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This paper describes the use of time-delayed feedback to regulate the behaviour of
biological networks. The general ideas on specific transcriptional regulatory and neural
networks are demonstrated. It is shown that robust yet tunable controllers can be
constructed that provide the biological systems with model-engineered inputs. The results
indicate that time delay modulation may serve as an efficient biocompatible control tool.
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1. Introduction

A common rule of thumb in engineering is that time delays can cause undesired
oscillations. For example, the use of high-frequency digital controllers (which
introduce tiny delays into the control loops) can result in low-frequency vibrations
in robotic systems (Stépán 2001). In most cases, engineers are able to overcome
these problems by using predictor algorithms (Mascolo 1999). It may also be the
case that vibrations disappear for windows of larger delay where the efficiency of
technological processes can even be higher (Dombovári et al. 2008).

Recent papers have demonstrated that time delays can play important roles
in biological systems. For example, in gene-regulatory networks, oscillations
in protein levels may arise due to time delays (Monk 2003; Novák & Tyson
2008), and existing oscillations may become more robust (Stricker et al. 2008;
Ugander 2008). Similarly, in neural networks, delays may initiate different
rhythmic spatiotemporal patterns (Coombes & Laing 2009) and alter the stability
of existing patterns (Ermentrout & Ko 2009). Some authors suggest that
neural systems may even exploit time delays when encoding information into
spatiotemporal codes (Kirst et al. 2009; Orosz et al. 2009a).

New interfaces allow us to interact with biological networks, i.e. to sense and
regulate their behaviour (Chalfie et al. 1994; Popovych et al. 2006; Sarpeshkar
et al. 2008). To design such regulators, one needs to use techniques from control
and dynamical systems theory (Åström & Murray 2008). In this paper, we
demonstrate that tuning the time delays may provide us with additional ‘degrees
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of freedom’ for suppressing or changing the rhythmic behaviour in biological
systems. Broadly speaking, besides varying the strength of the control actions (i.e.
the gains), one may also modulate the timing of the actions by varying the delays.
Such a strategy is usually avoided in engineering systems since it requires the use
of delay differential equations and infinite-dimensional state spaces. On the other
hand, exploiting the richness of such dynamics may prove to be beneficial when
interacting with living organisms.

We demonstrate these ideas in two different biological networks. In §2, we
consider a simple synthetic gene regulatory circuit, called the repressilator. We
show that one may stabilize the steady state of protein expression by using an
additional regulatory gene with appropriate time delays. In §3, a simple neural
network is studied. Based on the stability analysis of oscillatory solutions, we
construct an event-based act-and-wait type of controller that uses delayed inputs
to drive the system into a chosen oscillatory state. Finally, in §4, we conclude and
discuss future research directions.

2. Controlling equilibria in gene regulatory networks

Intracellular spaces are filled with biochemical regulatory networks in every
organism. In particular, gene regulatory networks allow cells to express proteins
when needed (Bolouri 2008; Courey 2008). Genes (sections of DNA) are
transcribed into mRNA (by RNA polymerase) and then mRNA is translated
into proteins (by ribosomes). The resulting proteins go through configurational
changes (called folding) to become ‘biochemically active’. An active protein then
may bind to the so-called promoter region of another gene and activate or
repress the transcription of the gene (and in turn regulate the expression of the
corresponding protein). Indeed, both transcription and translation takes a finite
amount of time, which introduces time delays into the modelling equations (Monk
2003; Novák & Tyson 2008).

Owing to the large number of genes in living cells, it is very difficult to
map out the dynamics of natural gene regulatory networks. For this reason, a
different approach was initiated about a decade ago when the first synthetic
transcriptional regulatory circuits were constructed and implanted into living
cells (see Elowitz & Leibler (2000) for the repressilator and Gardner et al. (2000)
for the toggle switch). Using fluorescent proteins as output signals, the dynamics
of synthetic circuits can be studied in detail (Chalfie et al. 1994).

Gene regulatory networks can exhibit robust oscillatory behaviour. For
example, circadian rhythms in cells are driven by such genetic oscillations (Dunlap
1999). On the other hand, mutant genes may lead to pathological oscillations
(Novák & Tyson 2008). One way to suppress such oscillations might be to implant
extra regulatory genes into the cells. One can design where to ‘take a signal out’
by implanting a gene that is repressed or activated by a chosen protein of the
system. It is also possible to ‘insert a signal’ by using a protein that activates
or represses a chosen gene in the system. However, to stabilize an equilibrium
without changing it (i.e. without changing the steady-state values of mRNA
and protein concentrations), the gains need to satisfy extra constraints. These
constraints may still allow stabilization if additional time delays are built into the
controller. Note that transcriptional delays may be increased by inserting ‘junk’
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Figure 1. Sketch of the repressilator (subnetwork marked by the dashed frame) with an additional
regulatory gene attached.

sections into the gene, and translational delays can be enlarged by slowing down
the protein folding (see Ugander (2008) for more details on delay engineering in
transcriptional regulatory networks).

