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We investigate an optimal velocity model which includes the reflex time of drivers. After an analytical study
of the stability and local bifurcations of the steady-state solution, we apply numerical continuation techniques
to investigate the global behavior of the system. Specifically, we find branches of oscillating solutions con-
necting Hopf bifurcation points, which may be super- or subcritical, depending on parameters. This analysis
reveals several regions of multistability.
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I. INTRODUCTION

The aim of this paper is to begin a systematic global in-
vestigation of the dynamics of car-following models of high-
way traffic, which include explicitly the reaction-time delay
of drivers; see Helbing[1] for a recent large-scale review of
the modeling of highway traffic.

Car-following models describe vehicles as discrete enti-
ties moving in continuous time and continuous one-
dimensional space(lane-changing effects are ignored). Here
we assume that vehicles have identical characteristics, that
their positions are denoted byxi, their velocities byvi, and
their relative displacements(calledheadways) by hi [see Fig.
1].

Each car-following model consists of the kinematic con-
ditions

ḣistd = vi+1std − vistd, s1d

where the dot denotes derivation with respect to time, to-
gether with a law that gives accelerationsv̇i as a function of
stimuli. These stimuli are typically headways and velocities /
relative velocities of nearby vehicles. A famous example is
the so-called Optimal Velocity(OV) model introduced by
Bando  et  al.  [2],  where  the  acceleration  of  the  ith  vehicle  is
given by

v̇istd = afV(histd)− vistdg .                   s2d

Herea.0 is known as thesensitivityand Vshd is known as
the OV function. In this case the drivers’ responses to stimuli
are instantaneous, hence(1) and (2) constitute a system of
ordinary differential equations(ODEs) for the vehicles’ mo-
tions.

This paper is concerned with the OV model when drivers
do not react instantaneously to their headways, so that the
acceleration of theith vehicle is given by

v̇istd = afV„hist − td… − vistdg. s3d

Heret is the reaction timeof the drivers, which is assumed
to be the same for all drivers.(Note thatt is different from
the characteristicrelaxation time T=1/a for adjustment of
the vehicles’ velocities, used by some authors[2,3].) To-
gether(1) and (3) give a system of delay differential equa-
tions (DDEs) for the vehicles’ motions. Model(3) has re-
cently been investigated with numerical simulation by Davis
[4,5]. The case where(the same) delay occurs both in the
drivers’ perceptions of their headway and in their perceptions
of their own velocities, was considered by Bandoet al. [6].
In our view, it is more realistic to suppose that drivers know
their speed, i.e., they react to that instantaneously, but they
react only to their headway via the delayt.

The above OV models admit a one-parameter family of
steady-stateuniform flowsolutions of the form

histd ; h* , vistd ; Vsh*d, s4d

for all i and for any constanth* .0. Previous studies in both
ODE and DDE settings have been concerned with the linear
stability computation of these uniform flow solutions and
numerical simulation when the flow is unstable. The loss of
linear stability of uniform flow solutions is widely accepted
as a cause of traffic jams[1].

We begin in Sec. II by discussing details of the OV
model. Then, as in previous papers, in Sec. III we give the
linear stability calculation of the DDE system(1) and(3) for
the uniform flow (4), and compute the neutral stability
curves in thesh* ,ad plane. We then summarize the results of
the weakly nonlinear analysis(for details, see[7]), which
indicate that uniform flow may lose stability via either sub-
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FIG. 1. Sequence of cars on a single-lane road showing their
positions, velocities, and headways.
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or supercritical Hopf bifurcations. The presence of a subcriti-
cal bifurcation indicates the possibility of the coexistence of
stable solutions in a bistability region.

In Sec. IV we employ numerical continuation techniques
to investigate efficiently the branches of oscillating solutions,
far from bifurcation. The basic idea is to find a parameter
value where the dynamics change qualitatively; for example,
where the steady state becomes unstable. It is then possible
to follow or continue the bifurcating oscillating solution or
the bifurcation itself in several parameters; see Sec. IV for
more information on numerical continuation.

While numerical continuation for ODE systems is well
established(see, e.g.,[8] and [9]), its implementation for
DDE systems is much more recent. Our computations are
done with the packageDDE-BIFTOOL [10,11], which is able to
find and follow branches of steady and oscillating states ir-
respective of their stability.

To simplify these calculations and the exposition, we re-
strict ourselves to the situation withn=3 cars on a closed
ring. Nevertheless, this case is general enough to identify
many general features; in particular, the existence of several
regions of bistability where stable oscillating solutions coex-
ist either with a stable uniform flow state, or with other non-
trivial stable oscillating solutions. This is presented in a con-
cise way in a two-dimensional parameter space to get a
global overview of the regions of coexisting attractors. Fur-
thermore, we consider a collision manifold, a stopping mani-
fold, and their interaction with the two-dimensional bifurca-
tion diagram(see Sec. IV C).

