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Abstract In this contribution, heterogeneous con-
nected vehicle systems, that include human-driven as
well as connected automated vehicles, are investigated.
The reaction time delay of human drivers as well as
the communication and actuation delays of connected
automated vehicles is incorporated in the model. Satu-
rations due to the speed limit and limited acceleration
capabilities of the vehicles are also taken into account.
The arising nonlinear delayed system is studied using
analytical and numerical bifurcation analysis. Stability
analysis is used to identify regions in parameter space
where oscillations arise due to loss of linear stability of
the equilibrium. Moreover, with the help of numerical
continuation, bistability between the equilibrium and
oscillations is shown to exist due to the presence of an
isola. It is demonstrated that utilizing long-range wire-
less vehicle-to-vehicle communication the connected
automated vehicle is able to eliminate the oscillations
and keep the traffic flow smooth.
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1 Introduction

Road transportation is expected to go through a huge
transformation in the upcoming decades with the intro-
duction of connected and automated vehicles. While
such technologies mainly aim at improving passenger
comfort and safety, they may also be used to improve
the overall traffic flow. For example, by controlling
the motion of automated vehicles may lead to higher
traffic throughput and improved fuel economy [1–7].
Most prior research on the topic assumed 100% pene-
tration rate of automation as well as vehicle-to-vehicle
(V2V) connectivity. While the latter one is expected to
rise rapidly in the next few years, the former one will
likely follow in a slower pace due to the high cost of
these vehicles. Thus, there is a need to understand the
dynamics ofmixed scenarioswhere automated vehicles
are mixed into the flow of human-driven traffic. Initial
research on mixed scenarios typically considered lin-
ear dynamics [8–10], while recent experimental results
show that nonlinearities may play an important role in
these systems [11–13].

In this paper, we start with modeling the longitudi-
nal dynamics of human-driven vehicles. Then, a con-
nected cruise control (CCC) algorithm is proposed to
regulate the longitudinal dynamics of connected auto-
mated vehicles (CAVs) which utilize motion infor-
mation from multiple human-driven vehicles ahead
(within and beyond the line of sight). In particular, our
goal is to design CCC controllers for CAVs so that
they can mitigate traffic waves at the linear and nonlin-
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Fig. 1 Schematic representation of vehicles on a single lane. Cascade of CCCs consisting of human-driven and connected automated
vehicles. Arrows show the direction of information propagation via V2V communication

ear levels. We adopt the strategy of “do not look ahead
of another CAV” leading to the formation of a cas-
cade of CCCs, as depicted in Fig. 1. This allows for a
modular and scalable design of connected vehicle sys-
tems [14].Whenmodeling the vehicles, we incorporate
time delays to represent the human reaction time and
the communication and actuation delays of connected
automated vehicles. Moreover, we take into account
the speed limits and limited acceleration capabilities of
vehicles, which introduce nonlinearities into the mod-
eling equations.

In order to select the control gains of the connected
automated vehicles, linear and nonlinear analyses are
carried out while the vehicles placed on a circular road.
First, linear stability analysis is presented to understand
the effects of the connected automated vehicles on the
stability of the uniform flow.With the help of the insta-
bility gradient method [15], we construct robust stabil-
ity diagrams in the plane of the control parameters. We
demonstrate that using beyond-line-of-sight informa-
tion (obtained via V2V communication) can improve
linear stability. Then, nonlinear analysis is carried out
to have an insight into the influence of limited accel-
eration capabilities of vehicles. We use numerical con-
tinuation techniques [16,17], to draw the skeleton of
the traffic dynamics as a three-dimensional wire frame
representation. For the first time, we demonstrate that
acceleration saturation leads to new dynamic behavior,
where bistable regions appear through the presence of
isolas. In this scenario, no linear stability loss occurs,
but larger perturbations may still trigger traffic waves.
Then, the effects of connected automated vehicles are
investigated at the nonlinear level.We demonstrate that
when using information only from the vehicle immedi-
ately ahead, an automated vehicle cannot eliminate the
isolas. However, including additional information from
beyond-line-of-sight, a connected automated vehicle
can make the uniform flow globally stable.

The paper is organized as follows: in Sect. 2, we
provide the governing equations of heterogeneous con-
nected vehicle systems (including human-driven and
automated vehicles) and explain the sources of the non-
linearities. Section 3 gives the linear stability analysis
for the proposed model. A case study is conducted in
Sect. 4 with a connected automated and two human-
driven vehicles with detailed linear stability analysis.
Then, in Sect. 5, we analyze the nonlinear effects of
the acceleration saturation using numerical continua-
tion. Finally, in Sect. 6, we conclude our results and
discuss future directions.

