfork to Neimark–Sacker through bifurcations of higher codimension.
In the white regions only unstable oscillations exist. Light gray regions contain one stable
periodic orbit, while dark gray regions contain two stable periodic orbits. In the light blue
regions stable and unstable oscillations coexist.

We remark that for weak coupling one might reduce system (3.1) to a systems of coupled
phase oscillators; see [21]. However, this approach does not provide information about am-
plitude variations and, since the tangential dynamics is eliminated, only predicts transversal
instabilities; see [33]. In fact, the phase oscillator model predicts the first trapezoidal domain
in Figure 5 as a triangle, while in reality the top of the triangle is “chopped off.”

3.2. Clustering of type II neurons. Let us consider the two-cluster states defined by
[ vi wi ] = [ vc1 wc1 ], i = 1, . . . , b1, and [ vi wi ] = [ vc2 wc2 ], i = b1 +1, . . . , N , of the type II
neuromodel (3.1) with coupling (2.44). The corresponding two-cluster solutions are governed
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by the system

Cv̇c1(t) = h
(
vc1(t)

)− wc1(t) + I +
b1 − 1

N
κ · (vc1(t− τ)− vc1(t)

)
+

b2
N

κ · (vc2(t− τ)− vc1(t)
)
,

ẇc1(t) = vc1(t)− γ wc1(t),

Cv̇c2(t) = h
(
vc2(t)

)− wc2(t) + I +
b1
N

κ · (vc1(t− τ)− vc2(t)
)
+

b2 − 1

N
κ · (vc2(t− τ)− vc2(t)

)
,

ẇc2(t) = vc2(t)− γ wc2(t).

(3.15)

Indeed, the synchronous dynamics (3.4) is contained by the dynamics (3.15), which can be
shown by setting [ vc1 wc1 ] = [ vc2 wc2 ] = [ vc wc ].

When linearizing (3.1) about the two-cluster state, one obtains the matrices

(3.16) L� =

[
1
Ch

′(vc�)− N−1
N

κ
C − 1

C
1 −γ

]
, R�k = R =

[
1
N

κ
C 0
0 0

]
, �, k = 1, 2;

cf. (2.54), (2.56). Using the notation z1 = [ ṽc1 w̃c1 ], z2 = [ ṽc2 w̃c2 ], zi = [ ṽb1 w̃b1 ],
i = 3, . . . , b1 + 1, and zi = [ ṽb2 w̃b2 ], i = b1 + 2, . . . , N , the first equation in (2.56) results in

⎡
⎢⎢⎣
˙̃vc1(t)
˙̃wc1(t)
˙̃vc2(t)
˙̃wc2(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−p1 − q − 1
C 0 0

1 −γ 0 0

0 0 −p2 − q − 1
C

0 0 1 −γ

⎤
⎥⎥⎦
⎡
⎢⎢⎣
ṽc1(t)
w̃c1(t)
ṽc2(t)
w̃c2(t)

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

(b1 − 1)r 0 b2r 0
0 0 0 0

b1r 0 (b2 − 1)r 0
0 0 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣
ṽc1(t− τ)
w̃c1(t− τ)
ṽc2(t− τ)
w̃c2(t− τ)

⎤
⎥⎥⎦ ,

(3.17)

which is the linearization of (3.15), while the remaining equations in (2.56) yield[
˙̃vb1(t)
˙̃wb1(t)

]
=

[−p1 − q − 1
C

1 −γ

] [
ṽb1(t)
w̃b1(t)

]
+

[−r 0
0 0

] [
ṽb1(t− τ)
w̃b1(t− τ)

]
,

[
˙̃vb2(t)
˙̃wb2(t)

]
=

[−p2 − q − 1
C

1 −γ

] [
ṽb2(t)
w̃b2(t)

]
+

[−r 0
0 0

] [
ṽb2(t− τ)
w̃b2(t− τ)

]
,

(3.18)

where

p1 = − 1

C
h′(vc1), p2 = − 1

C
h′(vc2),

q =
N − 1

N

κ

C
, r =

1

N

κ

C
.

