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Synchronization in networks with heterogeneous coupling delays
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Synchronization in networks of identical oscillators with heterogeneous coupling delays is studied. A
decomposition of the network dynamics is obtained by block diagonalizing a newly introduced adjacency
lag operator which contains the topology of the network as well as the corresponding coupling delays. This
generalizes the master stability function approach, which was developed for homogenous delays. As a result the
network dynamics can be analyzed by delay differential equations with distributed delay, where different delay
distributions emerge for different network modes. Frequency domain methods are used for the stability analysis
of synchronized equilibria and synchronized periodic orbits. As an example, the synchronization behavior in a
system of delay-coupled Hodgkin-Huxley neurons is investigated. It is shown that the parameter regions where
synchronized periodic spiking is unstable expand when increasing the delay heterogeneity.
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I. INTRODUCTION

Complex networks and synchronization phenomena are
relevant in many fields. Specific examples can be found in
social systems [1,2], engineering [3–6], biology [7–10], and
physics [11–13]. Some universal results on synchronization in
complex networks have been summarized in Refs. [14,15].
Often the interactions between nodes in the network are
assumed to be instantaneous, which means that the state of one
node immediately affects the state of other nodes. However, if
the signal propagation time is at the order of the internal time
scales of the system, then time delays must be incorporated
when modeling the connections between the network nodes.
Some basic results on the dynamics of networks with time-
delayed couplings can be found in Refs. [16–18]. In some
applications, like semiconductor lasers [11–13], the coupling
delays can be tuned to be homogeneous. However, in general,
the coupling delays are heterogeneous, i.e., there exist different
delays for different connections in the network [5]. Such het-
erogeneity may affect the stability of synchronized equilibria
and synchronized periodic orbits and lead to “amplitude death”
in complex networks [19,20].

Numerical simulations or statistical methods are often used
to study the synchronization behavior in networks with het-
erogeneous delays [20–22]. However, a better understanding
of the dynamics can be gained by analyzing the linear stability
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of specific solutions (equilibria, periodic orbits, heteroclinic
orbits, and chaotic motion). In particular, decomposing the
dynamics into network modes in the vicinity of a particular
solution allows systematic investigations of stability and bi-
furcations. The so-called master stability function approach
combines such modal decomposition with linear stability
analysis. This was first proposed for the analysis of completely
synchronized solutions in networks with instantaneous cou-
plings [23,24] where stability properties were linked to the
eigenvalues of the adjacency matrix. Similar decompositions
were performed for nonidentical node dynamics [25,26] and
around cluster states [27–29].

Modal decomposition can be extended to networks with
delay couplings [17]. This is possible even for multiple delays
[30–32] and distributed delays in the connections [33]. How-
ever, in all these cases the delays were considered to be homo-
geneous, that is, the same delay distribution was used for all
connections. An extension to heterogeneous delays was given
in Ref. [34] with the restriction that the adjacency matrices
corresponding to different coupling delays must commute. An-
other approach based on a time-scale separation was presented
for hierarchical networks having a small coupling delay within
subnetworks and a large coupling delay between subnetworks
[35]. A general approach for the modal decomposition around
synchronized equilibria with heterogeneous coupling delays
was introduced in [5]. Extending this method to synchronized
time-dependent solutions is not straightforward and we target
this challenging problem in this paper.

We introduce the so-called adjacency lag operator that
describes the topology of the network as well as the corre-
sponding coupling delays. By block diagonalizing this operator
we decompose the network dynamics and show that the
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network modes are given by non-autonomous delay differential
equations (DDEs) with distributed delay in the vicinity of com-
pletely synchronized time-dependent solutions. The advantage
of the proposed method is that, similarly to the classical master
stability approach used for networks with homogeneous delay,
the number of DDEs describing the dynamics of a network
mode is equal to the number of equations describing a network
node. We show that for heterogeneous delay coupling the delay
distributions arising in the modal DDEs may be different for
each mode. This is in contrast to the classical master stability
approach, where the modal equations only differ in a complex
number (eigenvalue of the adjacency matrix).

In the context of complex networks, synchronous pe-
riodic oscillations of neurons are of special importance
[7–10,14]. Some results for synchronized solutions of net-
works of Hodgkin-Huxley neurons with homogeneous cou-
pling delays were presented in Refs. [8,10]. Here we apply
the developed decomposition method to study the effects of
heterogeneous coupling delays on such neural dynamics. For
the stability analysis of synchronized periodic solutions we
use a frequency domain approach that has been successfully
applied in other applications like machine tool vibrations
[36,37].

The paper is organized as follows. In Sec. II conditions
for the existence of synchronized solutions in heterogeneous
delay-coupled networks are given. In Sec. III the decompo-
sition of the dynamics around time-dependent solutions is
performed. This is combined with numerical continuation in
Sec. IV in order to study the stability and bifurcations of
synchronized periodic orbits in a network of Hodgkin-Huxley
neurons. We conclude our results in Sec. V.

II. SYNCHRONIZATION IN NETWORKS
WITH HETEROGENEOUS DELAYS

A network of N identical oscillators with heterogeneous
delay coupling is considered. In particular,R different coupling
delays are considered. Indeed, R = 1 gives the special case of
homogeneous delays. The state of the nodes are described by
xi ∈ Rn, i = 1 . . . N while the coupling delays are denoted by
τr , r = 1, . . . ,R. The dynamics of node i is modeled by the
nonlinear DDE,

ẋi(t) = f [xi(t)] +
R∑

r=1

N∑
j=1

ar,ij g(xi(t),xj (t − τr )). (1)

The dynamics of the uncoupled node is described by the
n-dimensional nonlinear ordinary differential equation (ODE)
ẋi = f (xi), while the coupling function g(xi ,xj ) specifies
how oscillator j influences the dynamics of oscillator i.
The coefficients ar,ij are the elements of the N -dimensional
coupling matrices Ar corresponding to the delay τr . They
specify how strong the current state xi(t) of node i is affected
by the delayed state xj (t − τr ) of node j with time delay τr .
According to the modeling framework, if ar,ij = 0, then there
is no signal going from node j to node i with time delay τr ,
but a signal may travel between the same nodes with another
delay. Note that to incorporate continuous distributions for
coupling delays one must replace the first sum in Eq. (1) by an
integral. Still, often we have ar,ij �= 0 for a single r only. The

sum
∑R

r=1 Ar = A is the delay-independent coupling matrix.
It characterizes the network via a weighted directed graph,
where the oscillators are represented as nodes and the coupling
between them are represented as edges. The weights of the
edges are specified by the entries in the matrix A, but there is
no information on the coupling delays in A.