2 Governing equations

In this section, we model the car-following behavior
and the corresponding governing equations of hetero-
geneous connected vehicle systems. We consider that
human drivers respond to the motion of the vehicle
immediately ahead, while the connected automated
vehicle’s connected cruise control algorithm can uti-
lize motion information from up to k cars ahead. We
place N vehicles on a ring of length L such that we
have M automated and N −M human-driven vehicles.
The distribution of the human-driven vehicles and the
connected automated vehicles are described with the
help of the indices ih ∈ H and ia ∈ A, such that
A + H = {1, . . . , N } and | A | + | H |= N .

Following the models in [18], the governing equa-
tions can be given as:

v̇i = f
(
α

(
V (hσ

i ) − vσ
i

) +
ki∑
j=1

β j

(
vσ
i+ j − vσ

i

) )

if i = ia, (1)

v̇i = f
(
αh

(
V (hτ

i ) − vτ
i

) + βh
(
vτ
i+1 − vτ

i

) )

if i = ih,
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ḣi = vi+1 − vi ,

where the dot stands for differentiation with respect to
time t and we use the abbreviated notation vϑ

i = vi (t−
ϑ) to indicate delays. Also, vi denotes the velocity of
vehicle i and hi denotes the distance headway, that is,
the bumper-to-bumper distance between the vehicle i
and its predecessor. This can be calculated as

hi = xi+1 − xi − li , (2)

where xi denotes the position of the rear bumper of
vehicle i and li denotes the length of vehicle i such that
L = ∑N

i=1(hi +li ) is the length of the ring. It should be
noted that for i = N , we have hN = L − ∑N−1

i=1 (hi +
li ) − lN and vN+ j = v j due to periodicity imposed by
the ring. In case of a human-driven vehicle (i = ih),
the sum of the reaction time delay and the actuation
delay is denoted by τ , while for a connected automated
vehicle (i = ia), the sum of the communication and
actuation delay is denoted by σ .

The parameters α and β j are the control parameters
of the connected automated vehicle, and αh and βh are
the control parameters of the human-driven vehicles.
For the sake of simplicity, all human-driven vehicles are
considered to be identical and so the automated ones.
The β parameters are directly related to the velocity
differences, while the α parameters are related to the
optimal velocity function V (h) (also called range pol-
icy), that satisfies the following properties:

1. V (h) is continuous, smooth and monotonically
increasing (the more sparse the traffic is, the faster
the vehicles want to travel).

2. V (h) ≡ 0 for h ≤ hst (in dense traffic vehicles
intend to stop).

3. V (h) ≡ vmax for h ≥ hgo (in sparse traffic vehi-
cles intend to travel with the maximum speed, also
called free-flow speed)

These properties can be summarized as:

V (h) =
⎧
⎨
⎩
0 if h ≤ hst,
F(h) if hst < h < hgo,
vmax if h ≥ hgo,

(3)

where F(h) is strictly monotonically increasing and
satisfies F(hst) = 0 and F(hgo) = vmax. In this paper,

(a) (b)

Fig. 2 Source of the nonlinearities in the model: a saturations
due to the speed limit in the range policy function (4); b accelera-
tion saturation function (6). The parameters are amin = − 6m/s2,
amax = 3m/s2, c = 0.05m/s2

Fig. 3 A simple CCC placed on a ring where the first car is
automated and the second and third cars are human driven (N =
3, M = 1)

we present the results using the range policy function

F(h) = vmax

2

(
1 − cos

(
π

h − hst
hgo − hst

))
, (4)

that is smooth at hst and hgo; see Fig. 2a. For simplicity,
we use the same V (h) function for human-driven and
automated vehicles.

Saturations due to limited acceleration capabilities
of vehicles are also taken into account by the function

f (a) =
⎧
⎨
⎩
amin if a < amin,

a if amin ≤ a ≤ amax,

amax if a > amax,

(5)

where amin and amax are the lower and upper saturation
bounds, respectively.