(3.19)

Using (3.17), (3.18), (3.19), one may study the tangential and transversal stability of
cluster equilibria [ vc1(t) wc1(t) vc2(t) wc2(t) ] ≡ [ v∗c1 w∗

c1 v∗c2 w∗
c2 ], which can be derived

from (3.15). For the example considered here the only equilibrium is the synchronized one
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Figure 6. Bifurcation diagrams showing the peak-to-peak voltage amplitude of the first cluster for two-cluster
states with [ b1 b2 ] = [ 17 16 ]. The same notation and color-coding are used as in Figure 3.

v∗c1 = v∗c2 = v∗c , w∗
c1 = w∗

c2 = w∗
c that has already been explained above. For periodic

solutions the coefficient matrices of the nondelayed terms become time-dependent via p1(t) =
− 1

Ch
′(vc1(t)), p2(t) = − 1

Ch
′(vc2(t)) in (3.17), (3.18). Similarly to the case of synchronized

oscillations, we use numerical continuation to analyze oscillatory two-cluster solutions. For
b1 = b2 one can observe “phase-locked” solutions where the time profiles of oscillations of
different clusters differ only in phase. The theory of weakly coupled systems [18] suggests that
“phase-locked” solutions exist for b1 �= b2, so that the phase shift changes with the ratio b1/b2.
As a matter of fact, we found this to be only approximately true: the time profiles for each
cluster differ slightly. We refer to these solutions as “phase-locked-like” solutions. Moreover,
we found that there also exist additional solutions where the time profiles of the two clusters
differ significantly. Such states cannot be obtained using the weakly coupled approximation.
For the results presented below we choose the number of neurons to be N = 33 so that b1 = 17
and b2 = 16 oscillators are contained by the clusters.

The peak-to-peak voltage amplitude of oscillations for the first cluster is shown in Figure 6,
where the same notation and color-coding as in Figure 3 are used. In order to help the
readability of the figures, we do not show bifurcations that occur where the branch is already
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unstable (with the exception of where the branches fold). Note that tangential and transversal
stability is understood here with respect to the two-cluster states.

For weak coupling (Figure 6(a),(b)) there exist three distinct branches of oscillatory so-
lutions. The branch shown as a continuous curve corresponds to phase-locked-like solutions.
These are depicted in Figure 7(a) for point A where blue and magenta curves correspond to
the first and the second clusters, respectively. The amplitude variations in Figure 6(a),(b) are
small and become smaller when κ → 0 while keeping the general folding structure. We also
remark that the inner pair of fold bifurcations for each loop pair corresponds to the bifurca-
tions in Figure 3(a); that is, the two-cluster states bifurcate from the synchronized solution by
symmetry breaking. The section of the top branch between the outer pair of fold bifurcations
is in fact tangentially stable, but only a smaller section of it is transversally stable. Dashed
branches correspond to asymmetric solutions where the oscillations within one cluster have
much larger amplitude compared to the other cluster, as shown in Figure 7(b) and (c) for the
points B and C. When κ → 0, the smaller amplitude goes to zero, which results in solutions
where one cluster oscillates while the other exhibits equilibrium.

As the coupling strength is increased (Figure 6(c),(d)) the amplitude variations increase.
As shown in Figure 7(d), (e), and (f) for points D, E, and F, the middle part of the continu-
ous branch still represents the phase-locked-like solutions, while for the loop the oscillations
become more asymmetric. At the same time, the dashed branches become less asymmetric, as
can be observed in Figure 7(g) and (h), which represent the oscillations for points G and H.
When increasing κ further, the branches of asymmetric oscillations “meet”, and a sequence
of higher codimension bifurcations leads to a new type of behavior shown in Figure 6(e). For
even stronger coupling, the separated loops disappear, while the “tooth-like” branch “touches
the ground” and connects to the equilibrium through Hopf bifurcations; see Figure 6(f). These
Hopf bifurcations correspond to the horizontal wavy curve in Figure 2. When κ is larger than
the maximum of this curve, the periodic two-cluster solutions disappear.

