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a b s t r a c t

In stability analysis and control design for a systemwith stochastic delay, it is a question whether one can
approximate the stochastic system, for instance in the sense of average, with a deterministic system that
has a finite number of discrete delay terms with the same delays that appear in the stochastic system and
the weight coefficients of these delayed terms are taken from the probability distribution function of the
stochastic delay. In this note, we consider a linear system with stochastic delay and discuss conditions
under which this approximation is valid and conditions where it is not. In particular, we assume that
the delay has piece-wise constant realizations with constant dwelling time at each value and show that
the above mentioned approximation loses its grounds when the delay dwelling time gets larger than the
minimum delay in the system.

Published by Elsevier B.V.

1. Introduction

Consider the linear system

ẋ(t) = a x(t) + b x(t − τ (t)), (1)

where the delay τ (t) stochastically changes in a finite set Ω =

{τ1, τ2, . . . , τK } while it dwells at each value a fixed amount of
time td. In particular, the changes in the delay occur at times ntd,
n = 0, 1, 2, . . ., while new delay values are chosen according to
the probability distribution P

(
τ (t) = τk

)
= wk, k = 1, . . . , K .

Consider also the deterministic system

ẋ(t) = a x(t) + b
K∑

k=1

wk x(t − τk) (2)

which contains, in the right hand side, a finite number of discrete
(point) delay terms where the delays are the same as in the set Ω
and theweight coefficients of the discrete delay terms are the same
as the probability distribution wk, k = 1, . . . , K .

In analyzing the stability of the stochastic system (1) in engi-
neering applications, it is a question whether one could consider
the deterministic system (2) as an approximation for the mean
of the stochastic system (1). For instance in connected vehicle
systems, stochastic delays arise due to the random packet loss in
wireless communication between vehicles [1]. Similarly in net-
worked control systems, the communication delays in wireless
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communication channels may change stochastically in time [2,3].
In this paper, we show that the approximation of the mean of
the stochastic system (1) by the deterministic system (2) can be
completely misleading.

In particular, we consider the linear system (1) where a, b ∈ R
and assume that the delay τ (t) can only take two delay values τ1
and τ2 where 0 < τ1 < τ2; a sample realization of the delay is
shown in Fig. 1a. The delay dwells in one value for a duration of
td (dwelling time) and then switches to a new value based on the
probability distribution P(τ = τ1) = w1, P(τ = τ2) = w2, where
w1 + w2 = 1. Using this simplistic behavior for the delay, we aim
to show that the dwelling time td can have a substantial effect on
the stability of the mean of the stochastic system (1) that cannot
be captured by the corresponding deterministic system (2). The
use of scalar versions of systems (1) and (2) and the assumption
that the delay can assume only two values are for the sake of the
brevity of the notation and clarity in conveying the message of the
paper. The results of the paper hold for the general vector case
(i.e. x ∈ Rq and a, b ∈ Rq×q where q is the dimension of vector
x) with arbitrary K ∈ N delays in the set Ω . Our approach is to
use a suitable time-discretization of the two systems (1) and (2)
and compare the stability of these systems through comparing the
spectra of the matrices emerging from the time-discretization of
the two systems.

2. Discretization and approximation of spectra

In this section, we obtain a time discretization of both systems
(1) and (2) which we will later use to compare the stability of
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these systems. To this aim, we first present the method of the
discretization of a deterministic system with a single fixed de-
lay using the semi-discretization technique developed in [4]. The
semi-discretization technique is a well-known time discretization
technique for delay differential equations and widely-used in en-
gineering applications [4–6].

2.1. Discretization of a system with a single fixed delay

Consider the following deterministic systemwith a single fixed
delay

ẋ(t) = a x(t) + b x(t − τ ). (3)

By substituting the trial solution x(t) = κeλt in Eq. (3), we may
obtain the corresponding characteristic equation

λ − a − b e−λτ
= 0 (4)

where λ is a characteristic root. System (3) is stable if and only if
all characteristic roots are located in the left-half complex plane.

Now consider the mesh ti = i∆t , i = 0, 1, 2, . . .. Let m =

⌊τ/∆t⌋. Now in the time interval [i∆t, (i + 1)∆t], we use the
approximation x(t − τ ) ≈ x(i∆t − m∆t) in (3) and solve the
resulting ordinary differential equation ẋ(t) = a x(t) + b x

(
(i −

m)∆t
)
to obtain

x
(
(i + 1)∆t

)
= α x(i∆t) + β x

(
(i − m)∆t

)
, (5)

where α = ea∆t and β =
b
a (e

a∆t
− 1),

(
β = b∆t if a = 0

)
.