We note that bistability has been demonstrated by Igarashi
et al. [12] (in the Newell model, which includes delay) and
by Sugiyama and Yamada[3] for model(2) (that is, without
delay) using numerical simulation of the initial value prob-
lem. However, numerical continuation techniques give us a
more efficient way to characterize different regions of pa-
rameter space.

Finally, in Sec. V, we present practical conclusions and
suggest possible extensions of this work.

II. DETAILS OF THE MODEL

We consider a single-lane model without overtaking, as
shown in Fig. 1. To further simplify matters, we suppose that
n vehicles are placed on a circular road of lengthL, so that

o
i=1

n

hi = L. s5d

It follows that thenth car follows the first car and we are able

to definehn=L−oi=1
n−1hi so thatḣn=v1−vn. The equation of

motion of theith car is governed by the delay equation(3),
and theuniform flow equilibrium(4) is given by

histd ; h* = L/n, vistd ; Vsh*d, s6d

for all i =1, . . . ,n. In this paper we focus mostly on the case
n=3.

The main task now is to identify desirable properties of
the OV function Vshd and to estimate physical ranges for the
parameters. Since Vshd describes the uniform flow equilibria,

the following properties seem necessary from the modeling
point of view.

(1) Vshd is continuous, non-negative, and monotone in-
creasing.[Drivers wish to travel forward and the desired ve-
locity should increase smoothly as headway increases. Note
that if Vshd were to attain negative values, there would exist
unrealistic equilibria where vehicles reverse.]

(2) Vshd→v0 as h→`. [In the case of very large head-
way, the desired velocity should approach an upper limitv0.
This limit should be related to the legal speed limit.]

(3) There exists ajam headway hstopù0 such that Vshd
;0 for hP f0,hstopg. [If cars become too closely packed,
then drivers want to come to a full stop.] In our view, one
should takehstop strictly positive. Firstly, this is because real
vehicles have finite length, so that small positive headways
correspond to collisions, and secondly because real traffic
flows have a finite characteristic jam density at which traffic
comes to a complete stop.

Note that a further advantage of choosinghstop.0 is that
maximum principles may be used to show that vehicles do
not reverse underany (even dynamic) situations, for either
model(2) and(3). However, it is still possible for vehicles to
collide if other parameters are chosen appropriately.

In the original paper by Bandoet al. [2], the OV function
was given(in rescaled coordinates) by

VB1shd = tanhsh − 2d + tanhs2d. s7d

It may be shown that this OV function satisfies each of the
properties(1)–(3) above, although withhstop=0, which we do
not regard as suitable. The later paper[6] uses a dimensional
OV function of the form

VB2shd = 16.8ftanh„0.086sh − 25d… + 0.913g, s8d

which was fitted to Japanese highway traffic data. Hereh is
measured in meters and Vshd in meters per second. It may be
shown thathstop.7.0319 m andv0.32.1384 ms−1. How-
ever, VB2shd is a poor model for small headways since it is
negative forhP f0,hstopg. Thus properties(1)–(3) are satis-
fied by the OV function

VB3shd = maxf0,VB2shdg. s9d

The numerical continuation method used in this paper re-
quires the continuous differentiability of the model’s right-
hand side in terms of its dependent variables. Since VB38 shd is
not continuous ath=hstop, we must use a different OV func-
tion. Our goal is therefore to choose an OV function Vshd
which satisfies properties(1)–(3) with hstop.0 and for which
V8shd is continuous. The OV function should also have the
correct S shape, i.e., we require V8shd to have a single maxi-
mum strictly to the right ofhstop.

Our approach is to first nondimensionalize(3). Since we
assume thatt ,hstop.0, we may introduce the rescaled vari-

ables t̃ : = t /t and h̃: =h/hstop. All speed-like quantities(in-
cluding the OV function) have rescalings of the formṽ
=vt /hstop. To simplify notation we remove tildes, so that the
rescaled version of(3) becomes
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v̇istd = afV„hist − 1d… − vistdg. s10d

Table I suggests ranges for dimensional parameters and
Table II gives the nondimensionalized counterparts.

Note that the equilibrium may still be written in the form
(6) using rescaled quantities. The rescaled OV function Vshd
has the following properties.

(1) Vshd is continuous, non-negative, and monotone in-
creasing.

(2) Vshd→v0 ash→`.
(3) Vshd;0 for hP f0,1g.
The remainder of this paper uses the rescaled OV function

Vshd = 5 0 0 ø h ø 1,

v0 fsh − 1d/sg3

1 + fsh − 1d/sg3 h . 1,
s11d

which satisfies properties(1)–(3) above, has the requisite
shape, and is smooth ath=1. This OV function possesses
two nondimensional parameters, namelyv0 and s. The
former is determined by the dimensional version ofv0 and
the applied rescaling. However,s is a wholly new parameter
that describes how the OV function is stretched to the right
of h=1. In this paper we chooses=1; the parameters may be
varied to shift the value ofh at which V8shd attains its maxi-
mum.