A. Synchronization

In this paper completely synchronized solutions of Eq. (1)
are studied which are contained in the so-called synchro-
nization manifold defined by xi(t) = xs(t), i = 1, . . . ,N . The
dynamics within this manifold is described by the DDE,

ẋs(t) = f [xs(t)] +
R∑

r=1

Mr g(xs(t),xs(t − τr )), (2)

where Mr denotes the constant row sum of the coupling matrix
Ar , i.e.,

Mr :=
N∑

j=1

ar,ij , for i = 1, . . . ,N. (3)

If for some coupling matrix Ar the row sum is not independent
of the row index i, then it is not possible to define the
synchronization manifold.

In the special case of homogeneous delays (R = 1), Eq. (2)
simplifies to

ẋs(t) = f [xs(t)] + M1 g(xs(t),xs(t − τ1)). (4)

In this case, the condition Eq. (3) means that the row sum M of
the delay-independent coupling matrix A has to be independent
of the row index i. In general, M is defined by

M :=
R∑

r=1

N∑
j=1

ar,ij , for i = 1, . . . ,N. (5)

As a consequence, time-dependent synchronized states may
exist for homogeneous delays [when Eq. (5) holds] but may
be destroyed when adding heterogeneity to the delays [when
Eq. (3) is not satisfied]. Moreover, for the existence of synchro-
nized time-independent solutions (equilibria) having Eq. (5) is
already sufficient as will be discussed below.

To analyze the stability of synchronized solutions we define
the perturbations yi(t) = xi(t) − xs(t) whose dynamics can be
approximated by the linear variational system

ẏi(t) = L(t) yi(t) +
R∑

r=1

N∑
j=1

ar,ij R(t,τr ) yj (t − τr ), (6)

in the vicinity of the synchronized solution. The coefficient
matrices are defined as

L(t) = D f [xs(t)] +
R∑

r=1

Mr D1 g(xs(t),xs(t − τr )),

(7)
R(t,τ ) = D2 g(xs(t),xs(t − τ )),

where D f is the Jacobian of f , and the matrices D1 g and D2 g
are the derivatives of g with respect to the first and the second
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arguments, respectively. Defining the nN -dimensional column
vector y = col[ y1, . . . ,yN ], Eq. (6) can be rewritten as

ẏ(t) = (IN ⊗ L(t)) y(t) +
R∑

r=1

(Ar ⊗ R(t,τr )) y(t − τr ), (8)

where ⊗ denotes the Kronecker product and IN denotes the
N -dimensional identity matrix.

At this point, one may notice an important consequence of
heterogeneous delays. In this case, despite the same coupling
function g appearing in all connections and for all delays
in Eq. (1), the coefficient matrices R(t,τr ) in the linearized
dynamics Eq. (6) depend on the coupling delays τr through
xs(t − τr ). This has consequences for the decomposability of
the network dynamics, as will discussed in Sec. III.

B. Tangential vs. transversal dynamics

The perturbation vector y in Eq. (8) can be divided into tan-
gential perturbations and transversal perturbations [23,24,28].
For tangential perturbations, each node undergoes the same
perturbation yi(t) = q1(t) for i = 1, . . . ,N , that is, y(t) =
col[q1(t), . . . ,q1(t)]. Substituting this into (6) one obtains
the dynamics for perturbations within the synchronization
manifold

q̇1(t) = L(t)q1(t) +
R∑

r=1

Mr R(t,τr ) q1(t − τr ), (9)

that is indeed the linearization of Eq. (2). The transversal
perturbations are defined as yi(t) �= yj (t) for at least one i �= j .

Indeed, many different solutions may exist within the
infinite-dimensional synchronization manifold (equilibria, pe-
riodic orbits, homoclinic and heteroclinic orbits, chaos).
Whereas tangential perturbations let the system stay within
the synchronization manifold, transversal perturbations drive
the system away from the synchronization manifold. Synchro-
nization occurs only if the synchronized solution is transver-
sally stable. The linearized dynamics of the network and its
decomposition are discussed in detail in Sec. III.

C. Synchronized equilibria without synchronization manifold

Time delays can change the stability of an equilibrium but
do not change the existence and location of the equilibrium
[38,39]. According to Eq. (1) synchronized equilibria xs(t) ≡
x∗

s of the network are given by

f (x∗
s ) + M g(x∗

s ,x
∗
s ) = 0, (10)

where M is defined by Eq. (5). Thus, as long as Eq. (5)
holds, changing the delays of the connections does not change
the existence of synchronized equilibria. On the other hand,
according to Eq. (3) changing the delays can change the
existence of time-dependent synchronized solutions. In other
words, synchronized equilibria exist if the constant row sum
condition is fulfilled for the delay-independent coupling matrix
A but time-dependent synchronized solution exist only if the
constant row sum condition is fulfilled for all coupling matrices
Ar , r = 1, . . . ,R. We remark that if the coupling is noninvasive
at the synchronized solution, i.e., g(x∗

s ,x
∗
s ) = 0, synchronized

FIG. 1. Complete synchronization and amplitude death in net-
works with heterogeneous delays.

equilibria may also exist independent of the specific network
topology and independent of the coupling delays.

As a consequence, there is a large set of networks with
heterogeneous delays, where synchronized equilibria exist but
no time-dependent synchronized solutions are possible. In
these cases, no synchronization manifold can be defined and no
tangential network mode exists. Indeed, if all transversal per-
turbations around the equilibrium decay, then the synchronized
equilibrium is stable but when the equilibrium becomes unsta-
ble, an asynchronous state appears. In these networks stable
synchronized equilibria occur due of identical node dynamics
and identical or noninvasive coupling functions which is often
referred to as amplitude death in the literature [40–42]. An
overview on the different scenarios including the possibility for
synchronized equilibria without a synchronization manifold is
presented in Fig. 1. Finally, recall that Eq. (5) also ensures
the existence of time-dependent synchronized solutions for
homogeneous delays but Eq. (3) is needed to ensure this for
heterogeneous delays. That is, by making delays heterogenous
one may destroy the synchronization manifold while still
keeping the synchronized equilibria.

III. DECOMPOSITION OF NETWORKS WITH
HETEROGENEOUS COUPLING DELAYS

Characterizing the stability of completely synchronized
solutions requires the analysis of Eq. (8). However, for large
networks investigating Eq. (8) directly is typically not feasible.
To solve this problem, and to gain insight into the network
dynamics, we will decompose the dynamics into a tangential
mode [see Eq. (9)] and N − 1 transversal modes. For networks
with homogeneous delay (R = 1), the decomposition can
be carried out with the help of the diagonalization of the
adjacency matrix A = A1 [17,23,24,28]. For networks with
heterogeneous delays the same decomposition is still possible
if all matrices Ar , r = 1, . . . ,R commute with each other [34].
However, in most cases the matrices Ar do not commute.