Here, we test these ideas on the repressilator, which consists of three genes
coupled to each other to form a unidirectional ring as depicted by the subnetwork
within the dashed frame in figure 1. Each circle represents a gene and its protein
product (Elowitz & Leibler 2000). This circuit shows robust oscillatory behaviour
in wide regions of parameters. It was shown that increasing the transcriptional
and translational delays between the repressilator elements 1, 2 and 3 leads to
more robust oscillations, i.e. they appear in more extended parameter domains
and become more attractive (Chen & Aihara 2002; Ugander 2008). On the other
hand, we will show that the oscillations can be suppressed by attaching an
additional element and choosing the corresponding delays appropriately (see the
extra regulatory element 4 outside the dashed frame in figure 1).

The regulated system can be modelled by the delay differential equations

ṁi(t) = −mi(t) + αf (pi+1(t)), ṗi(t) = −βpi(t) + βmi(t), i = 1, 2,

ṁ3(t) = −m3(t) + αf ((1 − η)p1(t) + ηp4(t)), ṗ3(t) = −βp3(t) + βm3(t),

and ṁ4(t) = −m4(t) + αf (p2(t − σ)), ṗ4(t) = −βp4(t) + βm4(t − τ),

⎫⎪⎬
⎪⎭

(2.1)
where each gene is repressed through the nonlinear function

f (p) = 1
1 + pn

+ f0, (2.2)

which is depicted by the decreasing curve in figure 2. Here the overdot represents
the derivative with respect to time t and mi , pi ≥ 0 are the concentrations of
mRNA and protein for the ith species. For the sake of simplicity, parameters
are chosen to be identical for each gene–protein pair. We assume that the time
delays are small in the original system (these are set to zero for i = 1, 2, 3), but
the extra regulatory element contains significant transcriptional and translational
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Figure 2. Finding the equilibrium value p∗ of protein concentration. The increasing straight line
and the decreasing curve correspond to the left and right sides of the algebraic equation (2.4), in
which f is given by equation (2.2).

delays (denoted by σ and τ , respectively). The time is measured in units of
mRNA degradation time, the protein concentrations are rescaled by the number
of proteins needed to half-maximally repress a gene and the mRNA concentrations
are rescaled by the number of proteins expressed per mRNA molecule in steady
state. The rescaled parameters α and β represent the strength of the repression
and the protein degradation rate, respectively, and these can be determined from
dimensional parameters. In this paper, we consider the ‘leakage constant’ f0 =
10−3 and the Hill coefficient n = 2, for which oscillations appear in a wide ranges
of parameters α and β. We recall that α = 215.52 and β = 0.2069 were used in
Elowitz & Leibler (2000), in which oscillations were demonstrated experimentally.

We assume that there is only one binding site at the promoter region of a
gene, i.e. in the case of gene 3 either protein p1 or protein p4 binds but not
both (see figure 1). More precisely, we assume that p4 binds with probability
η ∈ [0, 1] and so p1 binds with probability (1 − η), as expressed in the last term
of the equation for ṁ3 in equation (2.1). Notice that, when choosing η = 0, the
repressilator with genes 1, 2 and 3 is obtained, while for η = 1 another repressilator
emerges with genes 2, 3 and 4 and time delays σ and τ . In both these special cases,
the equilibria are unstable and oscillations occur. As will be shown below, these
oscillations may be suppressed for certain intermediate values of η by choosing
the delays appropriately. We note that one may model competitive binding by
using the nonlinear combination η1f (p1(t)) + η4f (p4(t)) with η1, η4 ≥ 0 instead
of f ((1 − η)p1(t) + ηp4(t)) in the equation for ṁ3 in equation (2.1). The linear
stability diagrams obtained in this case are qualitatively similar to those presented
in this paper. We also remark that there exist genes with multiple binding sites
and one may use the resulting combinatorial features when designing genetic
controllers (Cox et al. 2007).

System (2.1) possesses the ‘symmetric’ equilibrium

mi(t) ≡ pi(t) ≡ p∗, (2.3)

for i = 1, 2, 3, 4, where p∗ is the unique solution of
p
α

= f (p), (2.4)

Phil. Trans. R. Soc. A (2010)

http://rsta.royalsocietypublishing.org/


Controlling bio-networks using delays 443

as demonstrated in figure 2. Note that p∗ = p∗(α, f0, n) and this is monotonically
increasing in α. Also notice that equation (2.4) is independent of η, σ and τ , i.e.
the extra regulatory gene does not change the equilibrium of the repressilator.
This occurs since the parameters α and β for the extra element 4 are considered
to be identical to the parameters for the original system 1, 2 and 3. Modulating
these parameters (in the last two equations in equation (2.1) only) may suppress
the oscillations but it destroys the symmetry and so changes the equilibrium.
Contrarily, varying η, σ and τ may allow us to stabilize the equilibrium without
altering it.

Let us define the perturbations

ai(t) := mi(t) − p∗

and bi(t) := pi(t) − p∗,

}
(2.5)

and introduce the vector notation

a = [a1 a2 a3 a4]
T

and b = [b1 b2 b3 b4]
T .