However, the nonsmoothness at amin and amax may
lead to computational challenges. In order to avoid
these, we smooth the saturation function by introduc-
ing a smoothness range, where the different sections
defined in Eq. (5) are connected to each others while
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Table 1 Parameters in the
test case Total veh. numb. N 3 max. speed vmax 30m/s

CCC veh. numb. M 1 Stop dist. hst 5m

Human delay τ 1 s Driving dist. hgo 55m

CCC delay σ 0.5 s Lower satur. limit amin − 6m/s2

Human gain αh 0.2 1/s Upper satur. limit amax 3m/s2

Human gain βh 0.4 1/s Smoothness range c 0.05m/s2

maintaining Cn continuity. In particular, tomaintain C1

continuity, we use second-order polynomials, yielding

f (a)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

amin if a ≤ amin − c,

a + (amin−a+c)2

4c if amin − c < a < amin + c,
a if amin + c ≤ a ≤ amax − c,

a − (amax−a−c)2

4c if amax − c < a < amax + c,
amax if a ≥ amax + c.

(6)

Additional parameters can be found in Table 1.

3 Linear stability analysis

In this section, we present the mathematical back-
ground of the linear stability analysis of the connected
vehicle system. Setting the left-hand side of Eq. (1) to
be zero, we obtain the unique equilibrium:

vi (t) ≡ v∗ = V (h∗),
hi (t) ≡ h∗ = L/N ,

(7)

where vehicles travel with constant speed while keep-
ing constant distance. Using the vector

x(t) = [
v1(t) · · · vN (t) h1(t) · · · hN (t)

]T
, (8)

the equilibrium can be given as

x∗ = [
v∗ · · · v∗ h∗ · · · h∗]T . (9)

Substituting the perturbation y(t) = x(t) − x∗ into
Eq. (1), using a Taylor series expansion and dropping
the higher-order terms,weobtain the variational system

ẏ(t) = Ly(t) + Py(t − τ) + Ry(t − σ). (10)

The 2N × 2N coefficient matrix in front of the non-
delayed term is given by

L =
[

0 0
S − I 0

]
, (11)

where I stands for the N × N identity matrix and S is
an N × N circulant matrix, defined as

S =

⎡
⎢⎢⎢⎣

0 1 0 . . . 0
...

. . .
. . . 0

0 1
1 0 . . . 0

⎤
⎥⎥⎥⎦ . (12)

The 2N × 2N coefficient matrices P and R in front
of the delayed terms correspond to the human-driven
vehicles and the automated vehicles, respectively. In
particular, we have

P =
[−H

(
(αh + βh)I + βhS

)
αhκH

0 0

]
, (13)

where κ = V ′(h∗) is the gradient of the range policy
function at the equilibrium. Also note that at x∗, the sat-
uration function gives f ′(0) = 1. The N ×N indicator
matrix H contains zero elements except those diagonal
terms which correspond to human-driven vehicles, that
is,

Hi,i =
{
1 if i = ih,
0 if i = ia.

(14)

Moreover, we have

R =
[
−(I − H)

(
(α + ∑k

j=1 β j )I + ∑k
j=1 β jS j ) ακ(I − H)

0 0

]
,

(15)
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where (I − H) corresponds to the automated vehicles.
In order to determine the stability of the equilibrium,

we utilize the D-subdivision method [19–21]. Substi-
tuting the trial function y(t) = c eλt into Eq. (10), the
corresponding characteristic equation becomes

D(λ) = det
(
λI − L − P e−λτ − R e−λσ

) = 0. (16)

The real and the imaginary parts of the characteristic
roots are computed using the multi-dimensional bisec-
tion method (MDBM), which can find all the roots
within a selected domain in the complex plane when
using a sufficiently dense initial mesh [22].

The system is stable if all characteristic roots have
negative real parts, i.e., Reλi < 0 for all i = 1, 2, . . ..
By substituting λ = iωcr, ωcr ≥ 0 into Eq. (16), the
stability boundaries can be determined [19–21].

In case of large number of vehicles, solving Eq. (16)
can be time consuming and sensitive for rounding
errors. However, in case of special patterns of distri-
bution of the automated vehicles, where every (K =
N/M)th vehicle is automated, Eq. (16) takes the ana-
lytical form

D =
(
a0b

K−1
0

)M

−
(
(−1)K−1a2b0b

K−2
1 + (−1)K a1b

K−1
1

)M
.(17)

Here, M is the number of connected automated cars,
each monitoring the motion of K − 1 human-driven
vehicles ahead, and the coefficients read as

a0 = λ
(
λ + (α + β1 + β2)e

−λσ
) + ακe−λσ ,

b0 = λ
(
λ + (αh + βh)e

−λτ
) + αhκe

−λτ ,

a1 = −(
λβ1 + ακ

)
e−λσ ,

b1 = −(
λβh + αhκ

)
e−λτ ,

a2 = −λβ2e
−λσ .