Figures 2(a) and 2(b) compare(11) and its derivative
(solid curves) with the the rescaled version of the OV func-
tion VB3shd (9) (dashed curves). For comparison, we have
also included a plot of the OV function

VSshd = v0s1 − 1/hd s12d

(dashed-dotted curves), which does not have an S shape for
h.1.

III. LOCAL BIFURCATIONS

Bandoet al. [2,6] and many subsequent papers have ex-
plained traffic jam formation in terms of the loss of linear
stability of the equilibrium(6) to oscillations. Here we per-
form a linear stability analysis of(10), which is a DDE sys-
tem and yields a more complicated characteristic equation
than for ODE models.

Defining the perturbed solution

r istd: = histd − h* , s13d

and using the Taylor series expansion of Vshd aroundh* in
the third order ofr istd, Eq. (10) gives the differential equa-
tion system

v̇istd = − avistd + aV8sh*dr ist − 1d +
1

2
aV88sh*dr i

2st − 1d

+
1

6
aV888sh*dr i

3st − 1d. s14d

In addition, the kinematic condition(1) can be written in the
form

ṙ istd = vi+1std − vistd. s15d

In Eqs. (14) and (15) we model the circular road by identi-
fying the sn+1d-th vehicle with the first one.

We now consider the linear part of Eq.(14) and use the
trial solution

TABLE I. Dimensional parameters with estimates of their
ranges.

Name Symbol Estimated values

Reaction/reflex time t 0.5–2 s

Relaxation time T=1/a 0.5–50 s

Sensitivity a 0.02–2 s−1

Desired speed v0 10–35 ms−1

Jam headway hstop 2–15 m

Average headway h* =L /n ¯

TABLE II. Nondimensionalized parameters and their ranges.

Name Symbol and Definition Estimated values

Sensitivity ã=ta=t /T 0.01–4

Desired speed ṽ0=v0t /hstop 0.33–35

Average headway h̃* =h* /hstop
¯

FIG. 2. Three different rescaled optimal velocity(OV) functions
with an enlargement of the region aroundh=1 (a), and the deriva-
tives of the OV functions with respect toh (b).
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r istd = cie
lt, s16d

wherel ,ci PC, for i =1, . . . ,n, to obtain the linear homoge-
neous equation

Dsld3c1

A
cn
4 = 0, s17d

whereDPCn3Cn. The characteristic equation is given by

Dsld = detDsld = fl2 + al + aV8sh*de−lgn − faV8sh*de−lgn

= 0. s18d

To obtain the neutral stability curves, we substitute the criti-
cal eigenvaluel=iv, vPR into Eq. (18) and after taking
real and imaginary parts, and some further calculation, we
find that

V8sh*d =
v

2 cossv − kp/nd sinskp/nd
,

a = − v cotsv − kp/nd, s19d

wherek=1, . . . ,n−1 is introduced by taking thenth root of
unity.

By substituting(19) into Eq.(17), we may find the eigen-
vector components

ci = expSi
2pk

n
iD , s20d

which show thatk is the discrete spatial wave number of
oscillations along the ring. Note that we have omitted the
discussion of thek=0 (spatially independent) mode, since it
violates the constraint

o
i=1

n

ri = 0, s21d

implied by (5).
Further, note that ifsv ,kd solves (19), then so does

s−v ,n−kd. Here we chose to work withv.0 and the full set
of k. Alternatively, one could work with generalvPR and
restrict attention tok=1, . . . ,n/2 (even n) or k=1, . . . ,sn
−1d /2 (odd n).

Next, note that Eqs.(19) describe branches of curves in
the fV8sh*d ,ag parameter plane, which are parametrized by
the frequencyv. Since we requirev ,a ,V8sh*d.0, for each
k, we find a sequence of feasible intervals

v P S−
p

2
+

kp

n
+ 2lp,

kp

n
+ 2lpD ù R+,l = 0,1,2, . . .

s22d

Each interval ofv traces out a different stability curve.
Hence, we have a two-parameter family of stability curves
described byk=1, . . . ,n−1 and l=0,1,2, . . ..

We now focus on the case ofn=3 cars, whereh* =L /3
and wave numbersk=1,2 describe the same spatial pattern,
i.e., one wave along the ring. It may be shown that thek

=1, l =0 curve, which is parametrized byvP s0,p /3d and
depicted in Fig. 3(a), is the left-most curve in thefV8sh*d ,ag
plane found by the above theory. This curve has a monotone
shape with a vertical asymptote at Vas8 =pÎ3/9, .0.6046.

