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Global bifurcation investigation of an optimal velocity traffic model with driver reaction time
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We investigate an optimal velocity model which includes the reflex time of drivers. After an analytical study
of the stability and local bifurcations of the steady-state solution, we apply numerical continuation techniques
to investigate the global behavior of the system. Specifically, we find branches of oscillating solutions con-
necting Hopf bifurcation points, which may be super- or subcritical, depending on parameters. This analysis
reveals several regions of multistability.
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. INTRODUCTION 0i(t) = o[V (hi(t - 1) —v;(D)]. (3)

The aim of this paper is to begin a systematic global in-Here 7 is thereaction timeof the drivers, which is assumed
vestigation of the dynamics of car-following models of high- o be the same for all drivergNote thatr is different from
way traffic, which include explicitly the reaction-time delay the characteristicelaxation time E1/« for adjustment of
of drivers; see Helbingl] for a recent large-scale review of the vehicles’ velocities, used by some auth®s3].) To-
the modeling of highway traffic. gether(1) and(3) give a system of delay differential equa-

Car-following models describe vehicles as discrete entitions (DDEs) for the vehicles’ motions. Mode3) has re-
ties moving in continuous time and continuous one-cently been investigated with numerical simulation by Davis
dimensional spacdane-changing effects are ignojetiiere 4 5. The case wheréthe samg delay occurs both in the
we assume that vehicles have identical Characteristics, thaﬁvers' perceptions of their headway and in their perceptions
their positions are denoted by, their velocities byv;, and  of their own velocities, was considered by Baretoal. [6].
their relative displacementsalledheadwaygby h; [see Fig.  |n our view, it is more realistic to suppose that drivers know

1]. their speed, i.e., they react to that instantaneously, but they
Each car-following model consists of the kinematic con-react only to their headway via the delay
ditions The above OV models admit a one-parameter family of
. steady-stat@iniform flowsolutions of the form
hi(t) = visa(t) —vi(t), (1) X X
h®=h, v®=Vh), 4)

where the dot denotes derivation with respect to time, to- .

gether with a law that gives acceleratiansas a function of ~ for all i and for any constarit > 0. Previous studies in both
stimuli. These stimuli are typically headways and velocities /ODE and DDE settings have been concerned with the linear
relative velocities of nearby vehicles. A famous example isstability computation of these uniform flow solutions and
the so-called Optimal VelocityOV) model introduced by numerical simulation when the flow is unstable. The loss of

Bandoet al. [2], wherethe acceleratiorof theith vehicleis  linear stability of uniform flow solutions is widely accepted
given by as a cause of traffic jan4].
We begin in Sec. Il by discussing details of the OV
vi(t) = o V(h(1)—vi(t)]. (2) model. Then, as in previous papers, in Sec. Il we give the

linear stability calculation of the DDE systefh) and(3) for
the uniform flow (4), and compute the neutral stability
turves in theh”, @) plane. We then summarize the results of
the weakly nonlinear analysidor details, se€7]), which
indicate that uniform flow may lose stability via either sub-

Herea>0 is known as thesensitivityand M(h) is known as
the OV function. In this case the drivers’ responses to stimul
are instantaneous, hen¢® and (2) constitute a system of
ordinary differential equation€ODES9 for the vehicles’ mo-

tions.
This paper is concerned with the OV model when drivers . ) )
do not react instantaneously to their headways, so that th, ——— —2 T,
acceleration of théth vehicle is given by ) ) ) N
Tzi-1 x; Tit+1
hi =zi41 — =
*Electronic address: g.orosz@bristol.ac.uk
"Electronic address: re.wilson@bristol.ac.uk FIG. 1. Sequence of cars on a single-lane road showing their

*Electronic address: b.krauskopf@bristol.ac.uk positions, velocities, and headways.
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or supercritical Hopf bifurcations. The presence of a subcritithe following properties seem necessary from the modeling
cal bifurcation indicates the possibility of the coexistence ofpoint of view.
stable solutions in a bistability region. (1) V(h) is continuous, non-negative, and monotone in-
In Sec. IV we employ numerical continuation techniquescreasing[Drivers wish to travel forward and the desired ve-
to investigate efficiently the branches of oscillating solutionsocity should increase smoothly as headway increases. Note
far from bifurcation. The basic idea is to find a parameterthat if V(h) were to attain negative values, there would exist
value where the dynamics change qualitatively; for exampleunrealistic equilibria where vehicles reveise.
where the steady state becomes unstable. It is then possible (2) V(h) —v°% ash— . [In the case of very large head-
to follow or continue the bifurcating oscillating solution or way, the desired velocity should approach an upper liffit
the bifurcation itself in several parameters; see Sec. IV forrhis limit should be related to the legal speed limit.]
more information on numerical continuation. (3) There exists aam headway §,,=0 such that \th)
While numerical continuation for ODE systems is well =g for he [0,hggl. [If cars become too closely packed,
establishedsee, e.g.[8] and [9]), its implementation for  then drivers want to come to a full stypn our view, one
DDE systems is much more recent. Our computations arghould takehg, strictly positive. Firstly, this is because real
done with the packagepe-8IFTOOL [10,11, which is able to - yehjcles have finite length, so that small positive headways
find and follow branches of steady and oscillating states ircorrespond to collisions, and secondly because real traffic
respective of their stability. flows have a finite characteristic jam density at which traffic
To simplify these calculations and the exposition, we re-comes to a complete stop.
strict ourselves to the situation with=3 cars on a closed Note that a further advantage of choosimg,,> 0 is that
ring. Nevertheless, this case is general enough to identify,aximum principles may be used to show that vehicles do
many general features; in particular, the existence of severglot reverse undeany (even dynamig situations, for either
regions of bistability where stable oscillating solutions CoeX-model(2) and(3). However, it is still possible for vehicles to
ist either with a stable uniform flow State, or with other non- collide if other parameters are chosen appropriate'y_
trivial stable oscillating solutions. This is presented in a con- | the original paper by Bandet al. [2], the OV function