(18)

4 Stability analysis of a simple connected vehicle
system

In this section, the stability analysis is applied to the
simplest case of CCCs with 3 cars on a ring, where the
first vehicle is automated, while the second and third
cars are human driven (N = 3, M = 1); see Fig. 3.

We analyze the effects of the average headway h∗
and the design parameters of the autonomous vehicle

α, β1 and β2, while the other parameters, such as the
parameters of the human drivers and the time delays,
are kept fixed. The applied parameters together with
reaction time delays are presented in Table 1, see the
related parameter identification techniques in [10,13].

The corresponding coefficient matrices in the lin-
earized system (10) read as follows:

L =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−1 1 0 0 0 0
0 −1 1 0 0 0
1 0 −1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, H =
⎡
⎣
0 0 0
0 1 0
0 0 1

⎤
⎦ . (19)

cf. (11) and (14), while the coefficient matrices of the
delayed terms are

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 −(αh + βh) βh 0 αhκ 0
βh 0 −(αh + βh) 0 0 αhκ

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(20)

and

R =

⎡
⎢⎢⎢⎢⎢⎢⎣

−(α + β1 + β2) β1 β2 ακ 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (21)

cf. (13) and (15).
As a first step, we analyze the influence of an auto-

mated car that does not utilize beyond-line-of-sight
information (β2 = 0) on the traffic dynamics by draw-
ing the stability chart in the plane of h∗ and α for differ-
ent β1 parameters. In the stability charts in Fig. 4, the
gray areas identify regions in parameter space where
oscillations arise due to loss of linear stability of the
equilibrium. The coloring of the boundaries shows the
frequency of the Hopf bifurcation in the correspond-
ing nonlinear system. The darkest blue corresponds to
ωcr = 0, that is related to a fold bifurcation. All the
charts show stable range only between h∗ ∈ [5, 55]
m. Outside of this domain, the saturation in the range
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Fig. 4 Linear stability diagrams for different β1 values with-
out beyond-line-of-sight information (β2 = 0). Gray areas cor-
respond to the linearly unstable parameter combinations, while
white areas are linearly stable. The color of the stability boundary

corresponds to the frequency of arising oscillations when stabil-
ity is lost. Note that the parameters α, β1 and β2 correspond to
the automated vehicle, while parameters of the human drivers
are given in Table 1. (Color figure online)

Fig. 5 The effect of the β1 parameter for h∗ = 30m. The white
areas are robustly stable for any average headway h∗. In the gray
area, a stable or an unstable equilibrium may exist depending on
the average headway h∗

policy function eliminates the headway control so that
equilibrium in (7) does not exist. Furthermore, negative
α values always lead to unstable motion due to positive
feedback.

For the leftmost panel in Fig. 4 (at β1 = 0), large
unstable range in the shape of a “droplet” can be found.
This is centered around h∗ = 30 m, which corresponds
to the largest derivative of the range policy function
(κ = 0.943 1/s). Comparing the different panels in
Fig. 4, the unstable droplet is shrinking when increas-
ing parameter β1. However, the droplet is also shift-
ing downward and merging with the unstable region
α < 0. For β1 > 1.3 1/s, the droplet is completely van-
ished and a large stable area forms.However, such large
control parameter may require large acceleration that
may not be possible under limited acceleration capabil-

ities. Notice that the upper unstable area is also shifting
downward as β1 increases, but only causes instabilities
for unrealistically large α values.

We prefer those robust control parameters for which
the system is stable for any available headway h∗ ∈
[5, 55] m. The corresponding stability boundaries can
be found by following the edges of the droplets where
the tangent is horizontal (at h∗ = 30m in our case) [23].
That is, if we change parameter h∗, the real parts of
the critical characteristic roots remain zero (Reλ = 0).
This condition can be described as follows:

Re

(
∂λ

∂h∗

)
= 0, (22)

while setting the critical value λ = iωcr. This can be
rewritten as

Re

(
−

∂D(λ)
∂h∗

∂D(λ)
∂λ

)
= 0, (23)

using implicit differentiation of the characteristic equa-
tion Eq. (16). Thus, the robust parameter boundaries
can be calculated by solving the real and imaginary
parts of Eqs. (16) and (23) together while setting
λ = iωcr.

