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A nonlinear car-following model of highway traffic is considered, which includes the
reaction-time delay of drivers. Linear stability analysis shows that the uniform flow
equilibrium of the system loses its stability via Hopf bifurcations and thus oscillations
can appear. The stability and amplitudes of the oscillations are determined with the help
of normal-form calculations of the Hopf bifurcation that also handles the essential
translational symmetry of the system. We show that the subcritical case of the Hopf
bifurcation occurs robustly, which indicates the possibility of bistability. We also show
how these oscillations lead to spatial wave formation as can be observed in real-world
traffic flows.
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1. Introduction

The so-called uniform flow equilibrium of vehicles following each other on a road
is a kind of steady state, where equidistant vehicles travel with the same constant
velocity. Ideally, this state is stable. Indeed, it is the goal of traffic management
that drivers choose their traffic parameters to keep this state stable and also to
reach their goal, that is, to travel with a speed close to their desired speed. Still,
traffic jams often appear as congestion waves travelling opposite to the flow of
vehicles (Kerner 1999). The formation of these traffic jams (waves) is often
associated with the linear instability of the uniform flow equilibrium, which
should be a rare occurrence. However, it is also well known among traffic
engineers that certain events, such as a truck pulling out of its lane, may trigger
traffic jams even when the uniform flow is stable. We investigate a delayed car-
following model and provide a thorough examination of the subcriticality of Hopf
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G. Orosz and G. Stépán2644
bifurcations related to the drivers’ reaction-time delay. This explains how a
stable uniform flow can coexist with a stable traffic wave.

The car-following model analysed in this paper was first introduced in Bando
et al. (1995) without the reaction-time delay of drivers, and that was investigated
by numerical simulation. Then, numerical continuation techniques were used in
Gasser et al. (2004) and Berg & Wilson (2005) by applying the package AUTO

(Doedel et al. 1997). Recently, Hopf calculations have been carried out in Gasser
et al. (2004) for arbitrary numbers of cars following each other on a ring.

The reaction-time delay of drivers was first introduced in Bando et al. (1998),
and its importance was then emphasized by the study of Davis (2003). In these
papers, numerical simulation was used to explore the nonlinear dynamics of the
system. The first systematic global bifurcation analysis of the delayed model
(Davis 2003) was presented in Orosz et al. (2004), where numerical continuation
techniques, namely the package DDE-BIFTOOL (Engelborghs et al. 2001), were
used. The continuation results were extended to large numbers of cars in Orosz
et al. (2005), where the dynamics of oscillations, belonging to different traffic
patterns, were analysed as well. In this paper, we perform an analytical Hopf
bifurcation calculation and determine the criticality of the bifurcation as a
function of parameters for arbitrary numbers of vehicles in the presence of the
drivers’ reaction delay.

While the models without delay are described by ordinary differential
equations (ODEs), presenting the dynamics in finite-dimensional phase spaces,
the appearance of the delay leads to delay differential equations (DDEs) and to
infinite-dimensional phase spaces. The finite-dimensional bifurcation theory that
is available in basic textbooks (Guckenheimer & Holmes 1997; Kuznetsov 1998)
have been extended to DDEs in Hale & Verduyn Lunel (1993), Diekmann et al.
(1995), Kolmanovskii & Myshkis (1999) and Hale et al. (2002). The infinite-
dimensional dynamics make the bifurcation analysis more abstract. In particular,
the Hopf normal form calculations require complicated algebraic formalism and
algorithms, as is shown in Hassard et al. (1981), Stépán (1986, 1989), Campbell &
Bélair (1995), Orosz (2004) and Stone & Campbell (2004). Recently, these Hopf
calculations have been extended for systems with translational symmetry in
Orosz & Stépán (2004), which is an essential property of car-following models.
This situation is similar to the S1 symmetry that occurs in laser systems with
delay, see Verduyn Lunel & Krauskopf (2000) and Rottschäfer & Krauskopf
(2004). In Orosz & Stépán (2004), the method was demonstrated in the over-
simplified case of two cars on a ring. Here, these calculations are extended to
arbitrarily many cars, providing general conclusions for the subcriticality of the
bifurcations and its consequences for flow patterns. Our results are generalization
of those in Gasser et al. (2004) for the case without reaction-time delay. In
particular, we prove that this delay makes the subcriticality of Hopf bifurcations
robust.
2. Modelling issues

The mathematical form of the car-following model in question was introduced
and non-dimensionalized in Orosz et al. (2004). Here, we recall the basic features
of this model. Periodic boundary conditions are considered, i.e. n vehicles are
Proc. R. Soc. A (2006)
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Figure 1. Vehicles flowing clockwise on a circular road.
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distributed along a circular road of overall length L; see figure 1. (This could be
interpreted as traffic on a circular road around a large city, e.g. the M25 around
London, even though such roads usually possess higher complexity.) As the
number of cars is increased, the significance of the periodic boundary conditions
usually tends to become smaller.

We assume that drivers have identical characteristics. Considering that the ith
vehicle follows the (iC1)th vehicle and the nth car follows the 1st one, the
equations of motion can be expressed as

€x iðtÞZaðV ðxiC1ðtK1ÞKxiðtK1ÞÞK _xiðtÞÞ; i Z 1;.;nK1;

€xnðtÞZaðV ðx1ðtK1ÞKxnðtK1ÞCLÞK _xnðtÞÞ;

)
ð2:1Þ

where the dot stands for time derivative. The position, the velocity, and the
acceleration of the ith car are denoted by xi, _xi and €x i, respectively. The so-called
optimal velocity function V : RC/R

C depends on the distance of the cars
h iZxiC1Kxi, which is usually called the headway. The argument of the headway
contains the reaction-time delay of drivers which now is rescaled to 1. The
parameter aO0 is known as the sensitivity and 1/aO0 is often called
the relaxation time. Due to the rescaling of the time with respect to the delay,
the delay parameter is hidden in the sensitivity a and the magnitude of the
function V(h); see details in Orosz et al. (2004).

Equation (2.1) expresses that each driver approaches an optimal velocity,
given by V(h), with a characteristic relaxation time of 1/a, but reacts to its
headway via a reaction-time delay 1. The general features of the optimal velocity
function V(h) can be summarized as follows:

(i) V(h) is continuous, non-negative and monotone increasing, since drivers
want to travel faster as their headway increases. Note that in the vicinity
Proc. R. Soc. A (2006)
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Figure 2. (a) The optimal velocity function (2.2) and (b–d) its derivatives.
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of the Hopf bifurcation points, V(h) is required to be three times
differentiable for the application of the Hopf theorem (Guckenheimer &
Holmes 1997; Kuznetsov 1998).

(ii) V ðhÞ/v0 as h/N, where v0O0 is known as the desired speed, which
corresponds, for example, to the speed limit of the given highway. Drivers
approach this speed with the relaxation time of 1/a when the traffic is
sparse.

(iii) V(h)h0 for h2[0,1], where the so-called jam headway is rescaled to 1, see
Orosz et al. (2004). This means that drivers attempt to come to a full stop
if their headways become less than the jam headway.