cise way in a two-dimensional parameter space to get @as given(in rescaled coordinatgby
global overview of the regions of coexisting attractors. Fur-

thermore, we consider a collision manifold, a stopping mani- Vgy(h) =tanHh - 2) + tank(2). (7)
fold, and their interaction with the two-dimensional bifurca-
tion diagram(see Sec. IV ¢ It may be shown that this OV function satisfies each of the

We note that bistability has been demonstrated by Igarasigropertieg1)~(3) above, although withg,,=0, which we do
et al. [12] (in the Newell model, which includes delagnd  not regard as suitable. The later paf@ruses a dimensional
by Sugiyama and Yamada&] for model(2) (that is, without OV function of the form
delay using numerical simulation of the initial value prob-
lem. However, numerical continuation techniques give us a Vgo(h) = 16.4tanh(0.086h - 25)) + 0.913, (8)
more efficient way to characterize different regions of pa-
rameter space. which was fitted to Japanese highway traffic data. Here

Finally, in Sec. V, we present practical conclusions andmeasured in meters andM in meters per second. It may be
suggest possible extensions of this work. shown thathg,=7.0319 m andv®=32.1384 ms'. How-

ever, Vg,(h) is a poor model for small headways since it is
Il. DETAILS OF THE MODEL negative forh e [0,hgq,]. Thus propertieg1)—(3) are satis-

fied by the OV function
We consider a single-lane model without overtaking, as

shown in Fig. 1. To further simplify matters, we suppose that Vgs(h) = max0,Vg,(h)]. 9
n vehicles are placed on a circular road of lengttso that
| The numerical continuation method used in this paper re-
Sh=l 5) quires _the_continuous_ differentiability (_Jf the mc_)del’s r_ight-
v hand side in terms of its dependent variables. Singghy is
not continuous ah=hg,, we must use a different OV func-
It follows that thenth car follows the first car and we are able tion. Our goal is therefore to choose an OV functiofhy/
to defineh,=L-3"1h; so thath,=v,-v,. The equation of which satisfies propertigd)—(3) with hg,,>0 and for which
motion of theith car is governed by the delay equati@, V'(h) is continuous. The OV function should also have the
and theuniform flow equilibrium(4) is given by correct S shape, i.e., we requiré(¥) to have a single maxi-
« . mum strictly to the right ohg,
h®=h=L/n, vi(®)=Vh), (6) Our approach is to first no?ldimensionali@. Since we
foralli=1,... n. In this paper we focus mostly on the case assume that, hy,p>0, we may introduce the rescaled vari-
n=3. ablest: =t/r and h: =h/hgq, All speed-like quantitiegin-
The main task now is to identify desirable properties ofcluding the OV functiop have rescalings of the forra
the OV function \(h) and to estimate physical ranges for the =v7/hg,, To simplify notation we remove tildes, so that the
parameters. Since(Y) describes the uniform flow equilibria, rescaled version of3) becomes
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TABLE I. Dimensional parameters with estimates of their !
ranges.

Name Symbol Estimated values osf
Reaction/reflex time T 0.5-2s
Relaxation time T=1/a 0.5-50s 06k
Sensitivity a 0.02-2 st
Desired speed 00 10—35 mst
Jam headway Nstop 2-15m 04f
Average headway h"=L/n
o2}
vi(t) = o[ V(hi(t - 1)) —vi(1)]. (10

Table | suggests ranges for dimensional parameters an®o
Table Il gives the nondimensionalized counterparts. 12

Note that the equilibrium may still be written in the form
(6) using rescaled quantities. The rescaled OV functigh)V
has the following properties.