The two-dimensional bifurcation diagram in Figure 8 summarizes the behavior in the
(τ, κ) parameter plane. The notation and color-coding are adopted from Figure 5. One may
observe that the shaded domain (where a stable two-cluster solution exists) is bounded by
tangential as well as transversal bifurcation curves. Solid blue curves correspond to branch
folding, while dashed blue curves show the location of the birth of quasi-periodic two-cluster
states through Neimark–Sacker bifurcations. Transversal pitchfork bifurcations that lead to
oscillatory cluster states with more than two clusters are depicted as solid magenta curves.

4. Conclusion and discussion. The dynamics of delayed networks with nonlinear elements
and nonlinear coupling were studied in this paper. It was shown that around a cluster state, the
nonlinear coupling introduces heterogeneity into the linearized system. A theorem was stated
that gave conditions on the intracluster and intercluster connectivity that allow decomposition
around cluster states with nonequal cluster sizes (and possibly different dynamics in each
cluster). Moreover, a decomposition method was presented that created modal subsystems of
clear physical meaning and allowed us to investigate the dynamics in the vicinity of steady
and oscillatory cluster states. It was shown that with the appropriate relaxation of conditions
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Figure 7. Time profiles of the oscillations for the first and second clusters (blue and magenta) are shown
corresponding to the points marked A–H in Figure 4(a)–(d). Notice that panels (a) and (d) depict the “phase-
locked like” solutions, while in all other panels the oscillations for the individual clusters differ significantly.
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τ

κ

Figure 8. Stability charts for two-cluster solutions. The same notation of curves is used as in Figure 5.
The light gray shading represents the regions with a stable two-cluster state.

in the decomposability theorem, the proposed transformations can be used to derive an upper
block triangular form that simplifies the stability analysis significantly. The corresponding
restrictions on the network connectivity were formalized in another theorem. We used the
obtained modal equations to derive exact stability conditions for cluster equilibria and periodic
orbits. For cluster equilibria, stability charts were derived analytically using the D-subdivision
method, while for cluster oscillations charts were drawn using Floquet theory. The methods
presented can be used for networked nonlinear systems of realistic size and allow one to map
out the skeleton of the dynamics consisting of stable and unstable states even when a large
number of different cluster configurations coexist.

The methods were applied to a neurosystem where cluster oscillations are used to encode
information and perform neurocomputation. It was shown that for weak coupling the synchro-
nous oscillations lose stability by splitting into smaller clusters, while for stronger coupling
more complicated synchronous motions (e.g., quasi-periodic oscillations) may appear. When
analyzing cluster oscillations, it was shown that, despite common beliefs supported by phase
oscillator models, no exact phase-locked solutions exist for nonequal cluster sizes. Indeed,
some oscillations remain “phase-locked-like”, but strongly asymmetric cluster oscillations also
exist where the motion of each cluster differs significantly. Even “mixed” cluster states were
discovered where some clusters stop oscillating and return to equilibria. These results shed
some light on the mechanism of neural coding via cluster states and show the limitation of
the phase oscillator approach. In the future, we plan to apply these methods to systems
with different neural models and connectivity [39] and study the effect of heterogeneities in
nonlinear delayed networks [53].
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Appendix A. Identifying cluster states. Let us recall the adjacency matrices (2.26),
(2.38):

(A.1) A7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 1 1 1
1 0 0 1 1 1 1
0 1 0 1 1 1 1
1 1 1 0 0 1 1
1 1 1 1 0 0 1
1 1 1 1 1 0 0
1 1 1 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, A7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 0 1 1
1 0 0 1 1 0 1
0 1 0 1 1 1 0
1 0 0 0 1 1 0
1 0 0 1 0 1 0
1 0 0 1 0 0 1
1 0 0 1 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