A general approach for decomposition was introduced in
Ref. [5] for the analysis of synchronized equilibria based on
the eigenmode decomposition of the matrix

B̂(s) =
R∑

r=1

Are
−sτr , (11)
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which can be derived from the Laplace domain representation
of Eq. (8) (s ∈ C is the Laplace variable) and combines
the information on the coupling topology and the coupling
delays. However, we will show below that for time-dependent
synchronized solutions such decomposition is not possible in
general. Thus, in this paper we carry out the decomposition
in the time domain using lag operators and emphasize the
fundamental limitations caused by the time dependency of the
matrices L(t) and R(t,τ ).

A. Three decomposition levels

Delay-coupled networks are infinite-dimensional systems
due to the existence of time delays τr in the coupling terms, i.e.,
the initial condition for Eq. (8) is a function on the time interval
[−τmax,0] for the vector y ∈ RnN , where τmax is the maximum
delay. This means that the state at time t can be defined by the
function y(t + θ ), −τmax � θ � 0 [43,44]. Roughly speaking
the network is N × n × ∞ dimensional.

According to this, three different levels of decomposition
of delay-coupled networks may be identified. The first level is
the network level, which focuses on the N nodes coupled via
the edges of the graph. A decomposition at the network level
decomposes the dynamics into N network modes. If Eq. (3)
is fulfilled, then one tangential and N − 1 transversal network
modes exist [10,17,23,24]. The second level is the node level
corresponding to the n equations specifying the dynamics
at each node, which may be decomposed into n decoupled
scalar DDEs; see Refs. [45,46] where the scalar Lambert
W function was utilized. For example, one may decompose
Eq. (9) for the tangential dynamics into n scalar DDEs. A
decomposition combining the network and the node level is
possible but in such a case the corresponding modes are less
descriptive. The third level is the delay level. In particular,
a scalar DDE can be further decomposed into infinitely many
ODEs corresponding to the characteristic roots [43,47,48]. The
node level and the delay level are often handled together using
operator differential equations [43] or the matrix Lambert W
function [49].

In the remaining part of this paper we focus on the decom-
position at the network level. Indeed, such a decomposition is
not always possible. For example, networks with nonidentical
node dynamics, i.e., using f i instead of f in Eq. (1), yield
Li instead of L in Eq. (6). In this case, the Kronecker product
in Eq. (8) cannot be constructed and a decomposition at the
network level is not possible in general.

B. Representation with lag operators

We are searching for a time domain representation of the
network dynamics in terms of an operator that contains the
information about the network topology as well as the coupling
delays similar to the matrix B̂(s) defined in Eq. (11).

Let us introduce the lag operator S(τ ) defined by

S(τ ) y(t) = y(t − τ ) (12)

for a scalar-valued functiony(t). Indeed, this can be extended to
vector valued functions. An alternative representation of the lag
operator can be derived from the Taylor expansion of y(t − τ )
about τ = 0 and is given by S(τ ) = e−τ d

dt . The eigenfunctions

of the lag operator are exponential functions independent of
the time lag, that is,

S(τ )est = e−sτ est , (13)

where s ∈ C. As a consequence, lag operators with different
arguments commute with each other and fulfill the relation

S(τ1)S(τ2) = S(τ2)S(τ1) = S(τ1 + τ2). (14)

It follows that Sn(τ ) = S(nτ ) and the identity element is
denoted by S(0). Obviously, the lag operator commutes with
the differential operator d

dt
S(τ ) = S(τ ) d

dt
.

With the help of the lag operator, the linearized dynamics
Eq. (8) can be written as

ẏ(t) =
[

IN ⊗ L(t) +
R∑

r=1

Ar S(τr ) ⊗ R(t,τr )

]
y(t). (15)

We remark that when calculating the elements of the Kronecker
product ArS(τr ) ⊗ R(t,τr ) the lag operators do not act on
R(t,τr ); see (8). Since the matrix R(t,τr ) may be different
for each term in the sum in Eq. (15), decomposition at the
network level is not possible in general. In this paper we
focus on the case when the coefficient matrix R(t,τ ) = R(t)
does not depend on the delay τ . This occurs, for example, in
the case of synchronized equilibria xs(t) = xs(t − τ ) ≡ x∗

s ,
which results in constant matrix R = D2 g(x∗

s ,x
∗
s ). Also, when

the coupling is in the form g(xi(t),xj (t − τr )) = G[xi(t)] ·
xj (t − τr ), we obtain R(t) = G[xs(t)]. In these cases Eq. (15)
can be simplified to

ẏ(t) = (IN ⊗ L(t) + B ⊗ R(t)) y(t), (16)

where the so-called adjacency lag operator B is defined by

B =
R∑

r=1

Ar S(τr ). (17)

This contains all information about the network topology
(given by the matrices Ar ) and the coupling delays [specified by
the lag operators S(τr )]. Notice that the matrix B̂(s) defined in
Eq. (11) is the Laplace domain representation of the adjacency
lag operator B.

C. Decomposition of the adjacency lag operator

The adjacency lag operatorB contains lag operators defined
in Eq. (12). Due to the property (14) these operators can be
handled like commuting symbols. First, we present the formal
diagonalization of the operator B that is equivalent to the
diagonalization of the matrix B̂(s) presented in Ref. [5]. We
also show that this does not necessarily decouple the linearized
dynamics around time-dependent synchronized solutions and
we present an alternative approach for the decomposition to
overcome this problem.

Let us search for a diagonalization of the adjacency lag
operator B as

B Vk = Dk Vk,

Uk B = Dk Uk, k = 1, . . . ,N, (18)

whereDk is a scalar operator serving as the “eigenvalue” while
V� and Uk are vector valued operators in column and row
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FIG. 2. (a) Structure of Eq. (21) with separation into master modes (Uk contains only numbers), slave modes (Vk contains only numbers),
and intermediate modes. Only the squares and the diagonal stripes are nonempty. The stripes at the main diagonal are associated with Eq. (23)
and determine the stability of the master and the slave modes, respectively. The intermediate modes are driven by the master modes and both
can drive the slave modes. (b) Structure of Eq. (21) after additional decomposition of the intermediate modes. The two small squares at the
main diagonal of the intermediate modes are associated with two blocks similar to Eq. (25), specifying the stability of the intermediate modes.

format (with N components) serving as the “right and left
eigenvectors.” These form an orthonormal system with Uk ·
V� = δk�, where · represents the N -dimensional dot product
and δk� denotes the Kronecker delta. In general, Dk , Vk , Uk

may contain linear and nonlinear functions of the lag operators
S(τr ). We assume that the diagonalization Eq. (18) exists, i.e.,
algebraic and geometric multiplicities are the same for each
eigenvalue Dk .