Now forming an augmented state vector X(i) =
[
x(i∆t), x

(
(i −

1)∆t
)
, . . . , x

(
(i−m)∆t

)]T, (T denotes the transpose) that contains
a history of the state values in the lastm time steps, we arrive at

X(i + 1) = T (∆t)X(i), (6)

where

T (∆t) =

⎡⎢⎢⎢⎢⎣
α β

1
1

. . .

1

⎤⎥⎥⎥⎥⎦
(m+1)×(m+1)

. (7)

Note that all sub-diagonal elements are 1 and the 0 elements are
not shown. The matrix T (∆t) can be called the evolution matrix
of system (3) since it is a finite-dimensional approximation of the
infinite-dimensional solution operator of the linear system (3) [4].

Assume µ is an eigenvalue of T (∆t). Then, as ∆t → 0, 1
∆t lnµ

approaches a characteristic root given by (4); i.e. 1
∆t lnµ → λ.

Therefore, one can obtain stable and unstable regions of system
(3) in the parameter space by investigating the leading eigenvalues
(largest eigenvalues in magnitude) of T (∆t) that are calculated
for a sufficiently small ∆t value. Note that the larger the mag-
nitude of µ the bigger the real part of 1

∆t lnµ. See [4] for more
details about the convergence properties of the semi-discretization
method and [7] for more information on the discretization of the
delay differential equations and approximating their spectra using
other numerical techniques. In the next section, we investigate the
difference in stability properties of systems (1) and (2) exploiting
the semi-discretization of the two systems.

2.2. Stability of systems (1) and (2) using their finite-dimensional
approximations

We first apply the discretization method described in the pre-
vious section to the stochastic system (1). We choose ∆t such that

Fig. 1. (a) A sample path of the delay with two values τ1 and τ2 and dwelling time
td . (b) The dwelling time td is discretized to ℓ time steps such that td = ℓ∆t (ℓ = 3
in this case).

td = ℓ∆t where ℓ is an integer.We also assumem1 = ⌊τ1/∆t⌋ and
m2 = ⌊τ2/∆t⌋ where m1 < m2. Using the augmented state vector
X(i) =

[
x(i∆t), x

(
(i − 1)∆t

)
, . . . , x

(
(i − m2)∆t

)]T, that contains a
history of the state values in the lastm2 time steps (corresponding
to the maximum delay), and similar to (6) and (7), the evolution
matrix of the system ẋ(t) = a x(t) + b x(t − τ1) is obtained as

columnm1 + 1
↓

T1(∆t) =

⎡⎢⎢⎢⎢⎣
α β

1
1

. . .

1

⎤⎥⎥⎥⎥⎦
(m2+1)×(m2+1)

,
(8)

and the evolution matrix of the system ẋ(t) = a x(t) + b x(t − τ2)
is obtained as

columnm2 + 1
↓

T2(∆t) =

⎡⎢⎢⎢⎢⎣
α β

1
1

. . .

1

⎤⎥⎥⎥⎥⎦
(m2+1)×(m2+1)

,
(9)

where α and β are the same as in (5). Now recall that the delay
changes every ℓ time steps; see Fig. 1b. Therefore, letting X̃(n) =

X(n ℓ), the discretization of the stochastic system (1) is given by the
stochastic map

X̃(n + 1) = A(n)X̃(n), (10)

n = 0, 1, 2, . . ., where A(n) =
(
Tk(∆t)

)ℓ if τ (t) = τk in the time

interval [nℓ∆t, (n+ 1)ℓ∆t), and therefore P
(
A(n) =

(
Tk(∆t)

)ℓ
)

=

wk, k = 1, 2.
Now we take the expectation of both sides of (10). Since the

probability distribution of the delay is fixed and is independent of



M. Sadeghpour, G. Orosz / Systems & Control Letters 116 (2018) 27–31 29

the state, the matrix A(n) is independent of X̃(n). To see this, note
that the matrix A(n) only depends on the delay value in the time
interval [ntd, (n + 1)td), i.e. if τ (t) = τk in this time interval, then
A(n) =

(
Tk(∆t)

)ℓ. On the other hand, X̃(n) depends on the delay
values in the time intervals [n′td, (n′

+ 1)td), n′
= 0, 1, 2, . . . , n −

1. Since the delay value in the time interval [ntd, (n + 1)td) is
independent of the delay values in the previous time intervals, the
matrix A(n) is independent of X̃(n). Thus, from (10),

E
[
X̃(n + 1)

]
= E

[
A(n)X̃(n)

]
= E

[
A(n)

]
E
[
X̃(n)