By using the Stirling number of the second kind (2.7) one can calculate the number of
admissible cluster configurations that are listed in the second column of Table 1. The ad-
missible configurations can be found by using a set partitioning algorithm [29]. By checking
the corresponding subrow sums (2.6), one can identify the realizable cluster configurations
shown in the last two columns of Table 1. Notice that in both cases the two-cluster configura-
tion {1, 2, 3}, {4, 5, 6, 7} can be realized, implying that there exists a corresponding clustering
manifold (2.4) in state space. In the case of the first example, the system remains invariant
when cyclically permuting the first three and the last four elements, and there exists a cor-
responding permutation matrix P7 such that P7A7P

−1
7 = A7. On the other hand, for the

second example, no such matrix can be found, and thus, identifying the symmetry becomes
much more difficult; see Lemma 3 in [51]. The set partitioning algorithm [29] can be used for
up to approximately 20 oscillators on a standard desktop computer to identify all admissible
and the realizable cluster configurations, while identifying all symmetries for systems of this
size with general coupling structure may be difficult. Indeed, for large numbers of oscilla-
tors, the number of cluster states becomes very large, and thus both symmetry-based and set
decomposition methods become computationally expensive.

Table 1
Cluster configurations for examples (A.1).

# of admissible clusters Example 1 Example 2

Synchrony S(7, 1) = 1 {1, 2, 3, 4, 5, 6, 7} —

Two-clusters S(7, 2) = 63 {1, 2, 3}, {4, 5, 6, 7} {1, 2, 3}, {4, 5, 6, 7}
Three-clusters S(7, 3) = 301 {1, 2, 3}, {4, 6}, {5, 7} {1, 2, 3}, {4}, {5, 6, 7}
Four-clusters S(7, 4) = 350 {1}, {2}, {3}, {4, 5, 6, 7} {1}, {2}, {3}, {4, 5, 6, 7}
Five-clusters S(7, 5) = 140 {1, 2, 3}, {4}, {5}, {6}, {7} {1}, {2}, {3}, {4}, {5, 6, 7}

{1}, {2}, {3}, {4, 6}, {5, 7}
Six-clusters S(7, 6) = 21 — {1}, {2}, {3}, {4, 5}, {6}, {7}
Splay state S(7, 7) = 1 {1}, {2}, {3}, {4}, {5}, {6}, {7} {1}, {2}, {3}, {4}, {5}, {6}, {7}

All B(7) = 877

Appendix B. Proof of Theorem 1. Here we show why conditions (2.17), (2.18) are
required to be able to decompose the system using the transformation (2.19), (2.20), (2.21).
Notice that investigating the effects of TK

N ⊗ I on (2.16) is equivalent to investigating the
effects of TK

N on the system where the n-dimensional matrices L� and R�k are substituted
by the scalars l� and r�k, respectively. That is, one needs to study the effects of TK

N on a



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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system with matrices (IN ⊗ l�) and (AN ⊗ r�k) in front of the delayed and nondelayed terms,
respectively.

The first K rows of the inverse transformation are given by

(B.1)
(
TK
N

)−1

ij
=

{
1
b�

if i = � and j = B�−1 + 1, . . . , B�,

0 otherwise

for � = 1, . . . ,K, and the remaining N −K rows are defined as
(B.2)

(
TK
N

)−1

ij
=

⎧⎪⎨
⎪⎩

b�−1
b�

if i = K +B�−1 − (�− 1) + p and j = B�−1 + 1 + p,
1
b�

if i = K +B�−1 − (�− 1) + p and j = B�−1 + q, q �= 1 + p,

0 otherwise

for p, q = 1, . . . , b� − 1, � = 1, . . . ,K. For example, the inverse of (2.28) becomes

(B.3) (T 2
7 )