(1) V(h) is continuous, non-negative, and monotone in-
creasing. o4}
(2) V(h)—v° ash—os.
(3) V(h)=0 forhe[0,1]. . . ) )
The remainder of this paper uses the rescaled OV functior® o 1 2 3 4 5 6 7 8 ) 10

0.8}

h
0 O<hs<1, FIG. 2. Three different rescaled optimal velogi®V) functions
_ _ 3 with an enlargement of the region arouhd1 (a), and the deriva-
V(h) = OM 1, (1) tives of the OV functions with respect to(b).

1+[(h-1)/s]®
Ill. LOCAL BIFURCATIONS

which satisfies propertie€l)«3) above, has the requisite
shape, and is smooth at=1. This OV function possesses  Bandoet al. [2,6] and many subsequent papers have ex-
two nondimensional parameters, namely and s. The Plained traffic jam formation in terms of the loss of linear
former is determined by the dimensional versionvBfand  Stability of the equilibrium(6) to oscillations. Here we per-
the applied rescaling. Howevesjs a wholly new parameter form a linear stability analysis afL0), which is a DDE sys-
that describes how the OV function is stretched to the rightém and yields a more complicated characteristic equation
of h=1. In this paper we choose1; the parametesmay be  than for ODE models. _
varied to shift the value dfi at which V' (h) attains its maxi- Defining the perturbed solution
mum. o -

Figures 2a) and 2b) compare(1l) and its derivative (= h®-h, (13
(solid curves with the the rescaled version of the OV func- and using the Taylor series expansion dhyaroundh” in
tion Vgs(h) (9) (dashed curves For comparison, we have the third order ofri(t), Eq. (10) gives the differential equa-

also included a plot of the OV function tion system
. * 1 *
Vg(h) =v%1-1h) (12 vi(t) =—avi(t) +aV'(h)ri(t-1) + EaV”(h )ré(t-1)
- i 1 .
(dashed-dotted curvgswvhich does not have an S shape for + oV (MR- 1). (14)
h > 1 6 |
TABLE II. Nondimensionalized parameters and their ranges. }gri?dltlon’ the kinematic conditiol) can be written in the
Name Symbol and Definition  Estimated values Fi(t) = viea(t) = vi(b). (15)
Sensitivity a=ta=71/T 0.01-4 In Egs.(14) and (15) we model the circular road by identi-
Desired speed 79=0%7/ hgop 0.33-35 fying the (n+1)-th vehicle with the first one.
Average headway B =h"/hge We now consider the linear part of EQL4) and use the
P trial solution
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ri(t) = cieM, (16) @] (b)
where\,c; e C, fori=1,... n, to obtain the linear homoge- s
neous equation e 6
Cy 4
AN ¢ |=0, (17) . 2
Cn EV, % 1 2 3 b 4
whereA e C"X (", The characteristic equation is given by D 0 5
[a 4 C
D(\) =detA(N) =[A%+ an + aV'(h)e M= [aV'(h")e " 8
=0. (18) ¢
To obtain the neutral stability curves, we substitute the criti- 2 I
cal eigenvalue\=iw, w e R into Eq. (18) and after taking ' s
real and imaginary parts, and some further calculation, we :
: 0 1 L 0
find that 0 03 06 V,(h,,)o,g 0 1 2 L
* w
V'(h)= . , FIG. 3. Stability charts of the three-car system, where shading
2 codw = kar/n) sin(ka/n) denotesthe stableregion. (a) Slopeof the OV function V'(h") vs
sensitiviy «; averageheadwayh” vs sensitivity o for v°=0.6 (b),
a=-o collw - km/n), (199 andfor v°=0.8 (c). (This correspondgo V| ,~0.504and V,, , ~
wherek=1,... n—1 is introduced by taking theth root of 0672, respectively).
unity. =1, =0 curve, which is parametrized hy e (0,7/3) and

By substituting(19) into Eq.(17), we may find the eigen-
vector components

Ci= exp<

which show thatk is the discrete spatial wave number of
oscillations along the ring. Note that we have omitted th
discussion of thé&=0 (spatially independehimode, since it
violates the constraint

27K,
| |

(20)

n

2 ri=0, (21)
i=1

implied by (5).

Further, note that if(w,k) solves (19), then so does
(—w,n-Kk). Here we chose to work witte >0 and the full set
of k. Alternatively, one could work with generale R and
restrict attention tok=1,...,n/2 (evenn) or k=1,...(n
-1)/2 (oddn).

Next, note that Eqs(19) describe branches of curves in

the[V'(h"),a] parameter plane, which are parametrized by

the frequencyw. Since we requirew, a,V'(h") >0, for each
k, we find a sequence of feasible intervals

Kk

k
we(—z+—+2|77, —77+2|7T)0]R+,|=0,1,2,---
2 n n

(22)

Each interval ofw traces out a different stability curve.

depicted in Fig. &), is the left-most curve in thevV'(h"), a]
plane found by the above theory. This curve has a monotone
shape with a vertical asymptote af¥m3/9, =0.6046.