Using eigenvectors Vk and Uk we define the new variables

qk(t) = (Uk ⊗ In) y(t) (19)

and use them to construct the solution of Eq. (16) as

y(t) =
N∑

�=1

(V� ⊗ In)q�(t). (20)

Then, by multiplying Eq. (16) with Uk ⊗ In from the left,
substituting Eq. (20), and using Eqs. (18) and (19), we have

q̇k(t) =
N∑

�=1

(Uk[L(t)]V� + Uk[R(t)]V�D�)q�(t), (21)

where we used the abbreviated notation Uk[P(t)]V� = (Uk ⊗
P(t))(V� ⊗ In), and only the lag operators in Uk act on P(t).

If the coefficient matrices L(t) = L0 and R(t) = R0 are time
independent (which happens around synchronized equilibria
[5]), thenUk[L0]V� = L0 δk� andUk[R0]V� = R0 δk�. As a con-
sequence, Eq. (21) decouples into N -independent subsystems,
where qk and Vk act as modal coordinates and mode shapes,
respectively. In contrast, for time-dependent coefficient matri-
ces we have Uk[L(t)]V� �= L(t) δk� and Uk[R(t)]V� �= R(t) δk�

since Uk and Vk can contain lag operators. [A paradigmatic
example for such a coupling term can be given byUk[L(t)]V� =
L(t) − L(t − τr ) for k �= l.] Thus, even if the adjacency lag
operatorB can be diagonalized, the network dynamics Eq. (16)
does not automatically decouple into N subsystems when
writing it in terms of the modal coordinates Eq. (21).

Nevertheless, it is worth taking a closer view at Eq. (21).
OftenVk and/orUk does not contain lag operators (but numbers
only). This happens if the coupling matrices Ar , r = 1, . . . ,R,
have common eigenvectors (either right or left). In such cases,
the corresponding operator is given by

Dk =
R∑

r=1

σr,k S(τr ), (22)

where σr,k , r = 1, . . . ,R, are the eigenvalues of the matrices
Ar , r = 1, . . . ,R, belonging to the common eigenvector of the
kth network mode. As a consequence, many of the coupling
terms in Eq. (21) vanish as illustrated in Fig. 2(a). In particular,
we distinguish between three different types of modes.

We first consider the modes k = 1, . . . ,k1, where the
left eigenvectors Uk contain only numbers. Then we have
Uk[L(t)]V� = L(t) δk� and Uk[R(t)]V� = R(t) δk� and Eq. (21)
simplifies to

q̇k(t) = [L(t) + R(t)Dk]qk(t) (23)

for k = 1, . . . ,k1. In other words, the first k1 modes are
completely decoupled; see the top rows in Fig. 2(a). We call
these master modes because they can drive the remaining
modes of the network. Note that Eq. (22) yields Dk qk(t) =∑R

r=1 σr,k qk(t − τr ). Thus, Eq. (23) is a DDE with distributed
delay with kernel

∑R
r=1 σk,r δ(τ − τr ), where δ denotes the

Dirac delta function.
Second, we consider the modes k = k2 + 1, . . . ,N , where

the right eigenvectors Vk contain only numbers while the
left eigenvectors Uk contain lag operators. In this case, we
have Uk[L(t)]V� = L(t) δk� and Uk[R(t)]V� = R(t) δk� for � =
k2 + 1, . . . ,N , and the corresponding coupling terms vanish in
Eq. (21); see the last columns in Fig. 2(a). As these modes do
not drive any other mode but can be driven by other modes
we call them slave modes. Note that if the driving modes are
zero, Eq. (23) would describe the slave modes. We remark
that the tangential mode is always a slave mode because
V1 = [ 1, . . . ,1 ]T meaning that the tangential mode cannot
drive transversal modes.

The third type of modes with k = k1 + 1, . . . ,k2 are called
intermediate modes shown in the middle rows in Fig. 2(a). In
this case bothUk andVk contain lag operators and the dynamics
of the intermediate modes is not decoupled as illustrated by the
large block in the middle in Fig. 2(a). In order to decouple the
intermediate modes from each other, a modified decomposition
of the adjacency lag operator B different from the eigenmode
decomposition Eq. (18) is necessary.

More precisely, we aim for the block diagonalization of the
adjacency lag operator B such that for the intermediate modes
k = p, . . . ,q we have

B Vp,...,q = Dp,...,q Vp,...,q ,

Up,...,q B = Dp,...,q Up,...,q . (24)
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Here Dp,...,q is a Q × Q block of lag operators (Q = q − p +
1 > 1),Vp,...,q andUp,...,q represent operator blocks of sizeN ×
Q and Q × N , respectively, and Up,...,q · Vp,...,q gives the Q-
dimensional identity matrix. Specifically, we construct Eq. (24)
such that either Up,...,q or Vp,...,q contain only numbers. Then,
due to common invariant right or left subspaces of the coupling
matrices Ar , r = 1, . . . ,R, the elements ofDp,...,q are given by
linear combinations of the lag operators S(τr ).

As a consequence, the intermediate modes can be further
decomposed into intermediate master modes (when Up,...,q

contains only numbers) and intermediate slave modes (when
Vp,...,q contains only numbers); see Fig. 2(b). Then the dynam-
ics of the intermediate master modes is given by

q̇p,...,q(t) = [IQ ⊗ L(t) + Dp,...,q ⊗ R(t)]qp,...,q (t), (25)

where qp,...,q(t) has nQ components. Note that such equation
also describes the intermediate slave modes if the driving
modes were zero.

We conclude that, in contrast to the case of synchronized
equilibria, for time-dependent synchronized solutions the di-
agonalization of the adjacency lag operatorB given by Eq. (18)
does not automatically decouple the network modes. Instead,
a block triangular structure arises as shown in Fig. 2. Using the
block diagonalization given by Eq. (24) further decomposition
of the intermediate modes may be possible. Then the stability
of the synchronized solution can be guaranteed by focussing
on the blocks in the main diagonal, i.e., by ensuring that
the solutions of Eq. (23) for the master and the slave modes
and also the solutions of Eq. (25) for the intermediate modes
decay exponentially. A frequency domain method for stability
analysis of these systems is presented in Appendix A.

D. Examples

As an illustration, two examples with N = 5 nodes and
two different coupling delays are presented. The first one is
a special case of all-to-all coupling without self-coupling. In
particular, we consider the coupling matrices

A1 =

⎡
⎢⎢⎢⎣

0 1 1 1 0
1 0 0 1 1
1 0 0 1 1
1 1 1 0 0
0 1 1 1 0

⎤
⎥⎥⎥⎦,

A2 =

⎡
⎢⎢⎢⎣

0 0 0 0 1
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
1 0 0 0 0

⎤
⎥⎥⎥⎦, (26)

that result in the adjacency matrix

A = A1 + A2 =

⎡
⎢⎢⎢⎣

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

⎤
⎥⎥⎥⎦ (27)

and the adjacency lag operator

B = A1S(τ1) + A2S(τ2)

=

⎡
⎢⎢⎢⎣

0 S(τ1) S(τ1) S(τ1) S(τ2)
S(τ1) 0 S(τ2) S(τ1) S(τ1)
S(τ1) S(τ2) 0 S(τ1) S(τ1)
S(τ1) S(τ1) S(τ1) 0 S(τ2)
S(τ2) S(τ1) S(τ1) S(τ1) 0

⎤
⎥⎥⎥⎦, (28)

cf. Eq. (17). Notice that for this example the adjacency matrix
A is symmetric but the adjacency lag operator B is not as
B45 �= B54.