One might, for example, consider the optimal velocity function to take the
form

V ðhÞZ

0; if 0%h%1;

v0
ðhK1Þ3

1CðhK1Þ3
; if hO1;

8>>><>>>: ð2:2Þ

as already used in Orosz et al. (2004, 2005). This function is shown together with
its derivatives in figure 2. Functions with shapes similar to equation (2.2) were
used in Bando et al. (1995, 1998) and Davis (2003).

Note that the analytical calculations presented here are valid for any optimal
velocity functionV(h): it is not necessary to restrict ourself to a concrete function in
contrast to the numerical simulations in Bando et al. (1998) and Davis (2003) and
even to the numerical continuations in Orosz et al. (2004, 2005).

The dimensionless parameters a and v0 can be obtained from their dimensional
counterparts as shown in Orosz et al. (2004). If we consider the reaction-time delay
1–2 s and the relaxation time 1–50 s, we obtain the sensitivity as their ratio:
a2[0.02,2]. Also, if we assume desired speeds in the range 10–40 m sK1 and jam
headways 5–10 m, their ratio times the reaction time provides the dimensionless
desired speed v02[1,20]. The linear stability diagram does not change qualitatively
when v0 is varied in this range as shown in Orosz et al. (2005).
Proc. R. Soc. A (2006)
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3. Translational symmetry and Hopf bifurcations

The stationary motion of the vehicles, the so-called uniform flow equilibrium, is
described by

xeqi ðtÞZ v�tCx�i ; 0 _xeqi ðtÞhv�; i Z 1;.;n; ð3:1Þ
where

x�iC1Kx�i Z x�1Kx�n CLZL=ndh�; i Z 1;.;nK1; ð3:2Þ
and

v� ZV ðh�Þ!v0: ð3:3Þ
Note that one of the constants x�i can be chosen arbitrarily due to the
translational symmetry along the ring. Henceforward, we consider the average
headway h�ZL/n as a bifurcation parameter. Increasing h� increases the length L
of the ring, which involves scaling all headways hi accordingly.

Let us define the perturbation of the uniform flow equilibrium by

xpi ðtÞdxiðtÞKxeqi ðtÞ; i Z 1;.; n: ð3:4Þ
Using Taylor series expansion of the optimal velocity function V(h) about
hZh�ðZL=nÞ up to third order of xpi , we can eliminate the zero-order terms

€xp
i ðtÞZKa _xpi ðtÞCa

X3
kZ1

bkðh�ÞðxpiC1ðtK1ÞKxpi ðtK1ÞÞk ; i Z 1;.; nK1;

€xp
nðtÞZKa _xpnðtÞCa

X3
kZ1

bkðh�Þðxp1 ðtK1ÞKxpnðtK1ÞÞk ;

9>>>>=>>>>;
ð3:5Þ

where

b1ðh�ÞZV 0ðh�Þ; b2ðh�ÞZ 1

2
V 00ðh�Þ; and b3ðh�ÞZ 1

6
V 000ðh�Þ: ð3:6Þ

At a critical/bifurcation point h�cr, the derivatives take the values b1crZV 0ðh�crÞ,
b2crZð1=2ÞV 00ðh�crÞ and b3crZð1=6ÞV 000ðh�crÞ. Now, and further on, prime denotes
differentiation with respect to the headway.

Introducing the notation

yiðtÞd _xpi ðtÞ; yiCnðtÞdxpi ðtÞ; i Z 1;.; n; ð3:7Þ
equation (3.5) can be rewritten as

_yðtÞZ ~Lðh�ÞyðtÞC ~Rðh�ÞyðtK1ÞC ~FðyðtK1Þ; h�Þ; ð3:8Þ
where y : R/R

2n. The matrices ~L; ~R : R/R
2n!2n and the near-zero analytic

function ~F : R2n!R/R
2n are defined as

~Lðh�Þh
KaI 0

I 0

" #
; ~Rðh�ÞZ

0 Kab1ðh�ÞA
0 0

" #
; and

~FðyðtK1Þ; h�ÞZ
ab2ðh�ÞF2ðyðtK1ÞÞCab3ðh�ÞF3ðyðtK1ÞÞ

0

" #
:

ð3:9Þ
Proc. R. Soc. A (2006)
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Here, I2R
n!n stands for the n-dimensional identity matrix, while the matrix

A2R
n!n and the functions F2;F3 : R

2n/R
n are defined as

AZ

1 1

1 K1

1 1

K1 1

266664
377775; FkðyðtK1ÞÞZ

ðynC2ðtK1ÞKynC1ðtK1ÞÞk

ðynC3ðtK1ÞKynC2ðtK1ÞÞk

«

ðynC1ðtK1ÞKy2nðtK1ÞÞk

2666664

3777775; kZ2;3:

ð3:10Þ
System (3.8) possesses a translational symmetry, therefore, the matrices

~Lðh�Þ; ~Rðh�Þ satisfy
detð ~Lðh�ÞC ~Rðh�ÞÞZ 0; ð3:11Þ

that is, the Jacobian ð ~Lðh�ÞC ~Rðh�ÞÞ has a zero eigenvalue

l0ðh�ÞZ 0; ð3:12Þ
for any value of parameter h�. Furthermore, the near-zero analytic function ~F
preserves this translational symmetry, that is,

~FðyðtK1ÞCc; h�ÞZ ~FðyðtK1Þ; h�Þ; ð3:13Þ
for all cs0 satisfying ð ~Lðh�ÞC ~Rðh�ÞÞcZ0; see details in Orosz & Stépán (2004).

The steady state y(t)h0 of equation (3.8) corresponds to the uniform flow
equilibrium (3.1) of the original system (2.1). Considering the linear part of (3.8)
and using the trial solution yðtÞZCelt with C2C

2n and l2C, the
characteristic equation becomes

Dðl; b1ðh�ÞÞZ ðl2CalCab1ðh�ÞeKlÞnKðab1ðh�ÞeKlÞn Z 0: ð3:14Þ
According to equation (3.11), the relevant zero eigenvalue (3.12) is one of the
infinitely many characteristic exponents that satisfy equation (3.14). This
exponent exists for any value of the parameter b1, that is, for any value of the
bifurcation parameter h�.

At a bifurcation point defined by b1Zb1cr, i.e. by h�Zh�cr, Hopf bifurcations
may occur in the complementary part of the phase space spanned by the
eigenspace of the zero exponent (3.12). Then, there exists a complex conjugate
pair of pure imaginary characteristic exponents

l1;2ðh�crÞZGiu; u2R
C; ð3:15Þ

which satisfies equation (3.14). To find the Hopf boundaries in the parameter
space, we substitute l1Z iu into equation (3.14). Separation of the real and
imaginary parts gives

b1cr Z
u

2 cos uK
kp

n

 !
sin

kp

n

 ! ;

aZKu cot uK
kp

n

 !
:

9>>>>>>=>>>>>>;
ð3:16Þ
Proc. R. Soc. A (2006)
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The so-called wave number k can take the values kZ1;.; n=2 (for even n) and
kZ1;.ðnK1Þ=2 (for odd n). The wave numbers kOn=2 are not considered
since they belong to conjugated waves producing the same spatial pattern. Note
that kZ1 belongs to the stability boundary of the uniform flow equilibrium, while
the cases kO1 result in further oscillation modes around the already unstable
equilibrium. Furthermore, for each k the resulting frequency is bounded so that
u2ð0; kp=nÞ; see Orosz et al. (2004, 2005).