]
. (11)

Let ¯̃X = E
[
X̃(n)

]
and Msd = E

[
A(n)

]
. Then, (11) can be written as

¯̃X(n + 1) = Msd
¯̃X(n), (12)

where

Msd = w1
(
T1(∆t)

)ℓ
+ w2

(
T2(∆t)

)ℓ
. (13)

System (12) describes the mean dynamics of system (10) that is a
discretization of system (1). Therefore, one can analyze the stability
of the mean of the stochastic system (1) by checking whether all
the eigenvalues of matrix Msd fall inside the unit circle (stable) or
not (unstable). In practice, this is done bymaking ∆t small enough
to achieve convergence up to a desired accuracy.

Note that if ℓ > m2, i.e. if the dwelling time td is larger than
the maximum delay in the system, we define the augmented state
vector as X(i) =

[
x(i∆t), x

(
(i − 1)∆t

)
, . . . , x

(
(i − ℓ)∆t

)]T, that
contains the history of the state values in the last ℓ time steps. In
this case, the evolutionmatrices T1(∆t) in (8) and T2(∆t) in (9) will
have the same structure with the same places for elements α and
β except that the sub-diagonal of 1’s will extend further such that
the size of the matrices becomes (ℓ + 1) × (ℓ + 1).

Now consider system (2) with two delays τ1 and τ2. Applying
the discretization method described in Section 2.1 to system (2),
and in the same fashion used to obtain matrices in (8) and (9), we
obtain the evolution matrix for system (2) as

column : m1 + 1 m2 + 1
↓ ↓

Tdd(∆t) =

⎡⎢⎢⎢⎢⎣
α w1β w2β

1
1

. . .

1

⎤⎥⎥⎥⎥⎦
(m2+1)×(m2+1)

.
(14)

To compare the stability of system (2) with that of themean of sys-
tem (1), we consider the ℓ-step evolutionmatrixMdd =

(
Tdd(∆t)

)ℓ

of system (2). Observe that Tdd(∆t) = w1T1(∆t) + w2T2(∆t).
Therefore,

Mdd =
(
w1T1(∆t) + w2T2(∆t)

)ℓ
. (15)

Our goal is to demonstrate the effect of the delay dwelling
time td on the spectra, and thus on the stability, of the mean
of the stochastic system (1) and the corresponding deterministic,
discrete-delay system (2). To this end, we compare the spectra of
matrices Msd defined in (13) (associated with the mean of system
(1)) andMdd defined in (15) (associatedwith system (2)) for a fixed
time step ∆t while changing ℓ (recall that td = ℓ∆t).

For ℓ = 1 it is easy to check that Msd = Mdd. In fact, by
calculating Msd and Mdd for different ℓ values, we observe that

Msd = Mdd for ℓ = 1, 2, . . . ,m1 + 1. (16)

For instance, for ℓ = 2

Msd = Mdd

=

column : m1 + 1 m2 + 1
↓ ↓⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α2 w1β αw1β w2β αw2β

α w1β w2β

1
1

. . .

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (17)

and for ℓ = 3

Msd = Mdd

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α3 w1β αw1β α2w1β w2β αw2β α2w2β

α2 w1β αw1β w2β αw2β

α w1β w2β

1
1

. . .

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(18)

and so on. However, once ℓ gets larger than m1 + 1 the equality
(16) does not hold anymore, i.e. for ℓ > m1 + 1, Msd ̸= Mdd. Note
that the validity of the equality (16) is independent of the∆t value.
Moreover, observe that ℓ ≤ m1+1 ⇒ ℓ∆t ≤ (m1+1)∆t ⇒ td ≤

τ1 + ∆t. Since ∆t can be made arbitrarily small, the condition for
Msd = Mdd is given by

td ≤ τ1. (19)

Therefore if the delay dwelling time is less or equal than the
smallest delay value, the spectra of (the mean of) the stochastic
system (1) and the deterministic system (2) are equal and so are
their stability properties. Consequently, the deterministic system
(2) truly describes the mean of the stochastic system (1), in this
case.

However, if td > τ1, Msd ̸= Mdd and therefore the spectrum
of the mean of system (1) is different than that of system (2).
Therefore, system (2) no longer describes the mean of system
(1). As a matter of fact, in the case td > τ1, as will be demon-
strated through an example in Section 3, system (2) cannot even
be considered a good approximation for the mean of system (1)
as td increases. Note that this observation holds for any ∆t values.
Furthermore, the difference between matrices Msd and Mdd, and
thus their spectra, does not vanish in the limit of ∆t → 0, as will
be illustrated by an example in Section 3, cf. Fig. 3. This means that
(the mean of) the stochastic system (1) and system (2), in the case
td > τ1, are truly different and the difference between them is not
a result of time-discretization.