By considering largea, one may apply the infinite dimen-
sional Routh-Hurwitz criteria(see Stépán[13]), to show that
the uniform flow equilibrium is stable to the left of this curve
[shaded region in Fig. 3(a)] and linearly unstable in a neigh-
borhood of the right of the curve. It is also possible to show
that all other curves are destabilizing in that, as they are
crossed from left to right, further eigenvalues move into the
right-hand half plane. Hence, thek=1, l =0 curve divides the
fV8sh*d ,ag plane into regions where the uniform flow state is
linearly stable or unstable. When crossing this curve from the
stable to the unstable region, a complex conjugate pair of
eigenvalues crosses the imaginary axis at ±iv and a Hopf
bifurcation takes place(see, e.g.,[14–16]). Locally this gives
a small amplitude oscillatory solution with frequencyv. The
Hopf bifurcation is called supercritical if the oscillating so-
lution is stable, and subcritical if it is unstable.

Our main interest is to convert Fig. 3(a) to a stability
diagram in the headway-sensitivitysh* ,ad plane, when we
choose the OV function Vshd given by(11) with s=1. In this
case V8shd has a single maximum over the intervalh
P f1,`d [solid line in  Fig. 2(b)]. Hence, the sh* ,ad stability
diagram  can  be  obtained  from  the  fV8sh*d ,ag diagram by
a kind of nonlinear foldingabout a vertical line whose ab-
scissa corresponds to the maximum value Vmax8 of V8shd [see
Figs. 3(b) and 3(c), where the shaded regions are stable]. For
Vshd given by (11) with s=1, we have Vmax8 =s2Î32/3dv0,
.0.8399 v0. Hence, two qualitatively different cases of dia-
grams in thesh* ,ad plane are possible:

(1) In the first case shown in Fig. 3(b), the maximum
value Vmax8 is to the left of the asymptote Vas8 on the
fV8sh*d ,ag plane. This corresponds tov0&0.7198. In this

FIG. 3. Stability charts of the three-car system, where shading
denotes  the  stable  region.  (a) Slope  of  the  OV  function  V8sh*)   vs
sensitivity  a;  average  headway  h*  vs  sensitivity  a  for  v0=0.6 (b), 
and for  v0=0.8 (c).  (This  corresponds  to V max8 .0.504  and Vmax8 .
0.672, respectively).
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case, there is a critical sensitivity,acrit, such that fora.acrit,
uniform flow equilibria are stable for all values of headway
h* . For a,acrit, there is a bounded interval of headwayh*

corresponding to unstable equilibria.
(2) In the second case shown in Fig. 3(c), the maximum

value Vmax8 is to the right of the asymptote Vas8 on the
fV8sh*d ,ag plane. This corresponds tov0*0.7198. In this
case, foranyvalue ofa there is an unstable interval of head-
way h* . It is not possible to stabilize all uniform flows by
increasinga.

In the case without delay(that is, fort=0), the stability
region in thesh* ,ad plane takes the shape in Fig. 3(b) gen-
erally (see, e.g.,[2,3]). A situation like Fig. 3(c), where the
unstable region is unbounded above, is not possible.

Returning to the model with delay, in either of the two
cases above, decreasinga (or increasingv0) increases the
size of the unstableh* interval, with the left-hand end point
approaching 1, and the right-hand end point approaching +`,
asa→0.

When we consider different values of the scaling param-
eters the stability charts shown in Figs. 3(b) and 3(c) do not
change qualitatively. Here Vmax8 =s2Î32/3sdv0, .s0.8399/sdv0

for generals, which only yields quantitative changes.
The qualitative picture for OV functions VB3shd (9) and

VSshd (12) is similar, except for the following. For the func-
tion VSshd, the left-hand end of the unstableh* interval is
fixed ath* =1 for all a for which there is instability. For the
function VB3shd, the left-hand end point of the unstableh*

interval attainsh* =1 for positivea. These features are due to
the discontinuities in the functions VB38 shd and VS8shd at h*

=1 and the fact that VS8shd also has its maximum ath* =1+.
We now briefly summarize the results of an analysis of

the local Hopf bifurcation, more details of which may be
found in Orosz and Stépán[7]. That technique allows one to
determine the amplitude of the bifurcating orbit and whether
the Hopf bifurcation is sub- or supercritical. The calculations
are based on third-order Taylor expansion of the nonlinearity
and give the first Fourier approximation of the oscillating
solution, which is valid close to the bifurcation point.

Hopf calculations for DDEs are more complicated than
for ODEs, because delay extends the dimension of the phase
space to infinite(see Stépán[13], and Campbell and Bélair
[17]). An added problem for the traffic model considered
here is the translational symmetry along the ring, which im-
plies a singularity in the Jacobian operator at the equilibrium,
yielding further technical difficulties. This analysis is trac-
table only in the case ofn=2 cars, but it illustrates that the
criticality of the Hopf bifurcation is highly dependent on the
properties of the chosen OV function.