In the 4-dimensional parameter space (h∗, β1, α,
ωcr), Eqs. (16) and (23) give us a 1-dimensional object
(curve). Still multi-dimensional bisection method can
be used to find the corresponding solutions. Figure 5
shows the corresponding robust stability boundaries
against the variation in the average headway h∗ in the
plane of β1 and α control parameters, while color indi-
cates the critical frequency ωcr. Two robustly stable
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Fig. 6 Linear stability charts for different values of β1 and β2. The same notation is used as in Fig. 4

Fig. 7 Robust stability diagram in the plane of parameters β1
and β2. The same notation is used as in Fig. 5 except that color
represents the critical values of α

domains can be observed. However, the lower one is
not practical as such small α values may not be safe.

Fig. 8 Bifurcation diagram showing peak-to-peak amplitude of
velocity oscillations for the automated vehicle as a function of the
average headway. Continuous and dashed curves correspond to
the model with and without acceleration saturation, respectively.
The control parameters are β1 = 0.3 1/s, β2 = 0.15 1/s and
α = 0.6 1/s. (Color figure online)

When the connected automated vehicle can uti-
lize beyond-line-of-sight information (with nonzero
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(a) (b)

(c)

(d)

Fig. 9 Periodic orbits with acceleration saturation (continuous
curves) and without saturation (dashed curves) for parameters
β1 = 0.3 1/s, β2 = 0.15 1/s, α = 0.6 1/s and h∗ = 30m.
Panels a, b phase-plane representation; panels c, d time profiles
of velocity and acceleration. Here, we have Tper = 6.965s

parameter β2), the stability charts are shown in Fig. 6.
It can be seen that the increase of the β2 parameter
improves stability. The unstable droplets are shrinking
but not moving downward. The best option to improve
linear stability is to increase both β1 and β2 together.
Even for relatively small parameters, the droplet van-
ishes leading to robustness against changes in α and
h∗. Robust stability can be obtained by solving Eq. (16)
together with

Re

(
−

∂D(λ)
∂h∗

∂D(λ)
∂λ

)
= 0, Re

(
−

∂D(λ)
∂α

∂D(λ)
∂λ

)
= 0, (24)

while considering λ = iωcr. Note that Eqs. (16) and
(24) consist of four equations, and in the 5-dimensional
parameter space (h, α, β1, β2, ωcr) this still results in a
curve.

Figure 7 shows the stable parameter domain in the
(β1, β2)-plane, where the system is linearly stable for
all relevant h∗ andα parameters values. In the gray area,
the system may be stable or unstable for different h∗
and α parameter combinations. At the robust stability
boundary, the unstable droplet completely disappears.

It should be noted that in this test case, the unstable
droplet disappears always at fix h∗ = 30 m but for dif-
ferent α values, and the stability boundary is colored
according to these α values. Note that the upper unsta-
ble area still exists, but only leads to instabilities for
unrealistically large α values.

5 Nonlinear analysis

Using the above-introduced linear stability charts, it is
possible to select the control parameters for the auto-
mated vehicle. However, these charts are valid only
when small perturbations are introduced around the
equilibrium traffic flow. In order to ensure stability for
large perturbations, nonlinearities have to be taken into
account when analyzing the global stability properties.
To map out the global dynamics, we use numerical
continuation, in particular, the package DDE-Biftool
[16,17]. This allows us to follow branches of equilib-
ria and periodic solutionswhile varying parameters and
can provide information about the stability and bifur-
cations of these solutions. In our system, the source of
the nonlinearities is the saturations due to range policy
and limited acceleration capabilities (see Fig. 2).

First, the criticality of the Hopf bifurcation is ana-
lyzed. In case of supercritical/subcritical bifurcation, a
branch of stable/unstable periodic orbits emanates from
the Hopf points. Figure 8 presents the bifurcation dia-
gram along a horizontal cross section at α = 0.6 1/s in
the panel of Fig. 6 for β1 = 0.3 1/s, β2 = 0.15 1/s (see
dotted line in Fig. 6).