−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3

1
3

1
3 0 0 0 0

0 0 0 1
4

1
4

1
4

1
4

1
3 −2

3
1
3 0 0 0 0

1
3

1
3 −2

3 0 0 0 0

0 0 0 1
4 −3

4
1
4

1
4

0 0 0 1
4

1
4 −3

4
1
4

0 0 0 1
4

1
4

1
4 −3

4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It is easy to show that
(
TK
N

)−1
(IN ⊗ l�)T

K
N is still diagonal and only the order of the

diagonal elements changes; see (2.29). What remains to be shown is that
(
TK
N

)−1
(AN⊗r�k)T

K
N

will separate the tangential and transversal dynamics. First, we show that the r�� do not
appear outside the K-dimensional tangential block and the b� − 1-dimensional transversal
block located at the diagonal; see (2.30). The terms in these blocks originate from

(B.4)
[
1
b�

· · · 1
b�

] [
r��

]
⎡
⎢⎣
1
...
1

⎤
⎥⎦

and

(B.5)
[
1
b�

· · · b�−1
b�

· · · 1
b�

] [
r��

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
...

−1
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

respectively, where
[
r��

]
denotes the b�× b� block. Moreover, due to the constant subrow sum
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condition (2.6), the off-diagonal terms

(B.6)
[
1
b�

· · · b�−1
b�

· · · 1
b�

] [
r��

] ⎡⎢⎣
1
...
1

⎤
⎥⎦ = 0

disappear. Similarly, the terms given by

(B.7)
[
1
b�

· · · 1
b�

] [
r��

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
...
−1
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

are eliminated by the constant subcolumn sum condition in (2.17). Notice that (B.6) and
(B.7) mean that the corresponding b�-dimensional vectors are orthogonal through the b� × b�
block

[
r��

]
.

We also need to show that the elements r�k, � �= k, do not appear outside the K-
dimensional tangential block (2.30). The elements in this block are given by

(B.8)
[
1
b�

· · · 1
b�

] [
r�k

] ⎡⎢⎣
1
...
1

⎤
⎥⎦ ,

where
[
r�k

]
denotes the b� × bk block, while the orthogonality condition

(B.9)
[
1
b�

· · · b�−1
b�

· · · 1
b�

] [
r�k

] ⎡⎢⎣
1
...
1

⎤
⎥⎦ = 0

is satisfied due to the constant subrow sum condition; cf. (2.6). To eliminate the remaining
off-diagonal terms, we require the orthogonality

(B.10)
[
1
b�

· · · b�−1
b�

· · · 1
b�

] [
r�k

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
...
−1
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0,

which holds if each column in the block
[
r�k

]
is either full of zeros or full of ones. Finally, we
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also require that

(B.11)
[
1
b�

· · · 1
b�

] [
r�k

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
...
−1
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0,

which is satisfied if the subcolumn sums are the same. Combining the last two conditions
yields that the whole b� × bk block

[
r�k

]
must be either full of zeros or full of ones, which

completes the proof of Theorem 1.
We remark that the matrices

(B.12)⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 1 1 1
1 0 0 1 1 1 1
0 1 0 1 1 1 1

0 0 0 0 0 1 1
0 0 0 1 0 0 1
0 0 0 1 1 0 0
0 0 0 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0

1 1 1 0 0 1 1
1 1 1 1 0 0 1
1 1 1 1 1 0 0
1 1 1 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0

0 0 0 0 0 1 1
0 0 0 1 0 0 1
0 0 0 1 1 0 0
0 0 0 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

satisfy Theorem 1 and differ only in their intercluster connectivity when compared to (2.26).
They allow decomposition similar to that in section 2.2, and only the tangential dynamics
change in the decomposed system according to

(B.13)

[
R11 4R12

0 2R22

]
,

[
R11 0
3R21 2R22

]
,

[
R11 0
0 2R22

]
;

cf. (2.30), (2.31).
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