}
(2.6)

Thus, the linearization of equation (2.1) about equation (2.3) can be written as[
ȧ(t)
ḃ(t)

]
=

[ −I ακA0
βB0 −βI

] [
a(t)
b(t)

]
+

[
O ακAσ

O O

] [
a(t − σ)
b(t − σ)

]
+

[
O O

βBτ O

] [
a(t − τ)
b(t − τ)

]
,

(2.7)
where

A0 =
⎡
⎢⎣

0 1 0 0
0 0 1 0

1 − η 0 0 η
0 0 0 0

⎤
⎥⎦, Aσ =

⎡
⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

⎤
⎥⎦

and B0 =
⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎦, Bτ =

⎡
⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎦,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.8)

I and O denote the 4 × 4 identity and zero matrices, respectively, and

κ = f ′(p∗) < 0. (2.9)

Note that p∗ = p∗(α, f0, n) implies κ = κ(α, f0, n).
Now considering the trial solution a(t) = ā eλt and b(t) = b̄ eλt with constant

vectors ā, b̄ ∈ R
4 and eigenvalues λ ∈ C, the characteristic equation

D(λ) = det
[

(λ + 1)I −ακ(A0 + Aσ e−λσ )

−β(B0 + Bτ e−λτ ) (λ + β)I

]

= (λ + 1)(λ + β){(λ + 1)3(λ + β)3 − (αβκ)3(1 − η + η e−λ(σ+τ))} = 0 (2.10)

is obtained. This equation has infinitely many solutions for the eigenvalues λ
in correspondence to the infinite-dimensional state spaces of equations (2.1)
and (2.7). The equilibrium (2.3) is asymptotically stable if and only if all
eigenvalues lie in the left-half complex plane. When varying the parameters,
the equilibrium may lose its stability via Hopf bifurcation if a pair of complex
conjugate eigenvalues crosses the imaginary axis. This bifurcation results in
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periodic oscillations. To determine the stability boundaries, we substitute λ = iω,
ω ∈ R

+ into equation (2.10), separate the real and imaginary parts and apply
some trigonometric identities. The stability curves in the (σ + τ , η) parametric
plane are given by

σ + τ = 1
ω

{
±arc cos

(
c2
1 − c2

2 − 2c1 + 1
c2
1 + c2

2 − 2c1 + 1

)
+ (2
 + 1)π

}
, 
 = 0, 1, 2, . . .

and η = c2
1 + c2

2 − 2c1 + 1
−2c1 + 2

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(2.11)

where
c1 = (β − ω2)((β − ω2)2 − 3(1 + β)2ω2)

(αβκ)3

and c2 = (1 + β)ω(3(β − ω2)2 − (1 + β)2ω2)

(αβκ)3
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.12)

and the + and − signs are considered when sin(ω(σ + τ)) < 0 and
sin(ω(σ + τ)) > 0, respectively.

The curves for 
 = 0 are plotted in figure 3 for different values of α and
β; the original repressilator parameters are used in figure 3a. The curves for

 > 0 appear for larger delays to the right of the 
 = 0 curves and these are
out of the window. Using infinite-dimensional generalizations of the Routh–
Hurwitz criteria (Stépán 1989), one may determine that the steady state is
linearly stable in the shaded domain. Notice that, when decreasing or increasing
α (figure 3a–c), the stable regime does not change significantly, only becoming a
bit more extended corresponding to the fact that oscillations appear to be most
robust for intermediate values of α in the uncontrolled repressilator (Elowitz &
Leibler 2000). On the other hand, the stable domain shrinks and moves closer to
the vertical axis when decreasing β (figure 3a,d,e).

When a stability curve crosses itself, a co-dimension-2 Hopf bifurcation occurs,
i.e. two pairs of complex conjugate eigenvalues cross the imaginary axis, leading
to quasi-periodic oscillations. We remark that such bifurcations occur rarely in
dynamical systems without delay but they are quite typical in delayed systems
(Stépán 1989). Note that the equilibrium may lose its stability via a steady-
state bifurcation when a real eigenvalue crosses the imaginary axis due to
parameter variations. This cannot occur here for any σ , τ ≥ 0 since κ = f ′(p∗) < 0,
as can be seen by substituting λ = 0 into equation (2.10). We also remark that,
incorporating the time delays in the interactions between the repressilator genes
1, 2 and 3, the stability regimes can still be determined; however, the calculations
become more elaborate and so less instructive.

In figure 3a, we marked the points A and B, and the corresponding numerical
simulation results are shown in figure 4a,b, respectively. In both cases, the
same initial conditions are chosen. Recall that the initial conditions for delay
differential equations are functions in the delay interval t ∈ [−max{σ , τ }, 0], which
are chosen to be constant functions here. When the equilibrium is unstable (point
A in figure 3a at σ + τ = 15, η = 0), oscillations arise. The time profiles for the
repressilator protein concentrations p1, p2 and p3 are displayed in the top panel
of figure 4a. The system approaches a travelling wave solution where the time
profile of the (i + 1)st protein can be obtained by shifting the time profile of
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Figure 3. Stability diagrams for the controlled repressilator for different repression strengths α and
protein degradation rates β. The equilibrium (2.3) is linearly stable in the shaded domains. Points
A and B in (a) correspond to the simulations shown in figure 4a,b, respectively. (a) α = 215.52,
β = 0.2069; (b) α = 50, β = 0.2069; (c) α = 800, β = 0.2069; (d) α = 215.52, β = 0.1; (e) α = 215.52,
β = 0.4.