The peak-to-peak amplitude of the velocity oscil-
lations of the automated vehicle v

amp
1 is plotted as a

function of the bifurcation parameter h∗. Note that for
the equilibrium (7), this amplitude is zero correspond-
ing to the horizontal axis. In this case, the equilibrium
is unstable for h∗ ∈ [24.44, 35.56] m and the Hopf
bifurcations, denoted by H1 and H2, are supercritical.
Continuous and dashed green curves correspond to the
modelwith andwithout acceleration saturation, respec-
tively. It can be seen that taking into account the satura-
tion of the acceleration creates no difference close to the
bifurcation points where the amplitude is small. How-
ever, after reaching the acceleration limit, the amplitude
of the oscillation is smaller for the case with accelera-
tion saturation.
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(a) (b)

(c)(d)(e)

Fig. 10 Three-dimensional wire frame representation of the
periodic orbits where the amplitude v

amp
1 is plotted as a func-

tion of h∗ and α for parameters β1 = 0.3 1/s and β2 = 0
1/s. a three-dimensional isometric view. b–d different projec-
tions into 2-dimensional parameter planes. Green and red curves

present stable and unstable periodic orbits, respectively, while
black curves visualize their fold bifurcation points. e the linear
stability chart is extended with bistable parameter domain (dark
gray area), where different types of solutions coexist. (Color fig-
ure online)

For h∗ = 30 m, the oscillations of the automated
vehicle are depicted in Fig. 9 as phase-plane plots and
as timeprofiles.Again the caseswith andwithout accel-
eration saturation are distinguished as solid and dashed
curves. Note that the amplitude of the oscillations may
be different for different cars. Which vehicle reaches
the acceleration saturation limit depends on selected
parameters, but the amplitude of oscillations decreases
for all vehicles due to the saturation. Furthermore, there
exist scenarios, where the acceleration is saturated at
both upper and lower boundaries.

In order to get a clear view of the global dynam-
ics, the bifurcation diagram is extended along the con-
trol parameter α resulting in a three-dimensional wire
frame representation of the periodic orbits shown in
Fig. 10, where the peak-to-peak amplitude v

amp
1 is plot-

ted as a function of parameters h∗ and α. The three-

dimensional isometric view (Fig. 10a) and its differ-
ent projections (front, top, right) into parameter planes
(Fig. 10b–d) are presented to help the visualization of
the structure.

We generate these figures as follows. First, we per-
form similar continuation of the periodic orbits as in
Fig. 8 for numerous α values (corresponding to hori-
zontal lines in Fig. 10c, d). Second,wefix the parameter
h∗ andmake similar continuation alongα (vertical lines
in Fig. 10b, c). Finally, in order to explore the full set of
periodic branches, we continue from existing periodic
orbits while varying both bifurcation parameters. Note
that these steps are necessary to discover global dynam-
ics leading to the bended tube-like shape in Fig. 10a,
where each cross section along direction h∗ shows an
isola for larger α values. Stable and unstable periodic
orbits are colored with green and red curves, respec-
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(a) (b)

(c)(d)(e)

Fig. 11 Three-dimensional bifurcation diagram of the periodic
orbits in case of separated isola, where the amplitude v

amp
1 is

plotted as a function of h∗ and α for β1 = 0.3 1/s and β2 = 0.15
1/s. a Three-dimensional isometric view. b–d Different projec-
tions into 2-dimensional parameter planes. Green and red curves

present stable and unstable periodic orbits, respectively, while
black curves visualize their fold bifurcation points. e The linear
stability chart extended with bistable parameter domain (dark
gray area), where different types of solutions coexist. (Color fig-
ure online)

(a) (b)

Fig. 12 Phase portrait representation of periodic orbits at a
bistable scenario for parameter point A in Fig. 10, where an
unstable equilibrium (red cross) and an unstable periodic orbit
(red curve) coexist with two stable periodic orbits (green curves).
The parameters are h∗ = 32m, α = 1.5 1/s, β1 = 0.3 1/s and
β2 = 0 1/s. (Color figure online)

tively. Fold bifurcation points, where branches of sta-
ble and unstable oscillations meet, are marked by black
curves. These are generated by 2-parameter continua-

(a) (b)

Fig. 13 Phase portrait representation of periodic orbits at a
bistable scenario for parameter point B in Fig. 11, where a sta-
ble equilibrium (green cross) and a stable periodic orbit (green
curve) are “separated” by an unstable periodic orbit (red curve).
The parameters are h∗ = 32 m, α = 1.5 1/s, β1 = 0.3 1/s and
β2 = 0.15 1/s. (Color figure online)

tion in DDE-Biftool, and they bound the bistable area
that is highlighted as a dark gray domain in Fig. 10e,
as an extension of the linear stability diagram.
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Fig. 14 Stability charts with linearly unstable (light gray) and bistable (dark gray) domains for different values of β1 and β2 as indicated

In Fig. 11a, similar 3D-bifurcation diagram is visu-
alized, but for a positive β2 value (when the automated
vehicle can have access for information beyond-line-
of-sight). In this case, the bended tube-like shape is
separated from the periodic orbits arising from equi-
libria. In this way, a set of isolas appear that are not
connected to periodic branches arising from equilibria
(see Fig. 11a, b and d).