Note also that the function b1ðh�ÞZV 0ðh�Þ shown in figure 2b is non-
monotonous, and so a b1cr boundary typically leads either to two or to zero h�cr
boundaries. For a fixed wave number k, these boundaries tend to finite values of
h� as n/N, as is shown in Orosz et al. (2005). Using trigonometric identities,
equation (3.16) can be transformed to

cos uZ
u

2b1cr

u

a
Ccot

kp

n

 ! !
;

sin uZ
u

2b1cr
1K

u

a
cot

kp

n

 ! !
;

9>>>>>=>>>>>;
ð3:17Þ

which is a useful form used later in the Hopf calculation together with the
resulting form

4b21cr
u2

sin2
kp

n

� �
Z 1C

u2

a2
: ð3:18Þ

With the help of the identity

1C i cot kp
n

� �� �nK1

1Ki cot kp
n

� �� �nK1
Z

1Ki cot kp
n

� �
1C i cot kp

n

� � ; ð3:19Þ

we can calculate the following necessary condition for Hopf bifurcation as the
parameter b1 is varied as

Re
dl1ðb1crÞ

db1

� �
ZRe K

vDðl1;b1crÞ
vb1

vDðl1;b1crÞ
vl

� �K1� �
ZE 1

b1cr
ðu2Ca2CaÞO0;

ð3:20Þ
where

EZ a

u
Ku

� �2
C 2Cað Þ2

� �K1

: ð3:21Þ

Since equation (3.20) is always positive, this Hopf condition is always satisfied.
Now, using the chain rule and definition (3.6), condition (3.20) can be calculated
further as the average headway h� is varied to give

Re l01ðh�crÞ
� �

ZRe
dl1ðb1crÞ

db1
b01ðh�crÞ

� �
ZE 2b2cr

b1cr
ðu2Ca2CaÞs0: ð3:22Þ

This condition is fulfilled if and only if b2crs0, which is usually satisfied except at
some special points. For example, the function V 00ðhÞ shown in figure 2c becomes
zero at a single point over the interval h2ð1;NÞ. Notice that V 00ðhÞ is zero for
Proc. R. Soc. A (2006)
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h2½0;1� and for h/N, but the critical headway hcr never takes these values for
aO0. Conditions (3.20) and (3.22) ensure that the characteristic roots (3.15)
cross the imaginary axis with a non-zero speed when the parameters b1 and h� are
varied.
4. Operator differential equations and related eigenvectors

The DDE (3.8) can be rewritten in the form of an operator differential equation
(OpDE) which reflects its infinite-dimensional dynamics. For the critical
bifurcation parameter h�cr, we obtain

_yt ZAyt CFðytÞ; ð4:1Þ
where the dot still refers to differentiation with respect to the time t and yt :
R/XR2n is defined by the shift ytðwÞZyðtCwÞ, w2½K1; 0� on the function space
XR2n of continuous functions mapping ½K1; 0�/R

2n. The linear and nonlinear
operators A, F : XR2n/XR2n are defined as

AfðwÞZ
v

vw
fðwÞ; if K1%w!0;

Lfð0ÞCRfðK1Þ; if wZ 0;

8><>: ð4:2Þ

FðfÞðwÞZ
0; if K1%w!0;

FðfðK1ÞÞ; if wZ 0;

(
ð4:3Þ

where the matrices L;R2R
2n!2n and the nonlinear function F : R2n/R

2n are
given by

LZ ~Lðh�crÞ; RZ ~Rðh�crÞ; and FðyðtK1ÞÞZ ~FðyðtK1Þ; h�crÞ: ð4:4Þ
The translational symmetry conditions (3.11) and (3.13) are inherited, that is,

detðLCRÞZ 0; ð4:5Þ
and

Fðyt CcÞZFðytÞ5FðyðtK1ÞCcÞZFðyðtK1ÞÞ; ð4:6Þ
for all cs0 satisfying (LCR)cZ0.

In order to avoid singularities in Hopf calculations, we follow the methodology
and algorithm of Orosz & Stépán (2004) and eliminate the eigendirection
belonging to the relevant zero eigenvalue l0Z0 (equation (3.12)). The
corresponding eigenvector s02XR2n satisfies

As0 Z l0s00As0 Z 0; ð4:7Þ
which, applying the definition (4.2) of operator A, leads to a boundary value
problem with the constant solution

s0ðwÞhS02R
2n; satisfying ðLCRÞS0 Z 0: ð4:8Þ

One finds that

S0 Z p
0

E

" #
; ð4:9Þ
Proc. R. Soc. A (2006)
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where each component of the vector E2R
n is equal to 1. Here, p2R is a scalar

that can be chosen freely, in particular, we choose

pZ 1: ð4:10Þ
In order to project the system to s0 and to its complementary space, we also

need the adjoint operator

A�jðsÞZ
K

v

vs 
jð sÞ; if 0  < σ % 1;

L�jð0ÞCR�jð1Þ; if sZ 0;

8><>: ð4:11Þ

where asterisk denotes either adjoint operator or transposed conjugate vector
and matrix. The eigenvector n02X

�
R2n of A� associated with the eigenvalue l�0Z0

satisfies
A�n0 Z l�0n00A�n0 Z 0: ð4:12Þ

This gives another boundary value problem, which has the constant solution

n0ðsÞhN02R
2n; satisfying ðL� CR�ÞN0 Z 0: ð4:13Þ

Here, we obtain

N0 Z p̂
E

aE

" #
: ð4:14Þ

However, p̂2R is not free, but is determined by the normality condition

hn0; s0iZ 1: ð4:15Þ
Defining the inner product

hj;fiZj�ð0Þfð0ÞC
ð0
K1

j�ðxC1ÞRfðxÞdx; ð4:16Þ

condition (4.15) gives the scalar equation

N �
0 ðI CRÞS0 Z 1; ð4:17Þ

from which we obtain

p̂Z
1

na
: ð4:18Þ

Note that, as the vectors s0 and n0 are the right and left eigenvectors of the
operatorA belonging to the eigenvalues l0Z0 and l�0Z0, similarly, the vectors S0
and N0 are the right and left eigenvectors of the matrix ðLCReKlÞ, belonging
to the same zero eigenvalues. For the non-delayed model (Bando et al. 1995), the
vectors S0 and N0 are the left and right eigenvectors of the Jacobian (LCR), that
is, their structure is related the spatial structure of the systemalong the circular road.