By considering larger, one may apply the infinite dimen-
sional Routh-Hurwitz criterigsee Stépafil3]), to show that
the uniform flow equilibrium is stable to the left of this curve

shaded region in Fig.(8)] and linearly unstable in a neigh-
orhood of the right of the curve. It is also possible to show
that all other curves are destabilizing in that, as they are
crossed from left to right, further eigenvalues move into the
right-hand half plane. Hence, thke 1, 1=0 curve divides the
[V'(h"), «] plane into regions where the uniform flow state is
linearly stable or unstable. When crossing this curve from the
stable to the unstable region, a complex conjugate pair of
eigenvalues crosses the imaginary axis ab and a Hopf
bifurcation takes placesee, e.g.[14-1§). Locally this gives
a small amplitude oscillatory solution with frequeney The
Hopf bifurcation is called supercritical if the oscillating so-
lution is stable, and subcritical if it is unstable.

Our main interest is to convert Fig(a8 to a stability
diagram in the headway-sensitivith", @) plane, when we
choose the OV function $h) given by(11) with s=1. In this
case V(h) has a single maximum over the intervhl
e[1,) [solidlinein Fig. 2(b)]. Hence, the {ha) stability
diagram can be obtained from the [Vh"), «] diagram by
a kind of nonlinear foldingabout a vertical line whose ab-
scissa corresponds to the maximum valye \of V'(h) [see
Figs. 3b) and 3c), where the shaded regions are sthffer
V(h) given by (11) with s=1, we have Y,,=(232/3)v°,

Hence, we have a two-parameter family of stability curves=0.83®v°. Hence, two qualitatively different cases of dia-

described bk=1,...,n-1 and I=0,1,2,....
We now focus on the case of=3 cars, wheréh'=L/3

and wave numberk=1,2 describe the same spatial pattern,

i.e., one wave along the ring. It may be shown that khe

grams in the(h", @) plane are possible:
(1) In the first case shown in Fig.(l3, the maximum
value Vj,, is to the left of the asymptote )Y on the

[V'(h"),a] plane. This corresponds t<0.7198. In this
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case, there is a critical sensitivity,;, such that fore> oy,  function (whose sign is not obvious from a glance at the

uniform flow equilibria are stable for all values of headway graph plays an essential role in determining the global be-

h*. For a< a.y, there is a bounded interval of headwiay  havior of the system.

corresponding to unstable equilibria. The amplitude of the headway oscillations can be com-
(2) In the second case shown in FigcB the maximum  puted as

value V., is to the right of the asymptote [V on the —

[V'(h"),a] plane. This corresponds t?=0.7198. In this A=2\/— 2V (hcr)(h* _h) (24

case, foranyvalue ofa there is an unstable interval of head- V' (h) o

way h'. It is not possible to stabilize all uniform flows by

increasin and the bifurcating oscillation in headway is described by the
ga.

In the case without delagthat is, for 7=0), the stability formula

region in the(h”,a) plane takes the shape in Figb®gen- ry(t) -1

erally (see, e.g.[2,3]). A situation like Fig. 8c), where the () =Al sin(wt), (25)

unstable region is unbounded above, is not possible.
Returning to the model with delay, in either of the two where the vectof-1, 1]" corresponds to the real part (#0)
cases above, decreasiag(or increasingv®) increases the with k=1.
size of the unstablé” interval, with the left-hand end point
approaching 1, and the right-hand end point approaching +
asa—0. In this paper we perform a bifurcation analysis of an op-
When we consider different values of the scaling paramtimal velocity traffic model with driver reaction time. The
eters the stability charts shown in Figs(k§ and 3c) do not  hasic idea is to find a bifurcatiofa parameter value where
change qualitatively. Here ;= (272/3s)v°, =(0.83996)v°  the dynamics changes qualitativend then follow or con-
for generals, which only yields quantitative changes. tinue either the bifurcating solution or the bifurcation condi-
The qualitative picture for OV functions §4(h) (9) and  tion as parameters are changed. While it is not as straightfor-
V(h) (12) is similar, except for the following. For the func- ward as numerical simulation, bifurcation analysis is a
tion Vg(h), the left-hand end of the unstabké interval is  powerful tool in that it allows one to map out the dynamics
fixed ath"=1 for all « for which there is instability. For the of a system in a systematic and efficient way. This approach
function Vgs(h), the left-hand end point of the unstatiie  is well established for systems modeled by ODEs and has
interval attaingh" =1 for positivea. These features are due to been applied successfully in many areas of applicatsee,
the discontinuities in the functionspd(h) and Vg(h) at h* e.g.,[14-1§ as entry points to the extensive literature).
=1 and the fact that {h) also has its maximum & =1+ Dealing with a system with delay results in technical dif-
We now briefly summarize the results of an analysis officulties, due to the fact that the phase space of a DDE is
the local Hopf bifurcation, more details of which may be infinite dimensional. For example, the linearizations around
found in Orosz and Stépdf]. That technique allows one to Steady states and oscillating solutions are infinite-
determine the amplitude of the bifurcating orbit and whetheidimensional operators instead of matrices. This means that
the Hopf bifurcation is sub- or supercritical. The calculationsStandard continuation software for ODEs, suctaso [9],
are based on third-order Taylor expansion of the nonlinearitgannot be used. However, recently, the packamgs-
and give the first Fourier approximation of the oscillating BIFTOOL, which works under Matlab, was developed by En-
solution, which is valid close to the bifurcation point. gelborghset al. [10,11. This software uses truncated matri-
Hopf calculations for DDEs are more complicated thanc€s of appropriate sizes instead of operators, and is able to
for ODEs, because delay extends the dimension of the phadé@d and follow equilibria and oscillating solutions in DDEs
space to infinitg'see Stépaiil3], and Campbell and Bélair €ven when they are unstable. Furthermore, it allows one to
[17]). An added problem for the traffic model considered_deteCt local b|furcat|o_ns, where a so_lutlon_changes its stabil-
here is the translational symmetry along the ring, which im-ity. In our model we find the Hopf bifurcatio(where small
plies a singularity in the Jacobian operator at the equilibriumamplitude oscillations are borrand the fold bifurcation of
yielding further technical difficulties. This analysis is trac- 0scillating solutiongwhen two oscillating solutions of dif-
table only in the case ai=2 cars, but it illustrates that the ferent stabilities merge and disappear S _
criticality of the Hopf bifurcation is highly dependent on the ~ DDE-BIFTOOL has not yet been used extensively in appli-