The appearance of isola results in a bistable solu-
tion in two different scenarios: (i) two stable periodic
orbits coexist or (ii) a stable equilibrium solution and
a periodic orbit coexist. Scenario (i) can be found only
above the linearly unstable equilibrium solution, which
is already a practically unfavorable regime. In order to
illustrate this case, point A is selected in Fig. 10c and e
and oscillations are plotted for stable (green curves) and
unstable (red curve) periodic orbits in the phase plane
in Fig. 12 where the unstable equilibrium is denoted

by red cross. In scenario (ii), the system may approach
the equilibrium or the a periodic orbit depending on the
initial conditions. This case is illustrated for parameter
point B, noted in Fig. 11c and e. The corresponding
phase portraits are shown in Fig. 13a and b where the
stable equilibrium is denoted by green cross.

The role of the unstable oscillation is that it “sepa-
rates” the basins of attractions of the two stable states
(in the infinite dimensional state space). In other words,
it determines the threshold for the strength of pertur-
bations, which is necessary to “transfer” the systems
from uniform flow to stop-and-go motion. Over-the-
threshold perturbations may trigger stop-and-go traffic
jams even when the uniform flow is linearly stable.
Again, the bistable region is denoted by a dark gray
area in Fig. 11e.

The final goal of parameter analysis is to ensure
globally stable behavior of the traffic flow, that is, to
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extend the linear stability charts in Fig. 6 with the
bistable regions as in Figs. 10e and 11e. This way, we
can represent the influence of all the parameters and
the global dynamics. This is summarized in Fig. 14,
where only parameters within the white globally sta-
ble domains are favorable. Similar to linearly unstable
droplet, the bistable domain shrinks when increasing
β1 and β2. However, notice that the β2 parameter has a
stronger effect on the reduction in the unsafe bistable
domain.

It should be noted that without utilizing information
from beyond-line-of-sight (β2 = 0), neither the droplet
nor the bistability can be eliminated within reasonable
control parameters. For this case, we need very large
β1 to push the bistable domain up to the upper linearly
unstable area. On the other hand, utilizing beyond-line-
of-sight information (β2 > 0), moderate parameters
can be selected. During the design of the control, with
the knowledge of the parameter uncertainties, we can
select robust control parameters from the globally sta-
ble parameter domain (e.g., α = 0.5 1/s, β1 = 0.3 1/s,
β2 = 0.3 1/s). In other words, these results allow us
to identify those parameters where heterogeneous con-
nected vehicle system is efficient and still robustly sta-
ble. These parameters were used in experimental vali-
dation of connected automated vehicle among human-
driven vehicles in [12,13].

6 Conclusion

In this paper, heterogeneous connected vehicle sys-
tems were investigated, which include human-driven
as well as connected automated vehicles. The reaction
time delay of human drivers as well as the commu-
nication and actuation delays of connected automated
vehicles was taken into consideration. Saturations due
to the speed limit and limited acceleration capabilities
of the vehicles were also incorporated. The arising non-
linear delayed system was studied using analytical and
numerical bifurcation analyses. Linear stability anal-
ysis was used to identify regions in parameter space,
where oscillations arose due to loss of stability of the
equilibrium. Robust stability charts were drawn that
can be used to ensure linear stability independent of
the average headway (that changes as traffic becomes
more dense) and the gain used for distance control
(which is often chosen according to safety considera-
tions). Moreover, with the help of numerical continua-

tion, we determined the bistable regions, where smooth
traffic flow coexists with congested states and suffi-
ciently large perturbations may trigger traffic waves.
We demonstrated that utilizing beyond-line-of-sight
information (that is obtained viaV2V communication),
a connected automated vehicle is able to completely
eliminate traffic waves at both the linear and nonlinear
levels.
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