After diagonalization of B described by Eq. (18) the
operator-valued eigenvalues are

D1 = 3S(τ1) + S(τ2),

D2 = −2S(τ1) + S(τ2),

D3 = −S(τ1), (29)

D4 = −S(τ2),

D5 = −S(τ2).

Each Dk is a linear combination of the lag operators S(τ1)
and S(τ2) so that their coefficients are indeed the eigenvalues
of A1 and A2 (belonging to a common eigenvector); cf.
Eq. (22). The corresponding operators Uk and Vk can be
found in Appendix B. Observe that for each k, Uk , and/or
Vk contains only numbers and, consequently, we only have
four master modes (2, 3, 4, 5) and one slave mode (1). One
may also notice the algebraic multiplicity D4 = D5 that also
results in geometric multiplicity. This means that V4 and V5

(and, similarly, U4 and U5) are not unique but here they are
constructed such that orthonormality is satisfied.

The second example is referred to as general coupling and
is defined by the coupling matrices

A1 =

⎡
⎢⎢⎢⎣

0 1 1 1 0
1 0 0 1 1
1 0 0 1 1
1 1 1 0 0
0 1 1 1 0

⎤
⎥⎥⎥⎦, A2 =

⎡
⎢⎢⎢⎣

0 0 0 0 1
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
1 0 0 0 0

⎤
⎥⎥⎥⎦,

(30)

resulting in the adjacency matrix

A = A1 + A2 =

⎡
⎢⎢⎢⎣

0 1 0 1 1
0 0 1 1 1
1 1 0 0 1
1 0 1 0 1
1 1 0 1 0

⎤
⎥⎥⎥⎦ (31)

and the adjacency lag operator

B = A1S(τ1) + A2S(τ2)

=

⎡
⎢⎢⎢⎢⎢⎣

0 S(τ1) 0 S(τ1) S(τ2)
0 0 S(τ2) S(τ1) S(τ1)

S(τ1) S(τ2) 0 0 S(τ1)
S(τ1) 0 S(τ1) 0 S(τ2)
S(τ2) S(τ1) 0 S(τ1) 0

⎤
⎥⎥⎥⎥⎥⎦. (32)

cf. Eq. (17).
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The diagonalization described in Eq. (18) yields the
operator-valued eigenvalues

D1 = 2S(τ1) + S(τ2),

D2 = −S(τ1) + S(τ2),

D3 = −S(τ2),

D4 = 1
2 {−[S(τ1) + S(τ2)]

+
√
S2(τ2) − 2S(τ1)S(τ2) − 3S2(τ1)},

D5 = 1
2 {−[S(τ1) + S(τ2)]

−
√
S2(τ2) − 2S(τ1)S(τ2) − 3S2(τ1)}. (33)

Here D1, D2, and D3 are linear combination of the lag
operators, while D4 and D5 are not and can only be defined via
multivariable Taylor series [5]. One can conclude that mode 3
is a master mode, modes 1 and 2 are slave modes, and modes 4
and 5 are intermediate modes; see the corresponding operators
Uk and Vk in Appendix B.

As mentioned above, the formal diagonalization of B does
not necessarily lead to uncoupled dynamics for the intermedi-
ate modes in case of time-dependent solutions. Thus, D4 and
D5 can only be used for the stability analysis of synchronized
equilibria. For time-dependent synchronized solutions, the
block diagonalization defined by Eq. (25) is needed, which
yields

D4,5 =
[−S(τ1) S(τ1)
−S(τ1) −S(τ2)

]
, (34)

while the operators U4,5 and V4,5 are given in Appendix B.
These are constructed as a linear combination of U4 and
U5 and as a linear combination of V4 and V5. Indeed, the
formal diagonalization of D4,5 leads to the operator-valued
eigenvalues D4 and D5 defined in Eq. (33).

IV. DELAY-COUPLED HODGKIN-HUXLEY
NEURONS

In this section we study the synchronized solutions in a net-
work of N delay-coupled Hodgkin-Huxley neurons with het-
erogeneous delays [8,10,50]. We utilize the modal decompo-
sition from Sec. III and analyze the modal dynamics Eqs. (23)
and (25) rather than the full network dynamics Eq. (8). We
use the frequency domain method from Appendix A for
the stability analysis of the arising nonautonomous DDEs
with distributed delay. Apart from having smaller systems
for stability analysis the network modes give information
about the arising patterns of oscillations when stability
is lost.

The time evolution of the Hodgkin-Huxley neuronal net-
work is given by the DDE,

CV̇i(t) = I − gNa m3
i (t) hi(t)[Vi(t) − VNa]

−gK n4
i (t) [Vi(t) − VK ] − gL [Vi(t) − VL]

+
R∑

r=1

ar,ij

κ

N
[Vj (t − τr ) − Vi(t)],

ṁi = αm[Vi(t)][1 − mi(t)] − βm[Vi(t)]mi(t),

FIG. 3. Stability charts for the equilibrium of Hodgkin-Huxley
neurons with (a) all-to-all coupling and (b) general coupling. Thick
(black) curves are associated with purely imaginary roots of the
tangential mode 1. Thin dark (blue) and light (green) curves indicate
purely imaginary roots associated with modes 2 and 4/5, respectively.
Stable regions, where all characteristic roots have negative real part,
are shaded. The dotted and dashed lines in panel (b) correspond to
Figs. 4(a) and 4(b), respectively.