IV. CONTINUATION ANALYSIS

properties of the chosen OV function. cations; examples of its use include the study of semiconduc-
Denoting the value of* at the Hopf bifurcation point by tor laser systemgésee Green and Krauskofif8], and Hae-
h;,, the Lyapunov coefficient can be computed as gemaret al.[19]). We use it here to investigate the dynamics
. of the smooth OV functiori1l) with s=1 [solid line in Fig.
V'''(hy) (a?+ o) (?+ a+ o) 2]. Specifically, we follow branches of steady states and os-

(23) cillating solutions and detect bifurcations when changing the

parameteh” for different values ofx andv®. The results are
When 6> 0 (resp.5§<0) there is a subcriticalresp. super- shown in Figs. 4—7. In the respective bifurcation diagrams
critical) bifurcation. Since all other quantities are positive inthe horizontal axis represents the equilibrium state. A solu-
the above expression, the sign®dis determined by the sign tion is stable when plotted as a bold curve and unstable when
of V'""(h,,). This means that the third derivative of the OV dashed.

T8V ()P 2+ @)+ (ddw-w)
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5

;P a=0.25 (a) v;P a=0.175 (b) 1 case A ----hi
0.12) 0.12) :
0.08f 0.08f

R
0.04 0.04 H
é
H
03 "18 2 24 28 %12 %7 2 Y 28
h* h*
0.16—— 0.16——
vimp a=0.1 (c) P a=0.075 (d)
0.12) 0.12) IEETERAR
B s E F
D
0.08t X 0.08 !
A i : i
0.04 H 004 ¢ i
e :"
0,— ” * »
12 1.6 2 24 28 1.2 16 2 24 28
h* h*

FIG. 4. Amplitude of oscillations of the velocity of theith car vs
average headwaly . The horizontal axis represents the equilibrium
state. Solid curves denote stable, and dashed curves denote unstal,, . .
states; the dotted curve represents the collision region. The value ¢ © 02 04 06 08 1
« is depicted in each pané)—(d) andv®=0.35 in all panels. 04

The branch of equilibria is unstable between two Hopf oz

bifurcation points(denoted by*), in accordance with the
results in Figs. @) and 3c). The bifurcating branches of ©, 02 04 06 08 Y
oscillating solutions are represented by the amplitude of 0S4 r . . . 5
cillation of the vehicles’ velocitiesvi™ = (v"™-v™"/2,
which is the same for all cag=1,2,3.

0 02 04 06 08 1
t/Toer

A. Oscillation and collision

Let us first concentrate on the continuation results when
the parametet is changed and the parametéris fixed to
v°=0.35. This value of® gives qualitatively the stability
behavior as shown in Fig(B). For large values o the two
Hopf bifurcations are supercritical, as shown in Figa)4
The computation of the bifurcating oscillating solution
shows a stable oscillation branch above the unstable part of We marked some points A—C on the branch in Fi¢) 4
the equilibrium. We remark that the unstable part of the equiand display the associated time profiles in Fig&)-55(c).
librium disappears for extremely large[see Fig. 8)]: the  We show the velocitysolid curve and the headwagdashed
two Hopf bifurcation points come together and disappearcurve) over one oscillation period for the first célhe plots
leaving the equilibrium stable for alf". are the same for all cars, except for a time shift.