the ith protein by Tp/3, where Tp is the period of oscillations. This pattern
corresponds to the Z3 discrete rotational symmetry in the system and may also
be interpreted as a splay state, meaning that the concentration of each protein
‘fires’ separately and equidistantly in time. The time evolution for the protein
concentration p4 is shown in the bottom panel in figure 4a. Since η = 0 and
p1 and p4 are both driven by p2, the time profiles for p4 can be obtained by
shifting the p1 signal with σ + τ . When the equilibrium is stable (point B in
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Figure 4. Demonstrating the action of the genetic controller by numerical simulations. The protein
concentrations p1, p2 and p3 for the repressilator are shown on the top and the protein concentration
p4 for the extra regulatory gene is displayed at the bottom. Panels (a) and (b) correspond to the
points A and B in figure 3a.

figure 3a at σ + τ = 15, η = 0.25), no oscillations develop, as shown in figure 4b.
This demonstrates that the equilibrium can be stabilized by tuning the aggregated
delay σ + τ and the binding probability η.

We note that one may find oscillations even for a stable equilibrium when
considering certain specific initial conditions. This suggests that the Hopf
bifurcations may be subcritical. It may be an interesting future research topic
to map out the bifurcation structure for the arising periodic solutions, but that is
beyond the scope of this paper. In the following section, however, we investigate
a time-delayed network where it is essential to study the stability of oscillatory
solutions. Such investigations allow us to construct a controller that can stabilize
a chosen rhythm.

3. Controlling periodic solutions in neural networks

Oscillations are ubiquitous in neural networks: rhythmic patterns of electric
activity are used to represent information about the environment and about the
state of the animal in many different ways (Rabinovich et al. 2006). However, some
of these rhythms, e.g. full synchrony, may be pathological and lead to macroscopic
tremors such as in Parkinson’s disease. (In contrast, in technological systems full
synchrony is often desired (Olfati-Saber & Murray 2004).)

One way to avoid these harmful oscillations (without destroying all rhythms)
might be to inject weak external current into specific brain areas. For example,
when injecting different signals at multiple sites, neurons may entrain their
rhythms to the signal of the nearby electrode and so the overall synchrony can be
destroyed (Popovych et al. 2006). However, this control strategy may force the
neural system into an ‘artificial state’. Instead, one may select a natural rhythm
and try to stabilize it. Since neurons communicate with electric signals (called
spikes), it takes a considerable amount of time to transmit the signal from one
neuron to another. Consequently, time delays appear in the modelling equations.
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Figure 5. Sketch of a network of three globally coupled neurons (subnetwork marked by the dashed
frame) with a controller attached.

When varying the delays, different stable patterns (e.g. full synchrony, clustering)
can emerge (Ermentrout & Ko 2009). As will be shown below, one may construct
a controller that mimics the delayed interactions of neurons and so drives the
system away from synchrony into a chosen cluster state.

We demonstrate these ideas in a simple system of three neurons with all-to-all
coupling as depicted inside the dashed frame in figure 5. We assume that the vol-
tage of each neuron can be measured and current can be injected into each cell (see
the controller C outside the dashed frame in figure 5). To describe the activity of
the neurons, we use the Hodgkin–Huxley model that models the cell membrane as
a simple electric circuit (Hodgkin & Huxley 1952). We consider direct electrotonic
coupling (gap junctions) between the neurons and incorporate axonal delays to
model the time required to transmit the signal along the axons. For simplicity, we
omit dendritic delays (associated with signal transmission along dendrites) and
synaptic delays (the time needed to release chemicals in synapses); see Campbell
(2007) and Ermentrout & Ko (2009) for more details on these effects.

The time evolution of the controlled system is given by the delay differential
equations

V̇ i(t) = 1
C

⎛
⎝I − gNam3

i (t)hi(t)(Vi(t) − VNa)

− gKn4
i (t)(Vi(t) − VK) − gL(Vi(t) − VL)

+ ε

3∑
j=1, j �=i

(Vj(t − ξ) − Vi(t)) + δ ui(t)

⎞
⎠,

ṁi(t) = αm(Vi(t))(1 − mi(t)) − βm(Vi(t))mi(t),

ḣi(t) = αh(Vi(t))(1 − hi(t)) − βh(Vi(t))hi(t),

and ṅi(t) = αn(Vi(t))(1 − ni(t)) − βn(Vi(t))ni(t), i = 1, 2, 3,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)
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where the overdot represents the derivative with respect to time t (measured in
ms), Vi is the voltage of the ith neuron (measured in mV) and the dimensionless
quantities mi , hi , ni ∈ [0, 1] (called gating variables) characterize the ‘openness’ of
the sodium and potassium ion channels embedded in the cell membrane. The
conductances gNa, gK and gL and the reference voltages VNa, VK and VL for
the sodium channels, potassium channels and the so-called ‘leakage current’ are,
respectively, given together with the membrane capacitance C and the driving
current I in equation (A 1).

The term proportional to ε describes the electrotonic coupling between
neurons. The conductance ε represents the coupling strength and ξ is the
transmission delay described above. The term proportional to δ represents the
control signal. The coefficient δ is the magnitude of the injected current and ui(t)
describes the time variation of the input and can take the discrete values 0, 1
and 2. We assume that the coupling is weak, i.e. ε � 1, and that the influence
of input is commensurable with the influence of coupling, i.e. δ = O(|V |ε). For
the parameters considered, we have |V | ≈ 100 and here we set δ = 250 ε. The
equations for mi , hi and ni are based on measurements and the nonlinear functions
αm(V ), αh(V ), αn(V ), βm(V ), βh(V ) and βn(V ) are given in equation (A 2).