Denoting the value ofh* at the Hopf bifurcation point by
hcr

* , the Lyapunov coefficient can be computed as

d =
V888shcr

* d
8fV8shcr

* dg3a2

sa2 + v2dsa2 + a + v2d
s2 + ad2 + sa/v − vd2 . s23d

When d.0 (resp.d,0) there is a subcritical(resp. super-
critical) bifurcation. Since all other quantities are positive in
the above expression, the sign ofd is determined by the sign
of V888shcr

* d. This means that the third derivative of the OV

function (whose sign is not obvious from a glance at the
graph) plays an essential role in determining the global be-
havior of the system.

The amplitude of the headway oscillations can be com-
puted as

A = 2Î−
2V88shcr

* d
V888shcr

* d
sh* − hcr

* d, s24d

and the bifurcating oscillation in headway is described by the
formula

Fr1std
r2std G = AF− 1

1
Gsinsvtd, s25d

where the vectorf−1,1gT corresponds to the real part of(20)
with k=1.

IV. CONTINUATION ANALYSIS

In this paper we perform a bifurcation analysis of an op-
timal velocity traffic model with driver reaction time. The
basic idea is to find a bifurcation(a parameter value where
the dynamics changes qualitatively) and then follow or con-
tinue either the bifurcating solution or the bifurcation condi-
tion as parameters are changed. While it is not as straightfor-
ward as numerical simulation, bifurcation analysis is a
powerful tool in that it allows one to map out the dynamics
of a system in a systematic and efficient way. This approach
is well established for systems modeled by ODEs and has
been applied successfully in many areas of application(see,
e.g.,[14–16] as entry points to the extensive literature).

Dealing with a system with delay results in technical dif-
ficulties, due to the fact that the phase space of a DDE is
infinite dimensional. For example, the linearizations around
steady states and oscillating solutions are infinite-
dimensional operators instead of matrices. This means that
standard continuation software for ODEs, such asAUTO [9],
cannot be used. However, recently, the packageDDE-

BIFTOOL, which works under Matlab, was developed by En-
gelborghset al. [10,11]. This software uses truncated matri-
ces of appropriate sizes instead of operators, and is able to
find and follow equilibria and oscillating solutions in DDEs
even when they are unstable. Furthermore, it allows one to
detect local bifurcations, where a solution changes its stabil-
ity. In our model we find the Hopf bifurcation(where small
amplitude oscillations are born) and the fold bifurcation of
oscillating solutions(when two oscillating solutions of dif-
ferent stabilities merge and disappear).

DDE-BIFTOOL has not yet been used extensively in appli-
cations; examples of its use include the study of semiconduc-
tor laser systems(see Green and Krauskopf[18], and Hae-
gemanet al. [19]). We use it here to investigate the dynamics
of the smooth OV function(11) with s=1 [solid line in Fig.
2]. Specifically, we follow branches of steady states and os-
cillating solutions and detect bifurcations when changing the
parameterh* for different values ofa andv0. The results are
shown in Figs. 4–7. In the respective bifurcation diagrams
the horizontal axis represents the equilibrium state. A solu-
tion is stable when plotted as a bold curve and unstable when
dashed.
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The branch of equilibria is unstable between two Hopf
bifurcation points(denoted by* ), in accordance with the
results in Figs. 3(b) and 3(c). The bifurcating branches of
oscillating solutions are represented by the amplitude of os-
cillation of the vehicles’ velocitiesvi

amp=svi
max−vi

mind /2,
which is the same for all carssi =1,2,3d.

A. Oscillation and collision

Let us first concentrate on the continuation results when
the parametera is changed and the parameterv0 is fixed to
v0=0.35. This value ofv0 gives qualitatively the stability
behavior as shown in Fig. 3(b). For large values ofa the two
Hopf bifurcations are supercritical, as shown in Fig. 4(a).
The computation of the bifurcating oscillating solution
shows a stable oscillation branch above the unstable part of
the equilibrium. We remark that the unstable part of the equi-
librium disappears for extremely largea [see Fig. 3(b)]: the
two Hopf bifurcation points come together and disappear,
leaving the equilibrium stable for allh* .

Decreasinga, the right Hopf point becomes subcritical,
i.e., the right-hand side of the branch of oscillating solutions
turn to unstable. Where the stable and unstable parts meet, a
fold bifurcation takes place(marked by3) as depicted in
Fig. 4(b). Hence, a bistable area appears to the right of the
right-most Hopf point, which means that the system tends to
the oscillatory state or to the equilibrium, depending on the
initial condition. We remark that this bistability has been
found by numerical simulations in several car-following
models[1], but we show that even a simple OV model as
described here displays this effect for adequate values of
parameters. When decreasinga further, the branch of oscil-
lating solutions grows, as is visualized in Fig. 4(c), thus the
bistable area becomes wider.