Decreasinga, the right Hopf point becomes subcritical, Note that in case A vehicles nearly stop, and in casthé
i.e., the right-hand side of the branch of oscillating solutionsmaximum speed is close to the desired spgedtherwise,
turn to unstable. Where the stable and unstable parts meettleere is no qualitative change between cases A-C. Inad-
fold bifurcation takes placémarked byx) as depicted in dition, one can seethat the oscillationsof the headway are
Fig. 4(b). Hence, a bistable area appears to the right of thenore harmonicthan thoseof the velocity, thatis, they are
right-most Hopf point, which means that the system tends taquite well approximated by the first term of t@utier ex-
the oscillatory state or to the equilibrium, depending on thepansion.
initial condition. We remark that this bistability has been Reducinga further, two interesting things happen as is
found by numerical simulations in several car-following visible in Fig. 4d). First, an unstable part appears on the
models[1], but we show that even a simple OV model asleft-hand side of the branch of oscillating solutiofreew
described here displays this effect for adequate values afashed sectionbounded by twofold bifurcations. This re-
parameters. When decreasiadgurther, the branch of oscil- sults in a second bistable region in the parambtewhere
lating solutions grows, as is visualized in Figc¥ thus the  two different stable oscillations coexist, one with a smaller
bistable area becomes wider. and one with a larger amplitude. Asis decreased further,

FIG. 5. Oscillations of the velocity of the first car over one
period, shown as solid curves to the scale on the left-hand sadd,
oscillations of the headway of thefirst car over one period, shown as
dashed curves to the scale on the right-hand side. Cases A—F corres-
pond to the marksin Fig. 4.
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-

0.16, 0.16 am, "
V2P v =02 (a) V2P v° =025 (b) b Bl (a) V(h*)upper curve  (b)

012 042 04 H L 1 ogtvi™® lower curve "

FIG. 6. Amplitude of oscillations of the velocity of thigh car vs o2 = o8 o8 :
average headwaly . The horizontal axis represents the equilibrium s . . . . 5
state. Solid curves denote stable and dashed curves denote unstal |v1
states. The value o° is depicted in each pangh)~(d) and a
=0.1 in all panels.

086 25

the lower fold point tends to the left Hopf point, but does not %o 02 04 0 08 ¢/, 1°
reach it even whew is close to zero. per
The second noticeable change in Figdyis that the FIG. 7. Stopping motion for®=1.0 anda=1.0. () Amplitude

headway crosses zero durins its oscillation along the dottegk oscillations of the velocity of théth car vs average headwéy.
section of the OSCi”ating branch: cars move “through one(b) Equilibrium state V(ﬁ) (upper CU_I’VG), and minimum of the
another”. Clearly the model is not valid in this situation, asvelocity oscillations of the ith car o™ (lower curve) vs average
collisions are not taken into account. We marked some pointseadway h. In panels (a) and (b) solid curves denote stade,
D-F on the branch of oscillating solutions and displayed thelashed curves denote unstable states. Panels (c)-(e) show oscilla-
respective oscillations of the velocity and the headway irtions of the velocity of the first car over one period as solid cur-
Figs. 5d)-5(f). One can see in case D that the vehiclesvesto the scaleon the left-handside, and oscillationsof the head-
nearly stop and in case F they nearly reach the maximurway of the first car over one period as dashedcurvesto the scale
speed[Figs. §d) and %f)]. Furthermore, in cases D and E ontheright-hand sideCases G-I correspond to the marksin panels
[Figs. §d) and Fe)] cars touch each other, because thesdd) and (b).
points are on the edge of the collision region as shown in ] ) ] o
Fig. 4(d). Reducinge further, this collision section becomes then we again get a series of growing branches of oscillating
larger and finally covers the entire stable part of the branchs0lutions and qualitatively the same branches as we obtained

The height of the branch of oscillating solutions changedn Figs. @&)-6(c). However, instead of the behavior in Fig.
proportionally with v°, because drivers want to reach the 6(d), we experience the dynamics depicted in Figa).7On
desired speed even during oscillations. Fixiag0.1 and both S|d¢s of. Fhe branch of oscillating solutions, t_he same
changingv®, we obtain a series of bifurcation diagrams type of blstab[lltylappears_, namely an unstable section of Fhe
shown in Fig. 6. When increasing, we observe the same branch of c_)scnlat_lng solutions between a fold and a subcriti-
qualitative changes as in Fig. 4. However, we did not enc@l Hopf bifurcation. -~ _ _ _
counter collisions, but they may occur at highdr In fact, An important qugllte_mve dlff_erence is that veh|cl_e_s stop in
high desired speed, which is usually controlled by a giverPne sectllon of_oscnlatlons while t_here are no colllsuﬁsge
speed limit, can cause oscillations. We remark that in thdime profiles Figs. @)-7(e) belonging to the marked points
above cases we showed that collisions may happen even & Of the oscillation brandh This is due to the large accel-
moderate®. eration. In fact, only for extremely large valuesu colli-
sions appear in this regime of large

The stopping section is the largest in case G, is smaller in
case H, and disappears in case |I. However, in case H the