First, we describe the dynamics without inputs (δ = 0) when varying the
coupling strength ε and the coupling delay ξ . For ε = 0, the neurons are uncoupled
and spike periodically (with period Tp ≈ 10.43). For small ε > 0, the qualitative
shape of oscillations does not change but different cluster states can arise through
the interactions. In particular, three different patterns may exist: full synchrony
(when all three neurons spike together), splay state (when no neurons spike
together) and 1 : 2 state (when only two neurons spike together). These patterns
correspond to the S3 permutational symmetry in the system (interchangeability
of neurons for δ = 0) and may be found by numerical simulation. Figure 6 shows
the simulation results for parameters ξ = 5.5 and ε = 0.03, where all cluster
states are stable: it depends on the initial conditions which state emerges.
(The initial conditions are again chosen to be constant functions in the delay
interval t ∈ [−ξ , 0].) Notice that spikes are evenly spaced in the splay state in
correspondence to the S3 permutational symmetry. In the 1 : 2 state, the phase
difference between the pair and the singleton depends on the parameters and
generally spikes are not evenly spaced. We remark that there are always two
different splay states (distinguished by the order of spikes) and three different
1 : 2 states (distinguished by which oscillator is the singleton). For more details
on clustering in globally coupled neural systems, see Brown et al. (2003), Coombes
(2008) and Orosz et al. (2009b).

The different cluster states correspond to periodic orbits in state space and
one needs to use Floquet theory to determine their stability. In particular, the
eigenvalues of the solution operator of equation (3.1) at Tp, the so-called Floquet
multipliers, need to be calculated. A periodic motion is stable if all the infinitely
many multipliers are located inside the unit circle in the complex plane. When
varying the parameters, stability losses may occur via fold bifurcation (when a real
multiplier crosses the unit circle at +1), via period-doubling bifurcation (when a
real multiplier crosses the unit circle at −1) and via Neimark–Sacker bifurcation
(when a pair of complex conjugate multipliers crosses the unit circle). Different
periodic and quasi-periodic oscillations may arise through these bifurcations that
are not discussed here in detail.
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Figure 6. Different neural clusterings are shown in (a) and the related (ξ , ε) stability charts are
displayed in (b). The shaded domains indicate stability and f, pd and ns denote fold, period doubling
and Neimark–Sacker bifurcations. The crosses at ξ = 5.5 and ε = 0.03 in (b) correspond to the
parameters used in (a).

It is not possible to determine the stability boundaries in parameter space
analytically but there exist numerical methods to perform this task. We use
numerical continuation techniques, in particular the package DDE-BIFTOOL,
that allow us to follow branches of oscillatory solutions (both stable and
unstable) as a function of parameters and detect the above bifurcations (Roose &
Szalai 2007). To determine the stability, the solution operator is discretized
and represented by a large matrix whose eigenvalues approximate the Floquet
multipliers. We remark that, for large numbers of neurons, one may apply semi-
analytical methods to determine the stability for specific cluster states, e.g. the
synchronized state and the splay state; see Coombes (2008).

We varied the delay parameter ξ and detected the above bifurcations for several
different values of ε; the results are shown in the stability charts in figure 6b.
Shading indicates stability, and the fold, period doubling and Neimark–Sacker
bifurcations are denoted by f, pd and ns, respectively. The crosses correspond to
the parameter values ξ = 5.5 and ε = 0.03 used in figure 6a. The ‘sharp edges’
along the stability boundaries correspond to co-dimension-2 bifurcations, e.g.
the synchronized state undergoes a fold–period doubling bifurcation and the
splay state undergoes a double Neimark–Sacker bifurcation. The dynamics are
potentially complex around such points. Furthermore, in certain regimes, multiple
unstable solutions coexist with the stable solutions, and the stable manifolds of
the unstable solutions separate the regions of attraction of the stable solutions in
state space. Unfolding these complexities is beyond the scope of this paper.

By studying the stability diagrams, one may observe qualitative changes of the
dynamics as the time delay increases. For small delays (including zero delay), only
the synchronous state is stable. This is followed by different domains of mono-,
bi- and tristability. That is, by varying the time delay, different cluster states
may be realized.

Indeed, it is not possible to tune the natural delays in the system. However, the
controller may inject external signals that mimic the effects of delayed coupling.
To this end, we construct an event-based act-and-wait controller (Insperger 2006;
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Figure 7. The event-based act-and-wait control algorithm: after a neuron spikes, the controller
‘waits’ tw time and then ‘acts’ for ta time by injecting constant inputs to the other two neurons
(see equation (3.2)). Notice that ta � tw. From top to bottom: the voltage oscillations, the recorded
spike times, the input signals.

Danzl & Moehlis 2007) as follows. We record the event when a neuron spikes (its
voltage reaches a local maximum) and, after time tw, a constant signal of length
ta is injected to the other two neurons. The time intervals tw and ta are called
the ‘wait time’ and the ‘act time’, respectively. Considering the initial condition
ui(0) = 0, i = 1, 2, 3, the control rules can be formalized as follows.