Before proceeding to the next section, we shall make some
remarks.

Remark 1. We showed that the spectra of (the mean of) the
stochastic-delay system (1) and the deterministic, discrete-delay
system (2) are equal when td ≤ τ1, using evolution matrices of the
corresponding systems. This equality no longer holds, when td >
τ1. This observation can also be verified by taking the expectation
of both sides of (1) that yields
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d
dt

(
E[x(t)]

)
= aE[x(t)] + bE[x(t − τ (t))]

= aE[x(t)] + b
K∑

k=1

P(τ (t) = τk)E
[
x(t − τk)|τ (t) = τk

]
. (20)

Now assume that n td ≤ t < (n + 1) td for some n. If the dwelling
time is less than the minimum delay, i.e. td ≤ τ1, then ñktd ≤

t − τk < (ñk +1)td for some ñk < n, k = 1, 2. In other words, t − τk
will fall in one of the dwelling intervals before the current interval
n; cf. Fig. 1a. Note that x(t − τk) depends only on the delay values
up to the dwelling interval ñk. Hence, since the delays at different
dwelling intervals are independent, x(t−τk) is independent of τ (t)
and E

[
x(t − τk)|τ (t) = τk

]
= E

[
x(t − τk)

]
. Therefore, (20) reduces

to

˙̄x(t) = a x̄(t) + b
K∑

k=1

wk x̄(t − τk), (21)

where x̄ = E[x(t)] and wk = P(τ (t) = τk). System (21) is indeed
the same as system (2). Note that the reduction from (20) to (21)
is not possible if td > τ1, since we cannot get rid of the conditional
expectation in (20).

Remark 2. The results of this paper are true if there are more than
two delays in the set Ω , i.e. K > 2. In this case, we will have

Msd =

K∑
k=1

wk
(
Tk(∆t)

)ℓ
, (22)

and

Mdd =

( K∑
k=1

wkTk(∆t)
)ℓ

. (23)

Additionally, as was pointed out in the Introduction, the results of
the paper hold for the vector case too, i.e. if x ∈ Rq and a, b ∈ Rq×q.
In this case, α, β ∈ Rq×q in (5) and the sub-diagonal of 1’s in
matrices (7), (8), (9), (14) will be replaced by a block sub-diagonal
of Iq’s where Iq is the q-dimensional identity matrix.

Remark 3. We showed that the deterministic system (2) describes
the mean of the stochastic system (1) when the delay dwelling
time is less than the smallest delay in the system. As a result, if one
is interested in the second moment stability of system (1) as true
stability criteria, the stable region obtained from analyzing system
(2) may be considered an estimate of the true stability region of
the stochastic system (1), in the case when td < τ1. This is owing
to the fact that the stability of the mean of a stochastic system is a
necessary condition for the stability of the secondmoment. On the
other hand, one should note that even under the assumption of the
delay dwelling time being less than the minimum delay, the true
stable regions of system (1) can be quite smaller than the estimate
ones obtained by analyzing system (2). See [8,9] for the second
moment stability of system (1), and [10] for other stability criteria
for similar stochastic systems.

3. An illustrative example

In this section, we consider the linear system (1) with two
delays τ1 = 0.4 and τ2 = 0.8with probability distribution function
w1 = w2 = 1/2. Then, for different dwelling times td = 0.3,
td = 0.6, td = 1, and td = 2, we construct stability charts
in the (a, b) parameter space using the spectra of matrices Msd
(associated with the mean of the stochastic-delay system (1)) and
Mdd (associated with the deterministic, discrete-delay system (2)).
The goal is to demonstrate the effect of the parameter td on the
fidelity of the approximation of system (1) by system (2).

Fig. 2(a–d) show the spectra of matrices Mdd (indicated by )
and Msd (indicated by ) for (a, b) = (−1.2, −5.5) (marked by P in
the bottom panels). Note that only the first 10 leading eigenvalues
are shown. The value ∆t = 0.005 is used for all panels as it
was found that this ∆t value was small enough for the leading
eigenvalues of matrices Msd and Mdd to converge with a satisfying
accuracy; cf. Fig. 3. When the dwelling time td = 0.3 is less than
the smallest delay τ1 = 0.4, the matrices Mdd and Msd are equal
and their spectra are the same, as shown in Fig. 2(a). In this case,
the approximation of system (1) by system (2) is meaningful, since
system (2) is indeed the average of the stochastic system (1). As
Fig. 2(e) shows, the stable area of the mean of system (1), enclosed
by the solid blue boundary, is the same as the stable area of system
(2), enclosed by the dashed green boundary. The stable region is
shaded light gray. Note that the crossing of the boundary from
stable to unstable region is equivalent to the crossing of the unit
circle by the leading eigenvalue from inside to outside.