We are now able to eliminate the singular dynamics generated by the
translational symmetry so that we project the system to s0 and to its
complementary space. With the help of the eigenvectors s0 and n0, the new
state variables z0 : R/R and yKt : R/XR2n are defined as

z0 Z hn0; yti;
yKt Z ytKz0s0:

(
ð4:19Þ
Proc. R. Soc. A (2006)
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Using the derivation given in Orosz & Stépán (2004), we split the OpDE (4.1)
into

_z0 ZN �
0FðyKt Þð0Þ;

_yKt ZAyKt CFðyKt ÞKN �
0FðyKt Þð0ÞS0:

)
ð4:20Þ

Its second part is already fully decoupled, and can be redefined as

_yKt ZAyKt CFKðyKt Þ; ð4:21Þ
where the new nonlinear operator FK : XR2n/XR2n assumes the form

FKðfÞðwÞZ
KN �

0FðfÞð0ÞS0; if K1%w!0;

FðfÞð0ÞKN �
0FðfÞð0ÞS0; if wZ 0:

(
ð4:22Þ

Considering FðfÞð0ÞZFðfðK1ÞÞ given by equation (4.3), and using the
expressions (3.9), (3.10) and (4.4), and the eigenvectors (4.9) and (4.14), we
obtain

N �
0FðyKt Þð0ÞS0 ZN �

0FðyðtK1ÞÞS0

Z
1

n

X
kZ2;3

bkcr
Xn
iZ1

ðynCiC1ðtK1ÞKynCiðtK1ÞÞk
 !

0

E

" #
; ð4:23Þ

where the definition y2nC1dynC1 is applied. Note that the system reduction
related to the translational symmetry changes the nonlinear operator of the
system while the linear operator remains the same. This change has an essential
role in the centre-manifold reduction presented below.

Let us consider a Hopf bifurcation at a critical point h�cr. First, we determine
the real and imaginary parts s1; s22XR2n of the eigenvector of the linear operator
A, which belongs to the critical eigenvalue l1Z iu (3.15), that is,

Aðs1 C is2ÞZ l1ðs1C is2Þ0As1 ZKus2; As2 Zus1: ð4:24Þ
After the substitution of definition (4.2) of A, the solution of the resulting
boundary value problem can be written as

s1ðwÞ
s2ðwÞ

" #
Z

S1

S2

" #
cosðuwÞC

KS2

S1

" #
sinðuwÞ; ð4:25Þ

with constant vectors S1; S22R
2n satisfying the homogeneous equation

LCR cos u uI CR sin u

KðuI CR sin uÞ LCR cos u

" #
S1

S2

" #
Z

0

0

" #
: ð4:26Þ

Using formula (3.17) and following the steps (A 1)–(A 3) of appendix A, one
may solve (4.26) and obtain

S1 Z u

C
1

u
S

264
375Cy

S

K
1

u
C

264
375; S2 Z u

S

K
1

u
C

264
375Ky

C
1

u
S

264
375; ð4:27Þ
Proc. R. Soc. A (2006)
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where the scalar parameters u and y can be chosen arbitrarily and the vectors C,
S2R

n are

C Z

cos
2kp

n
1

 !

cos
2kp

n
2

 !
«

cos
2kp

n
n

 !

266666666666664

377777777777775
; S Z

sin
2kp

n
1

 !

sin
2kp

n
2

 !
«

sin
2kp

n
n

 !

266666666666664

377777777777775
; ð4:28Þ

with the wave number k used in equations (3.16) and (3.17). The cyclic
permutation of the components in C and S results in further vectors S1 and S2
that still satisfy equation (4.26). This result corresponds to the Z

n symmetry of
the system, that is, all the cars have the same dynamic characteristics. Choosing
uZ1 and yZ0 yields

S1 Z
C
1

u
S

264
375; S2 Z

S

K
1

u
C

264
375: ð4:29Þ

The real and imaginary parts n1; n22X
�
R2n of the eigenvector of the adjoint

operator A� associated with l�1ZKiu are determined by

A�ðn1C in2ÞZ l�1ðn1C in2Þ0A�n1 Zun2; A�n2 ZKun1: ð4:30Þ

The use of definition (4.11) of A� leads to another boundary value problem
having the solution

n1ðsÞ
n2ðsÞ

" #
Z

N1

N2

" #
cosðusÞC

KN2

N1

" #
sinðusÞ; ð4:31Þ

where the constant vectors N1;N22R
2n satisfy

L� CR�cos u KðuI CR�sin uÞ
uI CR�sin u L� CR�cos u

" #
N1

N2

" #
Z

0

0

" #
: ð4:32Þ

Applying equation (3.17) and following the steps (A 4)–(A 7) of appendix A,
the solution of equation (4.32) is obtained as

N1 Z û
C

aC CuS

" #
C ŷ

S

aSKuC

" #
;

N2 Z û
S

aSKuC

" #
Kŷ

C

aC CuS

" #
:

ð4:33Þ
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The scalar parameters û, ŷ are determined by the orthonormality conditions

hn1; s1iZ 1; hn1; s2iZ 0; ð4:34Þ

which using the inner product definition (4.16), results in the two scalar
equations

1

2

S�
1 2ICR� cosuC

sinu

u

 ! !
CS�

2R
�sinu KS�

1R
�sinuCS�

2R
� cosuK

sinu

u

 !

KS�
1R

�sinuCS�
2 2ICR� cosuC

sinu

u

 ! !
KS�

1R
� cosuK

sinu

u

 !
KS�

2R
�sinu

2666664

3777775
!

N1

N2

" #
Z

1

0

" #
:

ð4:35Þ

Substituting equations (3.17), (4.29) and (4.33) into (4.35) and using the second-
order trigonometric identities (B 3)–(B 5) of appendix B, we obtain

n

2

2Ca
a

u
Ku

K
a

u
Ku

 !
2Ca

26664
37775 û

ŷ

" #
Z

1

0

" #
; ð4:36Þ

with the solution

û

ŷ

" #
Z E 2

n

2Ca

a

u
Ku

264
375; ð4:37Þ

where E is defined by equation (3.21). The substitution of equation (4.37) into
(4.33) leads to

N1 Z E 2

n

ð2CaÞC C
a

u
Ku

 !
S

ða2CaCu2ÞC C
a2

u
C2u

 !
S

2666664

3777775;

N2 Z E 2

n

ð2CaÞSK a

u
Ku

 !
C

ða2CaCu2ÞSK a2

u
C2u

 !
C

2666664

3777775:
ð4:38Þ

As s1C is2 and n1C in2 are the right and left eigenvectors of the operator A
belonging to the eigenvalues l1Z iu and l�1ZKiu, the vectors S1C iS2 and
N1C iN2 are similarly the right and left eigenvectors of the matrix ðLCReKlÞ
Proc. R. Soc. A (2006)



2655Hopf bifurcations in car-following model
belonging to the same eigenvalues. Note that for the non-delayed model (Bando
et al. 1995) the vectors S1C iS2 and N1C iN2 are the left and right eigenvectors of
the Jacobian ðLCRÞ, that is, their structure is again related the spatial
structure of the system.
5. Centre-manifold reduction

Now, we investigate the essential dynamics on the two-dimensional centre
manifold embedded in the infinite-dimensional phase space. Since the
eigenvectors s1 and s2 span a plane tangent to the centre manifold at the origin,
we use s1, s2 and n1, n2 to introduce the new state variables

z1 Z hn1; yKt i;

z2 Z hn2; yKt i;

w Z yKt Kz1s1Kz2s2;

8>>><>>>: ð5:1Þ

where z1; z2 : R/R and w : R/XR2n . Using the derivation presented in Orosz &
Stépán (2004), we can reduce OpDE (4.21) to the form