We present the results in the rangez 0.4 of the sensi- maximum speed nearly reaches the desired speed. The col-
tivity parameter to discover different bifurcation behavior. lective motion of the system is a stop-and-go traffic jam: the
Note that here the relaxation time d Is small, hence large congestion consisting of standing vehicles propagates up-
acceleration can be achievéithe case of “rocket cary” If stream along the ring, because cars leave the jammed region
we change? in this regime ofa (for example, fora=1.0), at the front and enter at the back. Note that in the case of

B. Stopping motion
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three cars this jam is not pronounced, but the qualitative ®3
features of the oscillations are exactly the same as in thex

many-car case. We depict the equilibrium state and the mini-, ,s|.

mum of the oscillations in Fig. (B), where the minimum
curve practically coincides with the horizontal axis in a large

region in the parametér . This shows that here, the stopping 02

motions are typical system behavior.

0.151

C. Two-dimensional bifurcation diagrams

The information concerning the dynamics of our model o1
was presented in the previous sections, for example in Fig. 4
by plotting the amplitude of the oscillations as a function of
the control parametdr” for different fixed values ofr (and
fixed v%). In this way we detected points of bifurcation,

0.051

(a)
v =0.35

Hopf 1
______ fold of o. s.
collision

where the dynamics changes qualitatively. 0
We now present this information in Fig. 8 in a more con-

cise way as a two-dimensional bifurcation diagram in the 3
(h",a) plane (for fixed v°). Specifically, we show solid a
curves of Hopf bifurcation, dashed curves of fold bifurcation ,s|
of oscillating solutions, gray curves of first collision, and
dotted curves of first stopping. These curves divide the
(h", @) plane into regions of qualitatively different behavior. 2 |
In this representation, the diagrams we showed earlier corre
spond to horizontal cross sections for the fixed valueg of
that are indicated in Fig. 8 by dotted horizontal lines. We
show the bifurcation diagram in thia',«) plane for three
representative values of, namely for 0.35, 0.65, and 1.0. Lr

151

The Hopf curves are the only curves that can be computec fold of o. s.
directly with DDE-BIFTOOL. Folds can only be detected by .| collision i
this software, and the fold curves were found by a script that stopping
detects a suitable number of individual fold points fabout
50) different values of the parameter. In a similar ap- 0 s s 7
proach, the collision curve was found by detecting points h*
where the headwaly, of the oscillating solution first crosses 2 (©) ' . ' ' '
zero. Similarly, the stopping curve was found by detecting @ | o _ ; Lo
when the velocity, first becomegapproximately zero; in 25} L o2 DHyy -
practice we used the criterion th@{<0.01 because the ve- ! S
locity never actually attains zero in the numerical represen- ! ; '
tation. 2r : 'oo0e ]

We now discuss the results in Fig. 8 in some detail. For | L s
v%=0.35[Fig. &a)] the Hopf curve is one single curve as in 4| i \ i
Fig. 3b) (the top of the curve is not visible in the chosen i V%% 4T 12 18 14 s
window of @). There are fold curves on the right and on the i \ h*
left. The fold curve on the right starts at a degenerate Hopf 1 [ p iy Hopf 1
point DH, and approaches thé axis as shown. Above DH Y EE=EsE fold of o. s.
the Hopf bifurcation is supercritical and below DHt is collision

subcritical. The region between the Hopf and the fold curve
is thus identified as a region of bistability, where the equilib-

-------------- stopping

rium and a stable oscillating solution coexist. On the left- o &
hand side, the Hopf bifurcation is always supercritical and

the bistability appears via a cusp bifurcation, where two fold
curves are bhorrjsee the inset of Fig.(8)]. The two fold
curves end at the point®.0,0.0167 and(1.0,0.0, respec-
tively. The region between the two fold curves is a region of
bistability. The Hopf curve divides this region into two sub-

regions, in which the one on the left corresponds to the coeoexistence of two stable oscillating solutions; compare Fig.

FIG. 8. Two-dimensional bifurcation diagrams for different val-
ues ofv? as indicated. The horizontal dotted lines in par(ajsand
(c) correspond to the values af used in Figs. 4 and (@),
respectively.