When the dwelling time is td = 0.6, we have τ1 < td < τ2. In
this case, the matricesMdd andMsd are different and their spectra,
as shown in Fig. 2(b), are slightly different, since for td > τ1,
system (2) is no longer the average of system (1). Therefore, the
stable area obtained through investigating the eigenvalues of Mdd
(bounded by the dashed green curves) is different than the stable
area obtained usingmatrixMsd (bounded by the solid blue curves).
The region shaded as dark gray is the parameter domainwhere the
deterministic, discrete-delay system is unstable but the mean of
the stochastic-delay system is stable.

As the dwelling time td gets larger relative to the delay val-
ues, the approximation of system (1) by system (2) gets worse.
Fig. 2(c–d) show the cases td = 1 and td = 2 for which the
dwelling time is larger than the maximum delay, td > τ2. In
these cases, the spectra of matricesMsd andMdd are very different.
Correspondingly, the stable areas of system (2) and the mean of
system (1), shown by Fig. 2(g–h), are significantly different. The
region shaded by dark gray is again a parameter domain where
the discrete-delay system (2) is unstable but the mean of the
stochastic-delay system (1) is stable. On the other hand, the region
shaded by red is where the discrete-delay system is stable but the
mean of the stochastic-delay system is not.

The example given in this section is simple in the sense that
the system is scalar and there are only two delay values. Despite
this simplicity, we observed a big difference between stability
properties of systems (1) and (2). One may expect that for vector-
valued systems and a larger number of delay values, one might
find bigger differences between themean of system (1) and system
(2). This observation may therefore be viewed as a warning if
one wants to use a deterministic system with a finite number of
discrete delay terms as an approximation for a stochastic-delay
system.

We also emphasize that the difference observed between the
mean of the stochastic system (1) and the deterministic system (2),
in the td > τ1 case, is not a result of the time-discretization of these
systems. In other words, in the limit of∆t → 0, this difference still
exists. To illustrate this, in Fig. 3, we show the spectral radii of the
two matrices Msd and Mdd as functions of ∆t for the parameters
associated with point P in Fig. 2(h), i.e. (a, b) = (−1.2, −5.5) and
td = 2. The spectral radii ofMsd andMdd, shown by blue and green
curves, respectively, are plotted versus 1/∆t where a logarithmic
scale is used in the horizontal axis. One can see that the spectral
radii converge to their limits as ∆t decreases.

4. Conclusion

We showed that approximating (in an average sense) a system
with stochastic delay using a deterministic system with a finite
number of discrete delays is not always warranted. We considered
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Fig. 2. (a–d) Comparison of the spectra of the matrixMdd in (15) (indicated by ), associated with the deterministic, discrete-delay system (2), and the spectra of the matrix
Msd in (13) (indicated by ) associated with the mean of the stochastic-delay system (1), for different dwelling times td as indicated. The spectra are obtained for point
P shown in the bottom panels and only the 10 largest eigenvalues in magnitude are shown in the complex plane. (e–f) Stable regions of the deterministic, discrete-delay
system (2) obtained using the eigenvalues of the matrix Mdd in (15) (bounded by dashed green curves) and the mean of the stochastic-delay system (1) obtained using the
eigenvalues of the matrixMsd in (13) (bounded by solid blue curves), for different dwelling times. The light gray area is a parameter domain where both systems are stable.
The dark gray area is where the mean of system (1) is stable but system (2) is not. The red area is where the mean of (1) is not stable but (2) is stable.

Fig. 3. The spectral radii of matrices Msd and Mdd , denoted by ρ(Msd) and ρ(Mdd),
respectively, for different values of the time step ∆t . Parameters correspond to
point P in Fig. 2(h).

in particular a class of linear systems with stochastic delay where
the delay trajectories were piece-wise constant functions of time
and the delay dwelt at each value for a constant time. We showed
that the aforementioned approximation is not valid if the dwelling
time is larger than theminimumdelay in the system. Furthermore,
as the dwelling time increased, the approximation got worse. This
shows that even a simplistic stochastic behavior of the delay can
bring about non-intuitive consequences. This observation finds
importance in stability analysis and control design in applications
such as connected vehicle systems [1], wireless communication

systems [2,3], and biological circuits [11] where stochastic delays
may arise in the dynamics of the system.
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