_z1

_z2

_w

264
375Z 0 u O

Ku 0 O
0 0 A

264
375 z1

z2

w

264
375

C

ðN �
1Kq1N

�
0 ÞFðz1s1Cz2s2CwÞð0Þ

ðN �
2Kq2N

�
0 ÞFðz1s1Cz2s2CwÞð0Þ

K
P

jZ1;2ðN �
j KqjN

�
0 ÞFðz1s1Cz2s2CwÞð0ÞsjCFKðz1s1Cz2s2CwÞ

266664
377775:

ð5:2Þ

The scalar parameters q1; q2 are induced by the translational symmetry and their
expressions are determined in Orosz & Stépán (2004) as

q1 Z N �
1 I C

sin u

u
R

 !
KN �

2

1Kcos u

u
R

 !
S0;

q2 Z N �
1

1Kcos u

u
RCN �

2 I C
sin u

u
R

 ! !
S0:

9>>>>>>=>>>>>>;
ð5:3Þ

Since in our case RS0ZN �
1S0ZN �

2S0Z0, we obtain

q1 Z q2 Z 0: ð5:4Þ
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The power series form of (5.2) is also given in Orosz & Stépán (2004) as

_z1

_z2

_w

264
375Z

0 u O
Ku 0 O
0 0 A

264
375 z1

z2

w

264
375C

XjCkZ2;3

j;kR0

f
ð1Þ
jk zj1z

k
2

XjCkZ2;3

j;kR0

f
ð2Þ
jk zj1z

k
2

1

2

XjCkZ2

j;kR0

ðF ð3cÞ
jk cosðuwÞCF

ð3sÞ
jk sinðuwÞÞzj1z

k
2

2666666666664

3777777777775

C

F
ð1Þ�
10 RwðK1Þz1 CF

ð1Þ�
01 RwðK1Þz2

F
ð2Þ�
10 RwðK1Þz1 CF

ð2Þ�
01 RwðK1Þz2

1

2

XjCkZ2

j;kR0

F
ð3KÞ
jk zj1z

k
2 ; if K1%w!0;

XjCkZ2

j;kR0

ðF ð3Þ
jk CF

ð3KÞ
jk Þzj1z

k
2 ; if wZ 0

8>>>>><>>>>>:

3777777777777775
;

2666666666666664
ð5:5Þ

where the subscripts of the constant coefficients f
ðiÞ
jk 2R and the vector ones

F
ðiÞ
jk 2R

2n refer to the corresponding jth and kth orders of z1 and z2, respectively.

The terms with the coefficients F
ð3cÞ
jk and F

ð3sÞ
jk come from the linear combinations

of s1(w) and s2(w). The translational symmetry only enters through the terms
with coefficients F

ð3KÞ
jk , so that the terms with coefficients F

ð3Þ
jk and F

ð3KÞ
jk refer to

the structure of the modified nonlinear operator FK (equation (4.22)). Using the
third- and fourth-order trigonometric identities (B 6)–(B 11) of appendix B, we
can calculate these coefficients for wave numbers ksn/2, ksn/3 and ksn/4 as
given by equations (A 8) and (A 9) in appendix A.

Note that the cases kZn=2, kZn=3 and kZn=4 result in different formulae
for the above coefficients, but the final Poincaré–Lyapunov constant will have
the same formula as in the case of general wave number k. The detailed
calculation of these ‘resonant’ cases is not presented here.

Approximate the centre manifold locally as a truncated power series of w
depending on the coordinates z1 and z2 as

wðwÞZ 1

2
ðh 20ðwÞz21 C2h 11ðwÞz1z2 Ch 02ðwÞz22Þ: ð5:6Þ

There are no linear terms since the plane spanned by the eigenvectors s1 and s2 is
tangent to the centre manifold at the origin. Third and higher order terms are
dropped. The unknown coefficients h 20; h 11; h 022XR2n can be determined by
calculating the derivative of w and substituting that into the third equation of
(5.5). The solution of the resulting linear boundary value problem, given in detail
Proc. R. Soc. A (2006)
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in Orosz & Stépán (2004), is

h 20ðwÞ
h 11ðwÞ
h 02ðwÞ

264
375Z

H1

H2

KH1

264
375cosð2uwÞC KH2

H1

H2

264
375sinð2uwÞC H0

0

H0

264
375K F

ð3KÞ
20

0

F
ð3KÞ
20

2664
3775w; ð5:7Þ

where the vectors H0;H1;H22R
2n satisfy

LCR 0 0

0 LCRcosð2uÞ 2uICRsinð2uÞ
0 Kð2uICRsinð2uÞÞ LCRcosð2uÞ

264
375 H0

H1

H2

264
375ZK

1

2

F
ð3Þ
20 CF

ð3Þ
02 C2F

ð3KÞ
20

F
ð3Þ
20 KF

ð3Þ
02

F
ð3Þ
11

26664
37775:

ð5:8Þ
Here, we also used that

F
ð3cÞ
jk ZF

ð3sÞ
jk Z 0; F

ð3KÞ
20 KF

ð3KÞ
02 ZF

ð3KÞ
11 Z 0; RF

ð3KÞ
20 Z 0; ð5:9Þ

in accordance with equation (A 8).
One can find that the 2n-dimensional equation for H0 is decoupled from the

4n-dimensional equation for H1, H2 in equation (5.8). Since (LCR) is singular
due to the translational symmetry (4.5), the non-homogeneous equation for H0 in
(5.8) may seem not to be solvable. However, its right-hand side belongs to the
image space of the coefficient matrix (LCR) due to the translational symmetry
induced terms F

ð3KÞ
jk . We obtain the solution

H0 Z
b2cr

ðb1crÞ2
1C

u2

a2

� �
E

kE

" #
; ð5:10Þ

with the undetermined parameter k that has no role in the following calculations.
At the same time, the non-homogeneous equation for H1, H2 in equation (5.8)

is not effected by the vectors F
ð3KÞ
jk . Using equation (3.17) and following the steps

(A 10)–(A 14) of appendix A one can find the solution

H1 Z

4b2cr
u2b1cr�

hK4 cot
� kp

n

��
2C m 2

hK4 cot
kp

n

 ! !
2u ~C ;

~S

" #
Cm

2u~S;

K~C

" # !
;

H2 Z

4b2cr
u2b1cr�

hK4 cot
� kp

n ÞÞ2 C m2
hK4 cot

kp

n

 ! !
2u~S;

K~C

" #
Km

2u ~C ;

~S

" # !
;

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;
ð5:11Þ
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where

mZK

16b1cr
a

u2

a2

1C
u2

a2

� �2
; hZ

8b1cr
u

1C3
u2

a2

� �
1C

u2

a2

� �2
; ~CZ

cos
4kp

n
1

 !

cos
4kp

n
2

 !
«

cos
4kp

n
n

 !

2666666666666664

3777777777777775
; ~SZ

sin
4kp

n
1

 !

sin
4kp

n
2

 !
«

sin
4kp

n
n

 !