We marked some points A–C on the branch in Fig. 4(c)
and display the associated time profiles in Figs. 5(a)–5(c).
We show the velocity(solid curve) and the headway(dashed
curve) over one oscillation period for the first car.(The plots
are the same for all cars, except for a time shift.)

Note that in case A vehicles nearly stop, and in case C  the
maximum speed is close to the desired speedv0. Otherwise,
there  is  no  qualitative  change  between  cases  A–C.  In ad-
dition,  one  can  see  that  the  oscillations  of  the  headway  are
more  harmonic  than  those  of  the  velocity,  that  is,  they  are
quite well approximated by the first term of the  Foutier  ex-
pansion.

Reducinga further, two interesting things happen as is
visible in Fig. 4(d). First, an unstable part appears on the
left-hand side of the branch of oscillating solutions(new
dashed section) bounded by twofold bifurcations. This re-
sults in a second bistable region in the parameterh* , where
two different stable oscillations coexist, one with a smaller
and one with a larger amplitude. Asa is decreased further,

FIG. 4.  Amplitude of oscillations of the velocity of the ith car vs
average headwayh* . The horizontal axis represents the equilibrium
state. Solid curves denote stable, and dashed curves denote unstable
states; the dotted curve represents the collision region. The value of
a is depicted in each panel(a)–(d) andv0=0.35 in all panels.

FIG. 5. Oscillations of the velocity of the first car over one
period, shown as solid curves to the scale on the left-hand side,  and
oscillations of the headway of the first car over one period, shown as
dashed curves to the scale on the right-hand side. Cases A–F corres-
pond to the marks in Fig. 4.
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the lower fold point tends to the left Hopf point, but does not
reach it even whena is close to zero.

The second noticeable change in Fig. 4(d) is that the
headway crosses zero durins its oscillation along the dotted
section of the oscillating branch: cars move “through one
another”. Clearly the model is not valid in this situation, as
collisions are not taken into account. We marked some points
D–F on the branch of oscillating solutions and displayed the
respective oscillations of the velocity and the headway in
Figs. 5(d)–5(f). One can see in case D that the vehicles
nearly stop and in case F they nearly reach the maximum
speed[Figs. 5(d) and 5(f)]. Furthermore, in cases D and E
[Figs. 5(d) and 5(e)] cars touch each other, because these
points are on the edge of the collision region as shown in
Fig. 4(d). Reducinga further, this collision section becomes
larger and finally covers the entire stable part of the branch.

The height of the branch of oscillating solutions changes
proportionally with v0, because drivers want to reach the
desired speed even during oscillations. Fixinga=0.1 and
changing v0, we obtain a series of bifurcation diagrams
shown in Fig. 6. When increasingv0, we observe the same
qualitative changes as in Fig. 4. However, we did not en-
counter collisions, but they may occur at higherv0. In fact,
high desired speed, which is usually controlled by a given
speed limit, can cause oscillations. We remark that in the
above cases we showed that collisions may happen even for
moderatev0.

B. Stopping motion

We present the results in the rangea*0.4 of the sensi-
tivity parameter to discover different bifurcation behavior.
Note that here the relaxation time 1/a is small, hence large
acceleration can be achieved(the case of “rocket cars”). If
we changev0 in this regime ofa (for example, fora=1.0),

then we again get a series of growing branches of oscillating
solutions and qualitatively the same branches as we obtained
in Figs. 6(a)–6(c). However, instead of the behavior in Fig.
6(d), we experience the dynamics depicted in Fig. 7(a). On
both sides of the branch of oscillating solutions, the same
type of bistability appears, namely an unstable section of the
branch of oscillating solutions between a fold and a subcriti-
cal Hopf bifurcation.

An important qualitative difference is that vehicles stop in
one section of oscillations while there are no collisions[see
time profiles Figs. 7(c)–7(e) belonging to the marked points
G–I of the oscillation branch]. This is due to the large accel-
eration. In fact, only for extremely large values ofv0, colli-
sions appear in this regime of largea.

The stopping section is the largest in case G, is smaller in
case H, and disappears in case I. However, in case H the
maximum speed nearly reaches the desired speed. The col-
lective motion of the system is a stop-and-go traffic jam: the
congestion consisting of standing vehicles propagates up-
stream along the ring, because cars leave the jammed region
at the front and enter at the back. Note that in the case of

FIG. 6. Amplitude of oscillations of the velocity of theith car vs
average headwayh* . The horizontal axis represents the equilibrium
state. Solid curves denote stable and dashed curves denote unstable
states. The value ofv0 is depicted in each panel(a)–(d) and a
=0.1 in all panels.