existence of an equilibrium and a stable oscillating solution4(d). For v°=0.35 there is no stopping motion, but we find
while the very small region on the right corresponds to thethe gray curve of the first collision cutting across the bifur-
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cation diagram. For any value ¢h*,a) below this curve Specifically, we investigated the stability and the local
collisions occur, which means that there are no collisions foHopf bifurcations of the equilibrium, and used numerical
«=0.0805. The individual panels of Fig. 4 correspond tocontinuation techniques to explore the bifurcations of the
horizontal cross sections through FigaBat the indicated branches of oscillating solutions. We showed that, typically,
values ofa. In particular, Fig. 4d) features collisions for an interval ofh® values exists in which the uniform flow
values ofh” from the section between the two intersectionsolution is unstable. This region becomes larger when in-
points with the collision curve. This section becomes largercreasing the desired speeflor the relaxation time 1d. We
as « is decreased further. Where the collision manifold isthen explored the oscillating solutions of the system by using
tangent to the fold curve, collisions occur over the entirecontinuation techniques, which showed that there are regions
branch of stable oscillating solutions. of bistability near the onset of oscillations; for example, be-
For v°=0.65[Fig. 8b)] the bifurcation diagram is quali- tween the uniform flow solution and oscillations. The differ-
tatively the same as far’=0.35, except for two differences. ent regions of behavior of the system were presented in a
First, the cusp point is gone and two degenerate Hopf pointsoncise way in a bifurcation diagram in tfi€ , ) plane(for
DH,; and DH, are now the end points of the two fold curves fixed v°). In this bifurcation diagram we also identified the
on the left.(This change happens for a specific valuewdf curves of (first) stopping and offirst) collision during an
when the cusp point reaches the Hopf curverat0.4) The  oscillating solution. While collisions occur for sufficiently
Hopf bifurcation is subcritical between these two degeneratsmall «, a region of stopping motion only occurs for suffi-
Hopf points and supercritical otherwise. Coexisting stableciently largev,,.
oscillating solutions exist only in the tiny region between the  The next step is to use the approach taken here to perform
Hopf curve and the fold curve below DH In the much bifurcation studies in more general situations. Here we kept
larger region between the other fold curve and the Hopfo the case of three cars to present key phenomena in the
curve below DH,, there is coexistence between the stablesimplest possible setting. A first exploratory investigation for
equilibrium and stable oscillations. The collision domain isfour and five cars indicates that increasing the number of cars
qualitatively the same but it is now a bit larger; its top is atn results in no change in the qualitative structure of the sta-
a=0.227. The other new feature is the existence of stoppingility diagram. While this number of cars may still appear
motion on the domain bounded by the left fold curve and thesmall compared to real traffic situations, it nevertheless al-
dotted stopping curve. The curve of first stopping appears ttows one to gain mathematical insight concerning the limit of
start at the point Dk and connect to apoint on the left-most a large numbers of cars. However, quantitative information
fold curve. This suggests that stopping motion is born wherconcerning asymptotes changes andnas increased, we
the cusp disappears. gain additional Hopf bifurcation curves for wave number
Forv°=1.0[Fig. §c)] there are now two vertical asymp- valuesk>2. Note that these extra bifurcation curves corre-
totes of the two Hopf curves as in Figc3, meaning that the spond to additional spectrum crossing into the right half
unstable area is now unbounded dn Compared with the plane when the uniform flow solution is already unstable. A
situation fory°=0.65, the points DH and DH moved up in  bifurcation analysis of the-car situation, especially the pos-
a and out of our window, “dragging” the associated curvessibilities of interactions of different oscillating modes, is in
with them. In fact, these points have disappeared so that therogress.
fold curves and the stopping curve also now have vertical We stress that numerical bifurcation techniques could be
asymptotes(We found that all vertical asymptotes develop applied to extend the understanding of other car-following
for v%=0.7198) In other words, Fig. &) is qualitatively the =~ models incorporating delagsee Holland20] for a list, and
same as Fig.®) for, say,a=<0.7. Notice how the stopping more recently, Lenzt al. [21], Nagatani[22], Wilson [23],
region is now much larger. The indicated horizontal sectiorand Sawadd24]). In some casessee, e.g., Igaraslhat al.
corresponds to Fig.(@), which indeed showed a large sec- [12], which discusses the Newell moglebistability has al-
tion of stopping motion. Furthermore, the collision domain isready been observed using numerical simulation techniques.
also much larger; its top is at=0.61. The tools that were discussed here give more efficient meth-
When considering different values of the scaling param-ods for tracing out the key boundaries in parameter space
eters, the only qualitative change is that the cusp point may(e.g., the characterization of bistability regipnginally, we
be below the collision curve. For the OV functiongth) remark that chaos has been found in car-following models
(9) or Vg(h) (12), one can obtain similar branches of oscil- with delay by using numerical simulation; see Low and Ad-
lating solutions as above, although the dynamics may bdison [25], and Safonov et al. [26]. Numerical continuation
nonsmooth and thusDE-BIFTOOL may run into difficulties.  techniques might, in the future, be applied to these models to
gain concise information about the routes to chaos.

V. CONCLUSION AND DISCUSSION

We presented a complete overview of the possible dynam- ACKNOWLEDGMENTS
ics of the traffic model under consideration, in terms of all
the relevant control parameters. To this end, we employed G.O. gratefully acknowledges the help and support of Ga&-
computational techniques and ideas from bifurcation theorybor Stépan, particularly in the field of retarded dynamical
Our results show that even a simple delayed OV model wittsystems. The authors thank Kirk Green for his assistance
varying parameters can display many interesting features. with DDE-BIFTOOL.
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