2666666666666664

3777777777777775
:

ð5:12Þ

Now, using equation (5.11) in (5.6) and (5.7), we can calculate Rw(K1) which
appears in the first two equations of (5.5). In this way, we obtain the flow
restricted onto the two-dimensional centre manifold described by the ODEs

_z1

_z2

" #
Z

0 u

Ku 0

" #
z1

z2

" #
C

XjCkZ2;3

j;kR0

f
ð1Þ
jk zj1z

k
2

XjCkZ2;3

j;kR0

f
ð2Þ
jk zj1z

k
2

2666664

3777775C

XjCkZ3

j;kR0

g
ð1Þ
jk zj1z

k
2

XjCkZ3

j;kR0

g
ð2Þ
jk zj1z

k
2

2666664

3777775; ð5:13Þ

where the coefficients f
ðiÞ
jk have already been determined by equation (A 8) in

(5.5), while the coefficients

g
ð1Þ
30 Zg

ð1Þ
12 Zg

ð2Þ
21 Zg

ð2Þ
03

Z
E 2aðb2crÞ2

ðb1crÞ4
cot kp

n

� �
hK4cot kp

n

� �� �2
Cm2

a

u
1C

u2

a2

� �
hK4cot

kp

n

� �� �
uC

u

a
C

u3

a2

� ��

Cm 1C2
u2

a2

� ��
; ð5:14Þ

originate in the terms involving Rw(K1). To determine equation (5.14), the
trigonometric identities (B 3)–(B 11) of appendix B have been used. The
coefficients g

ð1Þ
21 Zg

ð1Þ
03 ZKg

ð2Þ
30 ZKg

ð2Þ
12 are not displayed, since they have no

role in the following calculations.
We note that the coefficients f

ðiÞ
jk ðjCkZ2Þ of the second-order terms are not

changed by the centre-manifold reduction. The so-called Poincaré–Lyapunov
constant in the Poincaré normal form of equation (5.13) can be determined by
Proc. R. Soc. A (2006)
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the Bautin formula (Stépán 1989)

DZ
1

8

�
1

u
ððf ð1Þ20 Cf

ð1Þ
02 ÞðKf

ð1Þ
11 Cf

ð2Þ
20 Kf

ð2Þ
02 ÞCðf ð2Þ20 Cf

ð2Þ
02 Þðf ð1Þ20 Kf

ð1Þ
02 Cf

ð2Þ
11 ÞÞ

Cð3f ð1Þ30 Cf
ð1Þ
12 Cf

ð2Þ
21 C3f

ð2Þ
03 ÞCð3gð1Þ30 Cg

ð1Þ
12 Cg

ð2Þ
21 C3g

ð2Þ
03 Þ
�

ZE a

4ðb1crÞ3
a

u
1C

u2

a2

� �
uC

u

a
C

u3

a2

� �

!
1

2
6b3crC

ð2b2crÞ2

b1cr

4cot kp
n

� �
hK4cot kp

n

� �� �2
Cm2

hK4cot
kp

n

� �
Cm

1C2u2

a2

uCu
a
Cu3

a2

 ! !
:

ð5:15Þ

The bifurcation is supercritical for negative and subcritical for positive values of
D. We found that DO0 is always true when ðk=nÞ/1 which is the case for real
traffic situations (many vehicles n with a few waves k). This can be proven as is
detailed below.

The first part of the expression (5.15) of D in front of the parenthesis is
always positive, since E; b1cr;a;uO0. Within the parenthesis in equation (5.15),
the first term is positive since equation (3.16) implies b1crZV 0ðh�crÞ!1=2,
which yields critical headway values h�cr such that 6b3crZV 000ðh�crÞO0; see
figure 2b,d. The second term in the parenthesis in equation (5.15) contains the
ratio of two complicated expressions, which by using equations (3.16) and
(5.12), can be rearranged in the form

4 cot
kp

n

� �
hK4 cot

kp

n

� �
Cm

1C2 u2

a2

uC u
a
C u3

a2

 !

Z 4 cot
kp

n

� �� �2 1C u2

a2

� �
uC u

a
C3 u3

a2

� �
K4 u5

a5

cos uKu
a
sin u

� �
1C u2

a2

� �
uC u

a
C u3

a2

� �K1

0@ 1A
d 4 cot

kp

n

� �� �2

Nðu;aÞ; ð5:16Þ

and

hK4cot
kp

n

� �� �2

Cm2

Z 4cot
kp

n

� �� �2 1Cu2

a2

� �
1C4u2

a2

� �
K2 cosuKu

a
sinu

� �
1C3u2

a2

� �
cosuKu

a
sinu

� �2
1Cu2

a2

� � C1

0@ 1A
d 4cot

kp

n

� �� �2

Dðu;aÞO0: ð5:17Þ
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Figure 3. Quantities defined by (5.16) and (5.17) as a function of the frequency u, for
representative values of parameter a. (a) Numerator Nðu;aÞ and (b) ratio Nðu;aÞ=Dðu;aÞ.
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Since equation (5.17) is always positive, the sign of equation (5.16) is crucial for
deciding the overall sign of D. According to equation (3.16) u2ð0; kp=nÞ, that
is, the realistic case ðk=nÞ/1 implies the oscillation frequency u/1.

Figure 3a shows the numerator Nðu;aÞ for some particular values of a
demonstrating that Nðu;aÞO0 for u/1. Note that if a/0 then Nðu;aÞ may
become negative (see figure 3a for aZ0:5), but this is a physically unrealistic
case where drivers intend to reach their desired speed v0 extremely slowly.

Moreover, the ratio of equations (5.16) and (5.17), Nðu;aÞ=Dðu;aÞ, is not
only positive foru/1 but alsoNðu;aÞ=Dðu;aÞ/Nwhenu/0 (i.e. whenn/N)
as shown in figure 3b. This feature provides robustness for subcriticality. Note that
subcriticality also occurs for optimal velocity functions different from equation
(2.2), e.g. for those that are considered in Orosz et al. (2004).

Using definition (3.6), formulae (3.18) and (3.22) and expressions (5.15)–
(5.17), the amplitude A of the unstable oscillations is obtained in the form

AZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K
Reðl01ðh�crÞÞ

D
ðh�Kh�crÞ

r
Z

u

sin kp
n

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

V 00ðh�crÞðh�Kh�crÞ

V 000ðh�crÞC
ðV 00ðh�crÞÞ2

V 0ðh�crÞ
N ðu;aÞ
Dðu;aÞ

vuuut :

ð5:18Þ
Thus, the first Fourier term of the oscillation restricted onto the centre manifold is

z1ðtÞ
z2ðtÞ

" #
ZA

cosðutÞ
KsinðutÞ

" #
: ð5:19Þ

Since close to the critical bifurcation parameter h�cr, we have ytðwÞzz1ðtÞs1ðwÞC
z2ðtÞs2ðwÞ, equation (5.19) yields

yðtÞZ ytð0Þzz1ðtÞs1ð0ÞCz2ðtÞs2ð0ÞZAðs1ð0ÞcosðutÞKs2ð0ÞsinðutÞÞ

ZAðS1cosðutÞKS2sinðutÞÞ; ð5:20Þ

where the vectors S1, S2 are given in equation (4.29).
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The parameter v0O0 enters D and A via the derivatives V 0ðh�crÞZb1cr,
V 00ðh�crÞZ2b2cr andV

000ðh�crÞZ6b3cr which are all proportional to v
0. Consequently,

D depends linearly on v0 causing no sign change and v0 disappears fromA. Further-
more, v0 is embedded in the critical parameter h�cr which is determined from
equation (3.16) by inverting V 0ðh�crÞZb1cr. However, one may check that this is
relevant for k=nx1=2 only, when small v0 may result in supercriticality
as demonstrated in Orosz et al. (2004). In contrast, the realistic case k=n/1
leads to robust subcriticality as explained in §6 and also demonstrated in Orosz
et al. (2005).