FIG. 7. Stopping motion forv0=1.0 anda=1.0. (a) Amplitude
of oscillations of the velocity of theith car vs average headwayh* .
(b) Equilibrium  state  Vsh*)  (upper curve),  and  minimum  of  the

vi
minvelocity  oscillations  of  the  ith  car           (lower curve)  vs  average

headway h* . In panels (a) and (b) solid curves denote stable,  and
dashed curves denote unstable states. Panels (c)–(e) show oscilla-
tions of the velocity of the first car over one period as solid cur-
ves  to  the  scale  on  the  left-hand  side,  and  oscillations  of  the  head-
way  of  the  first  car  over  one  period  as  dashed  curves  to  the  scale
on the right-hand side.  Cases G–I correspond to the marks in panels
(a) and (b).
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three cars this jam is not pronounced, but the qualitative
features of the oscillations are exactly the same as in the
many-car case. We depict the equilibrium state and the mini-
mum of the oscillations in Fig. 7(b), where the minimum
curve practically coincides with the horizontal axis in a large
region in the parameterh* . This shows that here, the stopping
motions are typical system behavior.

C. Two-dimensional bifurcation diagrams

The information concerning the dynamics of our model
was presented in the previous sections, for example in Fig. 4,
by plotting the amplitude of the oscillations as a function of
the control parameterh* for different fixed values ofa (and
fixed v0). In this way we detected points of bifurcation,
where the dynamics changes qualitatively.

We now present this information in Fig. 8 in a more con-
cise way as a two-dimensional bifurcation diagram in the
sh* ,ad plane (for fixed v0). Specifically, we show solid
curves of Hopf bifurcation, dashed curves of fold bifurcation
of oscillating solutions, gray curves of first collision, and
dotted curves of first stopping. These curves divide the
sh* ,ad plane into regions of qualitatively different behavior.
In this representation, the diagrams we showed earlier corre-
spond to horizontal cross sections for the fixed values ofa
that are indicated in Fig. 8 by dotted horizontal lines. We
show the bifurcation diagram in thesh* ,ad plane for three
representative values ofv0, namely for 0.35, 0.65, and 1.0.

The Hopf curves are the only curves that can be computed
directly with DDE-BIFTOOL. Folds can only be detected by
this software, and the fold curves were found by a script that
detects a suitable number of individual fold points for(about
50) different values of the parametera. In a similar ap-
proach, the collision curve was found by detecting points
where the headwayh1 of the oscillating solution first crosses
zero. Similarly, the stopping curve was found by detecting
when the velocityv1 first becomes(approximately) zero; in
practice we used the criterion thatv1,0.01 because the ve-
locity never actually attains zero in the numerical represen-
tation.

We now discuss the results in Fig. 8 in some detail. For
v0=0.35 [Fig. 8(a)] the Hopf curve is one single curve as in
Fig. 3(b) (the top of the curve is not visible in the chosen
window of a). There are fold curves on the right and on the
left. The fold curve on the right starts at a degenerate Hopf
point DHr and approaches theh* axis as shown. Above DHr
the Hopf bifurcation is supercritical and below DHr it is
subcritical. The region between the Hopf and the fold curve
is thus identified as a region of bistability, where the equilib-
rium and a stable oscillating solution coexist. On the left-
hand side, the Hopf bifurcation is always supercritical and
the bistability appears via a cusp bifurcation, where two fold
curves are born[see the inset of Fig. 8(a)]. The two fold
curves end at the pointss0.0,0.0167d and s1.0,0.0d, respec-
tively. The region between the two fold curves is a region of
bistability. The Hopf curve divides this region into two sub-
regions, in which the one on the left corresponds to the co-
existence of an equilibrium and a stable oscillating solution,
while the very small region on the right corresponds to the

coexistence of two stable oscillating solutions; compare Fig.
4(d). For v0=0.35 there is no stopping motion, but we find
the gray curve of the first collision cutting across the bifur-

FIG. 8. Two-dimensional bifurcation diagrams for different val-
ues ofv0 as indicated. The horizontal dotted lines in panels(a) and
(c) correspond to the values ofa used in Figs. 4 and 7(a),
respectively.
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cation diagram. For any value ofsh* ,ad below this curve
collisions occur, which means that there are no collisions for
a*0.0805. The individual panels of Fig. 4 correspond to
horizontal cross sections through Fig. 8(a) at the indicated
values ofa. In particular, Fig. 4(d) features collisions for
values ofh* from the section between the two intersection
points with the collision curve. This section becomes larger
as a is decreased further. Where the collision manifold is
tangent to the fold curve, collisions occur over the entire
branch of stable oscillating solutions.