ḣi = αh[Vi(t)][1 − hi(t)] − βh[Vi(t)]hi(t),

ṅi = αn[Vi(t)][1 − ni(t)] − βn[Vi(t)]ni(t), (35)

for i = 1, . . . ,N . Here the time t is measured in ms. The
symbol Vi denotes the voltage of the ith neuron at the soma
(measured in mV) while the dimensionless gating variables
mi,hi,ni ∈ [0,1] characterize the “openness” of the ion chan-
nels embedded in the cell membrane. The specific form of the
nonlinear functions αm(V ), αh(V ), αn(V ) and βm(V ), βh(V ),
βn(V ) are given in Eq. (C1) in Appendix C, while the reference
voltages VNa, VK , VL; the conductances gNa, gK , gL; the
membrane capacitance C; and the driving current I are given

FIG. 4. Real part of characteristic roots for general coupling with
(a) homogeneous delays τ1 = τ2 and (b) heterogeneous delays τ2 =
τ1 + 4.8 ms (b); cf. Fig. 3(b). Stable regions are shaded. Color code
as in Fig. 3 (only the dominant roots corresponding to modes 1, 2,
and 4/5 are shown).
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in Table I in Appendix C. The last term in the voltage equation
in Eq. (35) represents a direct electronic connection of conduc-
tance κ between the axon of the j th neuron and the dendrites
of the ith neuron, that is, Vi(t) represents the postsynaptic
potential while Vj (t − τr ) represents the presynaptic potential
and the delay τr stands for the signal propagation time along
the axon of the j th neuron (dendritic delays are omitted here).
That is, the presynaptic potential is equal to what the potential
of the soma of the j th neuron was τr time before.

In order to demonstrate the decomposition techniques es-
tablished above the examples with all-to-all coupling Eq. (28)
and the general coupling Eq. (32) are considered with the
conductances fixed at κ = 1.2 mS/cm2 and κ = 1.6 mS/cm2,
respectively. The different values of the coupling strengths
compensate the different row sums of the two coupling
schemes, i.e., κM is the same in the two examples cf. (5).
Consequently, the tangential dynamics Eq. (9) are equivalent in
the two cases when considering homogeneous delays τ1 = τ2;

see Ref. [10]. We vary the delays and study how the stability
of the equilibria and periodic solutions change.

A. Synchronized equilibria

For the parameters considered here, Eq. (35) has a unique
equilibrium; see Ref. [10]. Figures 3(a) and 3(b) show the
stability charts for the equilibrium in the (τ1,τ2) plane for
all-to-all coupling [Eq. (28)] and general coupling [Eq. (32)],
respectively. The stable domains are shaded. When crossing the
thick black curves starting from a shaded domain, the dominant
characteristic roots corresponding to the tangential network
mode cross the imaginary axis and the synchronized equilib-
rium bifurcates to synchronized periodic solutions. Notice that
along the diagonal τ1 = τ2 of homogeneous delays, tangential
stability losses occur at the same locations in both panels.
When crossing the thin colored curves, characteristic roots cor-
responding to transversal network modes cross the imaginary

FIG. 5. Bifurcation diagrams for synchronized solutions of the Hodgkin-Huxley neurons for all-to-all coupling (left) and general coupling
(right) and different values of the delay heterogeneity 
τ = τ2 − τ1. The peak-to-peak voltage amplitude |Vs | of the synchronized solutions
are plotted as a function of the delay τ1. Solid thin green (thick red) curves represent stable (unstable) solutions with respect to tangential
perturbations, while transversal instabilities are marked by dotted black curves. The parameters indicated by the dashed vertical lines in panels
(a), (b), (e), and (f) are used in Fig. 6.
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axis. When starting from a shaded domain, the synchronized
equilibrium becomes unstable with respect to transversal per-
turbations and synchronization is broken. In this case typically
cluster-synchronized periodic solutions appear [51].

In order to emphasize the effects of delay heterogeneity
we show the real part λ of the dominant characteristic roots
for the case with general coupling in Fig. 4. In Figs. 4(a)
and 4(b) we vary the delays along τ1 = τ2 and along τ2 =
τ1 + 4.8 ms shown as dotted and dashed lines in Fig. 3(b),
respectively. For the homogeneous case τ1 = τ2 both tangential
and transversal stability losses occur and the synchronized
equilibrium is stable only for τ1 ∈ [1.7,2.4] and τ1 ∈ [3.9,4.5].
For the heterogeneous case τ2 = τ1 + 4.8 ms tangential insta-
bilities vanish but transversal ones appear leading to the stable
regions τ1 ∈ [0,2.4] and τ1 ∈ [7.1,9.8]. Note that in this case
introducing heterogeneity in the delays increases the stable
regions. While this may not be true in general, tuning delay
distributions were also used to stabilize the equilibrium for
metal cutting [52–54].

B. Synchronous periodic spiking

Here we study the synchronized periodic solutions embed-
ded within the synchronization manifold. In particular, with
the help of the software package DDE-BIFTOOL [55], we
compute periodic solutions of Eq. (2) by using numerical col-
location and continue these while varying the delays. In Fig. 5
the peak-to-peak voltage amplitude |Vs | of the synchronized
periodic solution is plotted as a function of the delay τ1 for
different values of the delay heterogeneity 
τ = τ2 − τ1. The
left and the right columns in Fig. 5 correspond to the all-to-all
[Eq. (28)] and the general coupling [Eq. (32)], respectively.
Notice that the branches are the same in the two columns except
the coloring.

DDE-BIFTOOL gives the stability information with respect
to the tangential perturbations of the periodic solution: solid
thin green (thick red) curves indicate tangentially stable (unsta-
ble) solutions. To determine stability with respect to transver-
sal perturbations, we decompose the network dynamics as
presented in Sec. III and analyze the periodic DDEs with
distributed delay given by Eqs. (23) or (25). The coefficient
matrices L(t) and R(t) are calculated using the output of
DDE-BIFTOOL and the operators Dk are obtained from (29)
for all-to-all coupling and from (33) and (34) for general
coupling. Then the dominant Floquet exponents associated
with all N − 1 transversal network modes are calculated via
Hill’s infinite determinant Eq. (A10) and the corresponding
transversal instabilities are marked by dotted thick black curves
in Fig. 5.

The homogeneous delay case τ1 = τ2 is shown in Figs. 5(a)
and 5(b). In this case the red and green coloring is the same
in the two panels as the tangential dynamics are equivalent.
However, the stability with respect to transversal perturbations
(dotted thick black curves) differs due to different eigenvalues
of the adjacency lag operator for the two different coupling
schemes. For example, at τ1 = τ2 = 3.4 ms (marked by vertical
dashed lines) both the synchronized equilibrium (|Vs | = 0 mV)
and synchronized periodic spiking (|Vs | ≈ 90 mV) are linearly
stable for all-to-all coupling, whereas for general coupling the
synchronized equilibrium is unstable.

FIG. 6. Voltages of the Hodgkin-Huxley neurons Eq. (35) for all-
to-all coupling (a) and general coupling (b). We set τ1 = 3.4 ms while
heterogeneity in the delays is introduced at t = 200 ms by switching
from 
τ = 0 ms to 
τ = 2.4 ms.