If neuron i spikes at t = t0 then

u+
j (t0 + tw) = u−

j (t0 + tw) + 1,

u+
j (t0 + tw + ta) = u−

j (t0 + tw + ta) − 1,

for all j �= i.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.2)

This algorithm is demonstrated in figure 7. Recall that ui(t) can take only the
discrete values 0, 1 and 2, where ui(t) = 2 occurs if at least two neurons spiked
within a time interval of ta. To obtain ‘spiky’ inputs, we consider ta � tw. In
particular, we fix the act time at ta = 0.5 and vary the wait time tw.

We define a scalar observable, called the order parameter, to quantify the
emergent state of the system,

R = 1
3 |ei2π(t1−t0)/(t3−t0) + ei2π(t2−t0)/(t3−t0) + ei2π |. (3.3)

This represents the phase relation of the last four spikes that arrived at t0 ≤ t1 ≤
t2 ≤ t3, such that the spikes at t0 and t3 were produced by the same neuron, while
the spikes at t1 and t2 were produced by the other two neurons (see figure 7).
This quantity has to be updated when a new spike arrives at t4 according to
the update rule t0 ← t1, t1 ← t2, t2 ← t3 and t3 ← t4. In fact, R is an ‘event-based
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Figure 8. Driving the system from full synchrony to a splay state with the controller for ξ = 0,
ε = 0.06 and tw = 6. From top to bottom: the voltage oscillations, the recorded spike times, the
input signals, the order parameter (3.3).

version’ of the order parameter used in phase oscillator networks where the phase
information is continuously available (Strogatz 2000). Notice that R = 1 for the
fully synchronous state and R = 0 for the splay state (with evenly spaced spikes).
For the 1 : 2 state (with general phase difference between the singleton and the
pair), we have 1/3 ≤ R < 1; here, the minimum R = 1/3 is reached when the spikes
are evenly spaced.

In figure 8, the controller’s action is shown for parameters ξ = 0 and ε = 0.06.
One may observe that, without inputs (t � 50), the system approaches the fully
synchronous state since that is the only stable state for these parameters (see
figure 6b). After each neuron has spiked five times, the controller is switched
on using tw = 6. (Notice that, for ξ = 6 and ε = 0.06, the synchronous state is
unstable in figure 6b). The controller drives the system away from the fully
synchronous state into a splay state as shown in the top two panels in figure 8.
The changes in the spatiotemporal pattern of inputs and the time evolution
of the order parameter R (which goes from 1 to 0) are displayed in the
bottom panels.

To test the robustness of the proposed algorithm, we vary the wait time tw and
the coupling strength ε (for zero coupling delay ξ = 0) and read the asymptotic
value of the order parameter (taken at t = 1000). The shading of the (tw, ε)-
plane in figure 9 represents the value of R such that white corresponds to R = 0
(splay state), while the darkest tone corresponds to R = 1 (synchronized state).
Notice the well-pronounced boundaries between regions of qualitatively different
behaviours. We remark that for the 1 : 2 state we have R ≈ 1/3, meaning that
spikes are almost evenly spaced. In the splay∗ regime, a splay-like state emerges
for which the spikes are not evenly spaced. Such a state may exist since the inputs
destroy the S3 permutation symmetry for δ > 0. In the splay∗ state, the order
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Figure 9. The asymptotic value of the order parameter R is depicted by shading in the (tw, ε)-plane
for ξ = 0; see the shading bar on the right. The states approached are written in each regime. The
splay∗ state is a splay-like state where the spikes are not evenly spaced.

parameter does not approach a particular value but keeps oscillating, resulting
in the ‘granular’ shading in this regime. The good match between the location of
certain patterns in figures 6b and 9 justifies the idea of the controller: the waiting
time tw can serve as an effective time delay.

Notice that, for larger values of ε, the splay regimes become smaller, which
may be compensated by slightly increasing the input magnitude δ. Choosing
different initial conditions in the bi- and tristable regimes in figure 6b the
emergent states may differ from those in figure 9. For example, for certain initial
conditions the synchrony may not be destroyed for tw ≈ 2, but it always disappears
for tw ≈ 6.

4. Conclusion

In this paper, we demonstrated that designing time delays is an efficient tool for
controlling the behaviour of complex biological networks. By varying the delays,
one may ‘set the timing’ of the control signals and so stabilize unstable equilibria
or unstable oscillations. Thus, one may succeed with the control design even
when strong constraints are imposed on the gains and on the qualitative features
of the input (which would impede stabilization for zero delay). We demonstrated
this strategy in a gene regulatory network and in a neural network by driving
the systems away from potentially harmful oscillatory behaviour either to an
equilibrium or to a chosen rhythmic cluster state. We achieved this by applying
biocompatible inputs.

The considered networks were extremely simple since these were chosen to
serve as demonstrative examples. It will be necessary to repeat the calculations for
more realistic set-ups (e.g. larger networks) to test the robustness of the proposed
algorithms. Ultimately, the controllers also need to be validated by experiments.
Nevertheless, we firmly believe that the methodology presented in this paper can
be applied to a wide range of biological systems where delays, instead of causing
undesired oscillations, can stabilize desired states.