For v0=0.65 [Fig. 8(b)] the bifurcation diagram is quali-
tatively the same as forv0=0.35, except for two differences.
First, the cusp point is gone and two degenerate Hopf points
DHl1 and DHl2 are now the end points of the two fold curves
on the left.(This change happens for a specific value ofv0

when the cusp point reaches the Hopf curve ata.0.4.) The
Hopf bifurcation is subcritical between these two degenerate
Hopf points and supercritical otherwise. Coexisting stable
oscillating solutions exist only in the tiny region between the
Hopf curve and the fold curve below DHl1. In the much
larger region between the other fold curve and the Hopf
curve below DHl2, there is coexistence between the stable
equilibrium and stable oscillations. The collision domain is
qualitatively the same but it is now a bit larger; its top is at
a.0.227. The other new feature is the existence of stopping
motion on the domain bounded by the left fold curve and the
dotted stopping curve. The curve of first stopping appears to
start at the point DHl2 and connect to a point on the left-most
fold curve. This suggests that stopping motion is born when
the cusp disappears.

For v0=1.0 [Fig. 8(c)] there are now two vertical asymp-
totes of the two Hopf curves as in Fig. 3(c), meaning that the
unstable area is now unbounded ina. Compared with the
situation forv0=0.65, the points DHl2 and DHr moved up in
a and out of our window, “dragging” the associated curves
with them. In fact, these points have disappeared so that the
fold curves and the stopping curve also now have vertical
asymptotes.(We found that all vertical asymptotes develop
for v0.0.7198.) In other words, Fig. 8(c) is qualitatively the
same as Fig. 8(b) for, say,a&0.7. Notice how the stopping
region is now much larger. The indicated horizontal section
corresponds to Fig. 7(a), which indeed showed a large sec-
tion of stopping motion. Furthermore, the collision domain is
also much larger; its top is ata.0.61.

When considering different values of the scaling param-
eters, the only qualitative change is that the cusp point may
be below the collision curve. For the OV functions VB3shd
(9) or VSshd (12), one can obtain similar branches of oscil-
lating solutions as above, although the dynamics may be
nonsmooth and thusDDE-BIFTOOL may run into difficulties.

V. CONCLUSION AND DISCUSSION

We presented a complete overview of the possible dynam-
ics of the traffic model under consideration, in terms of all
the relevant control parameters. To this end, we employed
computational techniques and ideas from bifurcation theory.
Our results show that even a simple delayed OV model with
varying parameters can display many interesting features.

Specifically, we investigated the stability and the local
Hopf bifurcations of the equilibrium, and used numerical
continuation techniques to explore the bifurcations of the
branches of oscillating solutions. We showed that, typically,
an interval ofh* values exists in which the uniform flow
solution is unstable. This region becomes larger when in-
creasing the desired speedv0 or the relaxation time 1/a. We
then explored the oscillating solutions of the system by using
continuation techniques, which showed that there are regions
of bistability near the onset of oscillations; for example, be-
tween the uniform flow solution and oscillations. The differ-
ent regions of behavior of the system were presented in a
concise way in a bifurcation diagram in thesh* ,ad plane(for
fixed v0). In this bifurcation diagram we also identified the
curves of (first) stopping and of(first) collision during an
oscillating solution. While collisions occur for sufficiently
small a, a region of stopping motion only occurs for suffi-
ciently largev0.

The next step is to use the approach taken here to perform
bifurcation studies in more general situations. Here we kept
to the case of three cars to present key phenomena in the
simplest possible setting. A first exploratory investigation for
four and five cars indicates that increasing the number of cars
n results in no change in the qualitative structure of the sta-
bility diagram. While this number of cars may still appear
small compared to real traffic situations, it nevertheless al-
lows one to gain mathematical insight concerning the limit of
a large numbers of cars. However, quantitative information
concerning asymptotes changes and, asn is increased, we
gain additional Hopf bifurcation curves for wave number
valuesk.2. Note that these extra bifurcation curves corre-
spond to additional spectrum crossing into the right half
plane when the uniform flow solution is already unstable. A
bifurcation analysis of then-car situation, especially the pos-
sibilities of interactions of different oscillating modes, is in
progress.

We stress that numerical bifurcation techniques could be
applied to extend the understanding of other car-following
models incorporating delay(see Holland[20] for a list, and
more recently, Lenzet al. [21], Nagatani[22], Wilson [23],
and Sawada[24]). In some cases(see, e.g., Igarashiet al.
[12], which discusses the Newell model), bistability has al-
ready been observed using numerical simulation techniques.
The tools that were discussed here give more efficient meth-
ods for tracing out the key boundaries in parameter space
(e.g., the characterization of bistability regions). Finally, we
remark that chaos has been found in car-following models
with delay by using numerical simulation; see Low and Ad-
dison [25], and Safonov et al. [26]. Numerical continuation
techniques might, in the future, be applied to these models to
gain concise information about the routes to chaos.
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