When increasing the delay heterogeneity 
τ = τ2 − τ1 the
parameter regions where the synchronized periodic solutions
are unstable expand and in some cases they do not even exist.
For example, for 
τ = 4.8 ms shown in Figs. 5(i) and 5(j) no
such solutions exist for τ1 ∈ [1.9,5.9] ms and for τ1 ∈ [1.4,6.2]
ms, respectively. Moreover, transversal instabilities are more
pronounced for the case of general coupling. For example,
for 
τ = 4.8 ms synchronized periodic spiking is stable for
τ1 ∈ [0,1.5] ms and τ1 ∈ [6.0,14.7] ms when using all-to-all
coupling [see Fig. 5(i)], while for general coupling this motion
is only stable for τ1 ∈ [0,0.7] ms and τ1 ∈ [6.4,13.5] ms [see
Fig. 5(j)].

In order to demonstrate the full nonlinear dynamics of
the Hodgkin-Huxley neurons, we use numerical simulations.
Specifically, Eq. (35) is integrated numerically with a Runge-
Kutta method [56]. Arbitrary constant values are chosen for
the initial functions. For t < 200 ms the delays are set to the
homogeneous case τ1 = τ2 = 3.4 ms corresponding to the
vertical dashed lines in Figs. 5(a) and 5(b). The voltages Vi of
the five neurons are plotted as a function of time t for all-to-all
coupling in Fig. 6(a) and for general coupling in Fig. 6(b). In
both cases (after some transient dynamics not shown in Fig. 6)
synchronized periodic spiking arise. At t = 200 ms, the delay
τ2 is increased abruptly to create the heterogeneity 
τ =
τ2 − τ1 = 2.4 ms corresponding to the vertical dashed lines in
Figs. 5(e) and 5(f). Since in this case all possible synchronized
solutions are transversally unstable, cluster-synchronized
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periodic spiking appears for the all-to-all coupling and
asynchronous spiking appears for the general coupling.

V. CONCLUSION

Synchronized solutions of networks with heterogeneous
coupling delays were investigated. The conditions for the
existence of the synchronization manifold were given. It was
shown that adding heterogeneity in the delays may destroy
time-dependent synchronized solutions while still maintain
synchronized equilibria.

A systematic method was presented for the decomposition
of the dynamics at the network level in the vicinity of syn-
chronized solutions. This was based on the decomposition of
the adjacency lag operator, which contains information about
the network topology as well as the coupling delays. In the
generic case, the block diagonalization of the adjacency lag
operator led to a triangular structure for the modal dynamics.
This allowed us to investigate the stability of time-dependent
synchronized solutions by analyzing the stability of modal
DDEs separately, where different modes were associated with
different delay distributions.

As an example, the effects of delay heterogeneity on
synchronized equilibria and synchronized periodic spiking in
a systems of Hodgkin-Huxley neurons were studied. In this
case increasing heterogeneity in the coupling delays led to
larger regions where all synchronized periodic solutions were
unstable or even no synchronized periodic solutions existed. As
neurosystems often store information using periodic cluster-
synchronized states, establishing mathematical tools for their
stability analysis in the presence of heterogeneous delays is
an interesting future research direction. The extension of the
current work to near synchronous states is another topic left
for future research.
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APPENDIX A: STABILITY ANALYSIS
IN THE FREQUENCY DOMAIN

A frequency domain approach is suitable for the stability
analysis of the modal dynamics Eqs. (23) and (25) because
exponential functions est are eigenfunctions of the lag operator
[cf. Eq. (13)]. Here we present the methods for Eq. (23) but
the results may be easily extended for Eq. (25).

For synchronized equilibria xs(t) ≡ x∗
s , Eq. (23) with

time-invariant coefficient matrices L(t) = L0 and R(t) = R0

describes the modal dynamics. Then the exponential ansatz

qk(t) = q̂k,0e
st (A1)

with s ∈ C (see Refs. [43,47,48,57]) leads to the modal
characteristic equation

det[Ins − L0 − R0�k(s)] = 0, (A2)

where �k(s) os the eigenvalue of the operator Dk , i.e.,

Dke
st = �k(s)est . (A3)

Recall that e−sτ is the eigenvalue of the lag operator S(τ ); see
Eq. (13). WhenDk can be written in the form Eq. (22), we have

�k(s) =
R∑

r=1

σr,k e−sτr . (A4)

The characteristic roots s for network mode k can be found by
solving the characteristic equation Eq. (A2). If all characteristic
roots are located in the left half of the complex plane, then the
mode is stable. Although there are infinitely many characteris-
tic roots, those with the largest real part, often called dominant
roots, determine the stability. In this paper we compute these
roots by using a multidimensional bisection method [37,58].
As the parameters (e.g., the delays) are varied, roots can move
into the right half complex plane, resulting in an instability.
The stability boundaries indicate the parameter values where
roots cross the imaginary axis. By substituting s = iω, ω � 0
into Eq. (A2) one may find these boundaries.

For synchronized periodic solutions xs(t) = xs(t + T ),
where T denotes the period, we use Hill’s infinite determi-
nant method to determine stability [59,60]. The method is
often used in engineering applications and it is also known
as multifrequency approach [36,37,61–63]. For synchronized
periodic solutions the coefficient matrices are periodic, that is,
L(t) = L(t + T ) and R(t) = R(t + T ). From Floquet theory
it is known that the solutions of Eq. (23) can be written as

qk(t) = pk(t)est , pk(t) = pk(t + T ), (A5)

where the complex numbers s ∈ C are called Floquet expo-
nents; see Ref. [64]. The periodic part pk(t) can be expanded
using Fourier series

pk(t) =
∞∑

l=−∞
q̂k,le

il�t ⇒ qk(t) =
∞∑

l=−∞
q̂k,le

(s+il�)t ,

(A6)

where � = 2π/T is the frequency and q̂k,l are the Fourier
coefficients. Similarly, the periodic matrices L(t) and R(t) can
be expanded into Fourier series

L(t) =
∞∑

m=−∞
Lmeim�t , R(t) =

∞∑
m=−∞

Rmeim�t . (A7)

Note that the Fourier coefficients Lm and Rm depend on the
form of the synchronized periodic solution of the network,
which is often available only numerically.

Putting Eqs. (A6) and (A7) into the modal dynamics Eq. (23)
yields

∞∑
m=−∞

eim�t

∞∑
l=−∞

Mm,l q̂k,l = 0, (A8)

where the matrices Mm,l are given by

Mm,l = In(s + il�) δm,l − Lm−l − Rm−l �k(s + il�),

(A9)
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TABLE I. Parameters for Hodgkin-Huxley neurons.

VNa = 50 mV gNa = 120 mS
cm2 C = 1 μF

cm2

VK = −77 mV gK = 36 mS
cm2 I = 20 μA

cm2

VL = −54.4 mV gL = 0.3 mS
cm2

and �k(s) are defined in Eq. (A3). Since in Eq. (A8) the
coefficients for each harmonic m must vanish, we obtain

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

. . .
... ···

M−1,−1 M−1,0 M−1,1

. . . M0,−1 M0,0 M0,1 . . .