This research was sponsored by the National Science Foundation under grant NSF-0547606 and by
the Institute for Collaborative Biotechnologies under grant DAAD19-03-D004 from the US Army
Research Office.
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Appendix A. Parameters for the Hodgkin–Huxley model

Here we define the parameters

gNa = 120 mS cm−2, VNa = 50 mV,

gK = 36 mS cm−2, VK = −77 mV,

gL = 0.3 mS cm−2, VL = −54.4 mV,

and I = 20 μA cm−2, C = 1 μF cm−2,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A 1)

and the functions

αm(V ) = 0.1(V + 40)

1 − e−(V+40)/10
, βm(V ) = 4 e−(V+65)/18,

αh(V ) = 0.07 e−(V+65)/20, βh(V ) = 1
1 + e−(V+35)/10

,

αn(V ) = 0.01(V + 55)

1 − e−(V+55)/10
, βn(V ) = 0.125 e−(V+65)/80,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(A 2)

used in the Hodgkin–Huxley model (3.1).

References

Åström, K. J. & Murray, R. M. 2008 Feedback systems: an introduction for scientists and engineers.
Princeton, NJ: Princeton University Press.

Bolouri, H. 2008 Computational modeling of gene regulatory networks—a primer. London, UK:
Imperial College Press.

Brown, E., Holmes, P. & Moehlis, J. 2003 Globally coupled oscillator networks. In Perspectives and
problems in nonlinear science: a celebratory volume in honor of Larry Sirovich (eds E. Kaplan,
J. E. Marsden & K. R. Sreenivasan), pp. 183–215. New York, NY: Springer.

Campbell, S. A. 2007 Time delays in neural systems. In Handbook of brain connectivity (eds V. K.
Jirsa & A. R. McIntosh), pp. 65–90. New York, NY: Springer.

Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. & Prasher, D. C. 1994 Green fluorescent protein
as a marker of gene expression. Science 263, 802–805. (doi:10.1126/science.8303295)

Chen, L. & Aihara, K. 2002 Stability of genetic regulatory networks with time delay. IEEE Trans.
Circuits Syst. I: Fundam. Theory Appl. 49, 602–608. (doi:10.1109/TCSI.2002.1001949)

Coombes, S. 2008 Neuronal network with gap junctions: a study of piecewise linear planar neuron
models. SIAM J. Appl. Dyn. Syst. 7, 1101–1129. (doi:10.1137/070707579)

Coombes, S. & Laing, C. 2009 Delays in activity-based neural networks. Phil. Trans. R. Soc. A
367, 1117–1129. (doi:10.1098/rsta.2008.0256)

Courey, A. J. 2008 Mechanisms in transcriptional regulation. Malden, MA: Blackwell.
Cox, R. S., Surette, M. G. & Elowitz, M. B. 2007 Programming gene expression with combinatorial

promoters. Mol. Syst. Biol. 3, 1–11. (doi:10.1038/msb4100187)
Danzl, P. & Moehlis, J. 2007 Event-based feedback control of nonlinear oscillators using phase

response curves. In Proc. 46th IEEE Conf. on Decision and Control, New Orleans, LA, 12–14
December 2007, pp. 5806–5811. Piscataway, NJ: IEEE.

Dombovári, Z., Wilson, R. E. & Stépán, G. 2008 Estimates of the bistable region in metal cutting.
Phil. Trans. R. Soc. A 464, 3255–3271. (doi:10.1098/rspa.2008.0156)

Dunlap, J. C. 1999 Molecular bases for circadian clocks. Cell 96, 271–290. (doi:10.1016/
S0092-8674(00)80566-8)

Elowitz, M. B. & Leibler, S. 2000 A synthetic oscillatory network of transcriptional regulators.
Nature 403, 335–338. (doi:10.1038/35002125)

Phil. Trans. R. Soc. A (2010)

http://dx.doi.org/doi:10.1126/science.8303295
http://dx.doi.org/doi:10.1109/TCSI.2002.1001949
http://dx.doi.org/doi:10.1137/070707579
http://dx.doi.org/doi:10.1098/rsta.2008.0256
http://dx.doi.org/doi:10.1038/msb4100187
http://dx.doi.org/doi:10.1098/rspa.2008.0156
http://dx.doi.org/doi:10.1016/S0092-8674(00)80566-8
http://dx.doi.org/doi:10.1016/S0092-8674(00)80566-8
http://dx.doi.org/doi:10.1038/35002125
http://rsta.royalsocietypublishing.org/


454 G. Orosz et al.

Ermentrout, B. & Ko, T.-W. 2009 Delays and weakly coupled neuronal oscillators. Phil. Trans. R.
Soc. A 367, 1097–1115. (doi:10.1098/rsta.2008.0259)

Gardner, T. S., Cantor, C. R. & Collins, J. J. 2000 Construction of a genetic toggle switch in
Escherichia coli. Nature 403, 339–342. (doi:10.1038/35002131)

Hodgkin, A. L. & Huxley, A. F. 1952 A quantitative description of membrane current and its
application to conduction and excitation in nerve. J. Physiol. 117, 500–544.