Note that zero reaction time delay results in Nðu;aÞ=Dðu;aÞhK1 as shown
in Gasser et al. (2004). In that case, subcriticality appears only for extremely
high values of the desired speed v0 when the term 6b3cr becomes greater than
ð2b2crÞ2=b1cr at the critical points (of the non-delayed model). Consequently, the
presence of the drivers’ reaction-time delay has an essential role in the robustness
of the subcritical nature of the Hopf bifurcation. This subcriticality explains how
traffic waves can be formed when the uniform flow equilibrium is stable, as is
detailed in the subsequent section.
6. Physical interpretation of results

The unstable periodic motion given in equation (5.20) corresponds to a spatial
wave formation in the traffic flow, which is actually unstable. Substituting (4.29)
into (5.20) and using definition (3.7), one can determine the velocity
perturbation as

_xpi ðtÞZA cos
2pk

n
iCut

� �
; i Z 1;.; n: ð6:1Þ

The interpretation of this perturbation mode is a wave travelling opposite to the
car flow with spatial wave number k (i.e. with spatial wavelength L=kZh�n=k).
The related wave speed is

cpwave ZK
n

2kp
h�u!0; ð6:2Þ

where the elimination of the frequency u with the help of equation (3.18) leads to

cpwave ZKh�b1cr 1KO kp

n

� �2� �
: ð6:3Þ

Since the uniform flow equilibrium (3.1) travels with speed v�ZV ðh�Þ, the speed
of the arising wave is

cwave Z v� Ccpwave ZV ðh�ÞKh�V 0ðh�crÞ 1KO kp

n

� �2� �
: ð6:4Þ

By considering the optimal velocity function (2.2), we obtain cwave!0, that is,
the resulting wave propagates in the opposite direction to the flow of vehicles.
Note that the non-delayed model introduced in Bando et al. (1995) exhibits the
same wave speed apart from some differences in the coefficient of the correction
term Oðkp=nÞ2. If one neglects this correction term, the wave speed becomes
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Figure 4. The amplitude A of velocity oscillations as a function of the average headway parameter h�

(a) and the corresponding velocity profiles at h�Z2.9 (b) and (c) for nZ9 cars, kZ1 wave and
parameters aZ1.0, v0Z1.0. (a) Horizontal axis (Ah0) represents the uniform flow equilibrium and
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numerical continuation results: solid and dashed curves refer to stable and unstable states and grey
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2 refer to the velocity

profiles shown in panels (b) and (c), respectively. (b) Stable stop-and-go oscillations are shown for
point P1 in green and for point P 0

1 in grey and (c) unstable oscillations are displayed for point P2 in
red and for point P 0

2 in grey.
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independent of n and k, which corresponds to the results obtained from
continuum models; see e.g. Whitham (1999).

In order to check the reliability of the Poincaré–Lyapunov constant (5.15) and
the amplitude estimation (5.18), we compare these analytical results with those
obtained by numerical continuation techniques with the package DDE-BIFTOOL

(Engelborghs et al. 2001). In figure 4a, we demonstrate the subcriticality for nZ9
cars and kZ1 wave. The horizontal axis corresponds to the uniform flow
equilibrium, that is, stable for small and large values of h� (shown by green solid
line) but unstable for intermediate values of h� (shown by red dashed line) in
accordance with formula (3.16) and figure 2b. The Hopf bifurcations, where the
equilibrium loses its stability, are marked by blue stars. The branches of the
arising unstable periodic motions given by equation (5.18) are shown as red
dashed curves.

In §2, conditions (i)–(iii) require that the optimal velocity function is bounded
so that V2½0;v0�; see figure 2a. Maximum principles show that for t/N the
velocity of any solution is contained by the interval [0, v0]. This suggests that
‘outside’ the unstable oscillating state there exists an attractive oscillating state
which may include stopping, accelerating, travelling with the desired speed v0,
and decelerating. The amplitude of this solution is defined as
AZðmax _xiðtÞKmin _xiðtÞÞ=2xðv0K0Þ=2Zv0=2. In figure 4a the horizontal
green line at AZv0=2 represents this stable stop-and-go oscillation. The
corresponding stop-and-go wave propagates against the traffic flow, since vehicles
leave the traffic jam at the front and enter it at the rear; see figure 1. The
above heuristic construction reveals the existence of bistability on each side of
Proc. R. Soc. A (2006)
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the unstable equilibrium between the Hopf bifurcation point and the point where
the branches of unstable and stable oscillations intersect each other (outside the
frame in figure 4a). For such parameters, depending on the initial condition, the
system either tends to the uniform flow equilibrium or to the stop-and-go wave.

In figure 4a, we also displayed the results of numerical continuation carried
out with the package DDE-BIFTOOL (Engelborghs et al. 2001). Grey solid curves
represent stable oscillations while grey dashed curves represent unstable ones.
The fold bifurcation points, where the branches of stable and unstable
oscillations meet, are marked by grey crosses. The comparison of the results
shows that the analytical approximation of the unstable oscillations is
quantitatively reliable in the vicinity of the Hopf bifurcation points. The
heuristic amplitude v0/2 of the stop-and-go oscillations is slightly larger than the
numerically computed ones. The analytically suggested bistable region is larger
than the computed one (between the Hopf point and the fold point), since the
third degree approximation is not able to predict fold bifurcations of periodic
solutions. Inorder to find these foldbifurcationpoints, it is necessary touse numerical
continuation techniques as presented in Orosz et al. (2005). Nevertheless,
qualitatively the same structure is obtained by the two different techniques.

As was already mentioned in §3, the wave numbers kO1 are related to Hopf
bifurcations in the parameter region, where the uniform flow equilibrium is
already unstable. This also means that the corresponding oscillations for kO1 are
unstable independently of the criticality of these Hopf bifurcations. Still, we
found that these Hopf bifurcations are all robustly subcritical for any wave
number k (except for large k=nx1=2). Consequently, the only stable oscillating
state is the stop-and-go motion for kZ1. On the other hand, several unstable
solutions may coexist as is explained in Orosz et al. (2005). Note that analytical
and numerical results agree better as the wave number k is increased because the
oscillating solution becomes more harmonic.

To represent the features of vehicles’ motions, the velocity oscillation profiles
of the first vehicle are shown in figure 4b,c for the points P1;P

0
1 and P2;P

0
2

marked in figure 4a, for headway h�Z2.9. Again, the coloured curves correspond
to the analytical results, while the grey curves are obtained by numerical
continuation. In figure 4b,c, the time window of each panel is chosen to be the
period of the first Fourier approximation given by equation (3.18) (red curve in
figure 4c) and the dashed vertical lines indicate oscillation periods computed
numerically with DDE-BIFTOOL.