M1,−1 M1,0 M1,1

··· ...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= 0. (A10)

This infinite determinant can be interpreted as the characteristic
equation of the DDE Eq. (23) for periodic coefficient matrices.
Note that the matrices Mm,l also depend on the modal index k.
Notice that if the coefficient matrices L(t),R(t) are constant,
then the higher harmonics in Eq. (A7) vanish, i.e., Lm = Rm =
0 for m �= 0, and Eq. (A10) simplifies to Eq. (A2).

Again, stability is guaranteed when all Floquet exponents
s are located in the left half of the complex plane. We use
the multidimensional bisection method to compute the expo-
nents and detect the stability boundaries in parameter space
[37,58], but one may find alternative methods in Ref. [51].
For a practical calculation of the determinant Eq. (A10), the
infinite matrix M is truncated to a finite-dimensional matrix by
taking into account only a finite number of higher harmonics

[36,37,61,62]. Finally, we remark that ansatzes similar to
Eqs. (A1) or (A5) can also be made in the original system
[Eq. (8)], leading to a complete frequency domain description
of the network dynamics.

APPENDIX B: NETWORK MODES FOR THE EXAMPLES

For simplicity we introduce the notation S(τ1) = S1,
S(τ2) = S2. The operator-valued right and left eigenvectors for
the all-to-all coupling Eq. (28) corresponding to the operator-
valued eigenvalues Eq. (29) are given by

V1 =

⎡
⎢⎢⎢⎢⎢⎣

1
1
1
1
1

⎤
⎥⎥⎥⎥⎥⎦, V2 =

⎡
⎢⎢⎢⎢⎢⎣

1

− 3
2

− 3
2

1
1

⎤
⎥⎥⎥⎥⎥⎦,

V3 = 1

4S1 + S2

⎡
⎢⎢⎢⎢⎢⎣

S1

S1

S1

−(3S1 + S2)
S1

⎤
⎥⎥⎥⎥⎥⎦, V4 =

⎡
⎢⎢⎢⎢⎢⎣

0
1
2

− 1
2

0
0

⎤
⎥⎥⎥⎥⎥⎦, (B1)

V5 = 1

3S1 + 2S2

⎡
⎢⎢⎢⎢⎢⎣

S1 + S2

− 1
2S1

− 1
2S1

S1 + S2

−(2S1 + S2)

⎤
⎥⎥⎥⎥⎥⎦

and

U1 =
[

1

5

13S2
1 + 9S1S2 + 3S2

2

(4S1 + S2)(3S1 + 2S2)

1

5

1

5

S1

4S1 + S2

1

5

2S1 + 3S2

3S1 + 2S2

]
, U2 =

[
1

5
− 1

5
− 1

5
0

1

5

]
,

U3 = [1 0 0 − 1 0], U4 = [0 1 − 1 0 0], U5 = [1 0 0 0 − 1]. (B2)

The operator-valued right and left eigenvectors for general coupling Eq. (32) corresponding to D1, D2, and D3 in Eq. (33) and
D4,5 in Eq. (34) are given by

V1 =

⎡
⎢⎢⎢⎢⎢⎣

1

1

1

1

1

⎤
⎥⎥⎥⎥⎥⎦, V2 =

⎡
⎢⎢⎢⎢⎢⎣

1

−2

−2

1

1

⎤
⎥⎥⎥⎥⎥⎦, V3 = 1

2

1

(S1 + S2)(S1 − 2S2)

⎡
⎢⎢⎢⎢⎢⎢⎣

S2
1 − 2S2

2

−S2
1

−S2
1

S2
1 − 2S2

2

−(
S2

1 − 2S1S2 − 2S2
2

)

⎤
⎥⎥⎥⎥⎥⎥⎦

,

V4,5 = 1(
S2

1 − S1S2 + 2S2
2

)(
7S2

1 + 8S1S2 + 2S2
2

)

×

⎡
⎢⎢⎢⎢⎢⎢⎣

S1
(
S3

1 − S1S2
2 − S3

2

)
S1

(
2S3

1 + 2S2
1S2 + 5S1S2

2 + 4S3
2

)
S4

1 + 6S2
1S2

2 + 7S1S3
2 + 2S4

2 S1
(
2S3

1 − 5S2
1S2 − 3S1S2

2 + 2S3
2

)
−6S4

1 − S3
1S2 − 2S2

1S2
2 − 7S1S3

2 − 2S4
2 S1

(
2S3

1 − 5S2
1S2 − 3S1S2

2 + 2S3
2

)
S1

(
S3

1 − S1S2
2 − S3

2

) −5S4
1 + S3

1S2 − 3S2
1S2

2 − 10S1S3
2 − 4S4

2

S1
(
S3

1 − S1S2
2 − S3

2

)
S1

(
2S3

1 + 2S2
1S2 + 5S1S2

2 + 4S3
2

)

⎤
⎥⎥⎥⎥⎥⎥⎦

, (B3)
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and

U1 =
[

1

6

9S3
1 + 16S2

1S2 + 12S1S2
2 + 4S3

2

(S1 + S2)(7S2
1 + 8S1S2 + 2S2

2 )

(S1 + S2)(4S1 + S2)

21S2
1 + 24S1S2 + 6S2

2

3S2
1 + 3S1S2 + S2

2

21S2
1 + 24S1S2 + 6S2

2

S1(6S1 + 5S2)

21S2
1 + 24S1S2 + 6S2

2

1

6

S1 + 2S2

S1 + S2

]
,

U2 =
[
−1

3

S2(2S2
1 − 3S1S2 + 2S2

2 )

(S1 − 2S2)(S2
1 − S1S2 + 2S2

2 )
− 1

3

S2
1 − S1S2 + S2

2

S2
1 − S1S2 + 2S2

2

− 1

3

S2
2

S2
1 − S1S2 + 2S2

2

1

3

S1S2

S2
1 − S1S2 + 2S2

2

1

3

S1 − S2

S1 − 2S2

]
, (B4)

U3 = [1 0 0 0 − 1], U4,5 =
[

0 1 −1 0 0
1 0 0 −1 0

]
.

APPENDIX C: DETAILS OF THE HODGKIN HUXLEY MODEL

The nonlinear functions used in the the Hodgkin-Huxley model Eq. (35) are

αm(V ) = 0.1 (V + 40)

1 − e− V +40
10

, βm(V ) = 4 e− V +65
18 ,

αh(V ) = 0.07 e− V +65
20 , βh(V ) = 1

1 + e− V +35
10

, (C1)

αn(V ) = 0.01 (V + 55)

1 − e− V +55
10

, βn(V ) = 0.125 e− V +65
80 .

while the parameters used in Eq. (35) are given in Table I.
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