Insperger, T. 2006 Act-and-wait concept for continuous-time control systems with feedback delay.
IEEE Trans. Control Syst. Technol. 14, 974–977. (doi:10.1109/TCST.2006.876938)

Kirst, C., Geisel, T. & Timme, M. 2009 Sequential desynchronization in networks of spiking
neurons. Phys. Rev. Lett. 102, 068101. (doi:10.1103/PhysRevLett.102.068101)

Mascolo, S. 1999 Congestion control in high-speed communication networks using the Smith
principle. Automatica 35, 1921–1935. (doi:10.1016/S0005-1098(99)00128-4)

Monk, N. A. M. 2003 Oscillatory expression of Hes1, p53, and NF-κB driven by transcriptional
time delays. Current Biol. 13, 1409–1413. (doi:10.1016/S0960-9822(03)00494-9)

Novák, B. & Tyson, J. J. 2008 Design principles of biochemical oscillators. Nat. Rev. Mol. Cell
Biol. 9, 981–991. (doi:10.1038/nrm2530)

Olfati-Saber, R. & Murray, R. M. 2004 Consensus problems in networks of agents
with switching topology and time delays. IEEE Trans. Autom. Control 49, 1520–1533.
(doi:10.1109/TAC.2004.834113)

Orosz, G., Ashwin, P. & Townley, S. 2009a Learning of spatio-temporal codes in a coupled oscillator
system. IEEE Trans. Neural Networks 20, 1135–1147. (doi:10.1109/TNN.2009.2016658)

Orosz, G., Moehlis, J. & Ashwin, P. 2009b Designing the dynamics of globally coupled oscillators.
Progr. Theoret. Phys. 122, 611–630. (doi:10.1143/PTP.122.611)

Popovych, O., Hauptmann, C. & Tass, P. A. 2006 Control of neuronal synchrony by nonlinear
delayed feedback. Biol. Cybern. 95, 69–85. (doi:10.1007/s00422-006-0066-8)

Rabinovich, M. I., Varona, P., Selverston, A. I. & Abarbanel, H. D. I. 2006 Dynamical principles
in neuroscience. Rev. Mod. Phys. 78, 1213–1265. (doi:10.1103/RevModPhys.78.1213)

Roose, D. & Szalai, R. 2007 Continuation and bifurcation analysis of delay differential equations.
In Numerical continuation methods for dynamical systems (eds B. Krauskopf, H. M. Osinga &
J. Galan-Vioque), pp. 359–399. New York, NY: Springer.

Sarpeshkar, R., Wattanapanitch, W., Arfin, S. K., Rapoport, B. I., Mandal, S., Baker, M. W., Fee,
M. S., Musallam, S. & Andersen, R. A. 2008 Low-power circuits for brain–machine interfaces.
IEEE Trans. Biomed. Circuits Syst. 2, 173–183. (doi:10.1109/TBCAS.2008.2003198)

Stépán, G. 1989 Retarded dynamical systems: stability and characteristic functions. In Pitman
research notes in mathematics, vol. 210. Harlow, UK: Longman.

Stépán, G. 2001 Vibrations of machines subjected to digital force control. Int. J. Solids Struct. 38,
2149–2159. (doi:10.1016/S0020-7683(00)00158-X)

Stricker, J., Cookson, S., Bennett, M. R., Mather, W. H., Tsimring, L. S. & Hasty, J. 2008 A fast,
robust and tunable synthetic gene oscillator. Nature 456, 516–519. (doi:10.1038/nature07389)

Strogatz, S. H. 2000 From Kuramoto to Crawford: exploring the onset of synchronization in
populations of coupled oscillators. Physica D 143, 1–20. (doi:10.1016/S0167-2789(00)00094-4)

Ugander, J. 2008 Delay-dependent stability of genetic regulatory networks. Master’s thesis,
Department of Automatic Control, Lund University, Sweden. https://www.control.lth.se/
database/publications/article.pike?artkey=5819.

Phil. Trans. R. Soc. A (2010)

http://dx.doi.org/doi:10.1098/rsta.2008.0259
http://dx.doi.org/doi:10.1038/35002131
http://dx.doi.org/doi:10.1109/TCST.2006.876938
http://dx.doi.org/doi:10.1103/PhysRevLett.102.068101
http://dx.doi.org/doi:10.1016/S0005-1098(99)00128-4
http://dx.doi.org/doi:10.1016/S0960-9822(03)00494-9
http://dx.doi.org/doi:10.1038/nrm2530
http://dx.doi.org/doi:10.1109/TAC.2004.834113
http://dx.doi.org/doi:10.1109/TNN.2009.2016658
http://dx.doi.org/doi:10.1143/PTP.122.611
http://dx.doi.org/doi:10.1007/s00422-006-0066-8
http://dx.doi.org/doi:10.1103/RevModPhys.78.1213
http://dx.doi.org/doi:10.1109/TBCAS.2008.2003198
http://dx.doi.org/doi:10.1016/S0020-7683(00)00158-X
http://dx.doi.org/doi:10.1038/nature07389
http://dx.doi.org/doi:10.1016/S0167-2789(00)00094-4
http://rsta.royalsocietypublishing.org/

	Controlling biological networks by time-delayed signals
	Introduction
	Controlling equilibria in gene regulatory networks
	Controlling periodic solutions in neural networks
	Conclusion
	References