Figure 4b shows the stop-and-go oscillations. The heuristic construction (green
curve) is obtained by assuming that the stopping and flowing states are
connected with states of constant acceleration/deceleration, which is qualitat-
ively a good approximation of the numerical result (grey curve). Figure 4c
compares the unstable periodic motions computed analytically (red curve) from
the Hopf calculation with those from numerical continuation (grey curve).

For a perturbation ‘smaller’ than the unstable oscillation, the system
approaches the uniform flow equilibrium. If a larger perturbation is applied
then the system develops stop-and-go oscillations and a spatial stop-and-go
travelling wave appears as demonstrated in figure 1. Since the period of the
stable and unstable oscillations are close to each other, the stable stop-and-go
wave travels approximately with the speed of the unstable travelling wave; see
equation (6.4) for kZ1.
Proc. R. Soc. A (2006)
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7. Conclusion

A nonlinear car-following model has been investigated with special attention
paid to the reaction-time delay of drivers. By considering the average headway
as a bifurcation parameter, Hopf bifurcations were identified. In order to
investigate the resulting periodic motions, the singularities related to the
essential translational symmetry had to be eliminated. Then the Hopf
bifurcations were found to be robustly subcritical leading to bistability between
the uniform flow equilibrium and a stop-and-go wave. The appearing
oscillations manifest themselves as spatial waves propagating backward along
the circular road.

In the non-delayed model of Bando et al. (1995), subcriticality and
bistability occur only for extremely high values of the desired speed v0, as it is
demonstrated in Gasser et al. (2004). We proved that subcriticality and
bistability are robust features of the system due to the drivers’ reaction-time
delay, even for moderate values of the desired speed. This delay, which is
smaller than the macroscopic time-scales of traffic flow, plays an essential role
in this complex system because it changes the qualitative nonlinear dynamics
of traffic.

Due to the subcriticality, stop-and-go traffic jams can develop for large
enough perturbations even when the desired uniform flow is linearly stable.
These perturbations can be caused, for example, by a slower vehicle (such us a
lorry) joining the inner lane flow for a short-time interval via changing lanes. It
is essential to limit these unwanted events, for example, by introducing
temporary regulations provided by overhead gantries. Still, if a backward
travelling wave shows up without stoppings, it either dies out by itself or gets
worse ending up as a persistent stop-and-go travelling wave. In order to dissolve
this undesired situation, an appropriate control can be applied using temporary
speed limits given by overhead gantries that can lead the traffic back ‘inside’
the unstable travelling wave and then to reach the desired uniform flow. For
example, the MIDAS system (Lunt & Wilson 2003) installed on the M25
motorway around London is able to provide the necessary instructions for
drivers.

The authors acknowledge with thanks discussions with and comments of Eddie Wilson and Bernd
Krauskopf on traffic dynamics and on numerical bifurcation analysis. This research was supported
by the University of Bristol under a Postgraduate Research Scholarship and by the Hungarian
National Science Foundation under grant no. OTKA T043368.
Appendix A. Solutions of algebraic equations

Using formula (3.17) for the Hopf boundary, the 4n-dimensional equation (4.26)
leads to

S2;i ZuS1;nCi

S2;nCi ZK
1

u
S1;i

9>>=>>; for i Z 1;.; n; ðA 1Þ
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and to the 2n-dimensional equation

K
1

u
cot

kp

n

 !
A B

B
1

u
cot

kp

n

 !
A

2666664

3777775S1 Z 0; ðA 2Þ

where A2R
n!n is defined by equation (3.10) and B2R

n!n is given by

B Z

1 1

1 1

1 1

1 1

266664
377775: ðA 3Þ

Solving (A 2) one may obtain the solution (4.27) for S1 and S2.
The application of (3.17) simplifies the 4n-dimensional equation (4.32) to

N1;nCi ZaN1;i CuN2;i

N2;nCi ZKuN1;i CaN2;i

9=; for i Z 1;.; n; ðA 4Þ

and to the 2n-dimensional equation

Kcot
kp

n

 !
A B

B cot
kp

n

 !
A

2666664

3777775NgZ 0; ðA 5Þ

where A;B2R
n!n are given by (3.10) and (A 3) and Ng2R

2n is defined as

Ng;i ZN1;i

Ng;nCi ZN2;i

9=; for i Z 1;.;n: ðA 6Þ

The solution of (A 5) can be written as

NgZ û
C

S

" #
C ŷ

S

KC

" #
; ðA 7Þ

where the vectors C, S2R
n are defined by equation (4.28). This leads to the

solution (4.33) for N1 and N2.
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The coefficients in (5.5) are as follows:

f
ð1Þ
jk Z f

ð2Þ
jk Z0; for jCkZ2;

f
ð1Þ
30 Z f

ð1Þ
12 Z f

ð2Þ
21 Z f

ð2Þ
03 ZE 3ab3cr

4ðb1crÞ3
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u
1C

u2
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 !
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u
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C

u3
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where E is given by equation (3.21), each component of E2R
n is 1, and the

vectors ~C ; ~S2R
n are defined by

~CZ

cos
4kp

n
1

 !

cos
4kp

n
2

 !
«

cos
4kp

n
n

 !

266666666666664

377777777777775
; ~SZ
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4kp

n
1

 !

sin
4kp

n
2

 !
«

sin
4kp

n
n

 !

266666666666664

377777777777775
: ðA9Þ

Using (3.17), the 4n-dimensional equation for H1, H2 in (5.8) leads to

H1;iZK2uH2;nCi

H2;iZ2uH1;nCi

9=; for iZ1;.;n; ðA10Þ

and to the 2n-dimensional equation

m sin2
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2kp
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A h sin2

kp
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 !
A

K h sin2
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 !
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2kp
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n

 !
IKcos

2kp
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 !
A

2666664

3777775Hg

ZK
4b2cr
u2b1cr

sin2
kp

n

� � ~C

~S

24 35; ðA11Þ

where I2R
n!n is the identitymatrix,A2R

n!n and ~C ; ~S2R
n aregivenby(3.10)and

(A 9), the vector Hg2R
2n is defined as

Hg;iZH1;nCi

Hg;nCiZH2;nCi

9=; for iZ1;.;n; ðA12Þ

and the new parameters are

mZK

16b1cr
a
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a2

1C
u2

a2

� �2
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u2
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� �
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: ðA13Þ
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The solution of (A 11) is given by

HgZ
K

4b2cr
u2b1cr

hK4 cot kp
n

� �� �2
Cm2

m

~C

~S

" #
C hK4 cot

kp

n
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K~S

~C

" # !
; ðA14Þ

which leads to the solution (5.11) for H1 and H2.
Appendix B. Trigonometric identities

Considering the wave numbers kZ1;.; n=2 (even n) or kZ1;.; ðnK1Þ=2 (odd n)

Xn
iZ1

exp ir
2kp

n
i

� �
Z

0; if ksn=r;

n; if k Zn=r;

(
ðB 1Þ

can be written where i2ZK1 and rZ1,., 4. Therefore, the following identities can
be proven. In first order,

Xn
iZ1
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2kp

n
i

� �
Z
Xn
iZ1
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2kp

n
i

� �
Z 0: ðB 2Þ

In second order,
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In third order,
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In fourth order,
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