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Abstract In this paper, we propose a novel technique to decompose networked sys-
tems with cyclic structure into nonlinear modes and apply these ideas to a system
of connected vehicles. We perform linear and nonlinear transformations that exploit
the network structure and lead to nonlinear modal equations that are decoupled. Each
mode can be obtained by solving a small set of algebraic equations without deriving
the coefficients for any other mode. By focusing on the mode that is loosing stability,
bifurcation analysis can be carried out. The techniques developed are applied to eval-
uate the impact of connected cruise control on the nonlinear dynamics of a connected
vehicle system.
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1 Introduction

Ideas regarding using intelligent vehicles to improve the safety and efficiency of road-
ways originated in the 1930s, but early efforts were not successful due to the lack of
inexpensive sensors. In the last two decades, more and more technologies have been

Communicated by Sue Ann Campbell.

B Sergei S. Avedisov
avediska@umich.edu

Gábor Orosz
orosz@umich.edu

1 Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00332-015-9249-6&domain=pdf


1016 J Nonlinear Sci (2015) 25:1015–1049

developed to increase safety and driver comfort (Shladover 1991), but mobility has
not seen a similar transformation. Recent developments in wireless vehicle-to-vehicle
(V2V) communication technologies may lead to a potential breakthrough at this front.
These technologies allow vehicles to receive information about the surrounding traffic
which may be used to assist human drivers and/or actuate the vehicles (Ge et al. 2013;
Ge and Orosz 2014; Zhang and Orosz 2013). Indeed, the added communication layer
increases the complexity of the arising connected vehicle systems, and thus, charac-
terizing the impact of V2V control strategies on the system dynamics is a challenging
task.

For example, one may exploit V2V communication to attenuate velocity fluctua-
tions along the chain of vehicles in order to ensure the stability of the traffic flow.
To achieve this, a strategy called connected cruise control (CCC) (Orosz 2014) may
be used, which allows one to design decentralized controllers for individual vehicles
receiving signals from multiple vehicles ahead. Understanding how CCC vehicles
impact the overall traffic dynamics requires newmathematical methods that allow one
to evaluate the dynamics of large connected systems when varying parameters (e.g.,
control gains). For the sake of simplicity, in this paper, we consider a simple setup
where all the vehicles are equipped with CCC and each vehicle receives information
from the vehicle immediately ahead. However, the mathematical tools developed here
may be extended for more complicated communication topologies.

It is evident that CCC controllers must be nonlinear since the targeted velocity
must be saturated at some minimum and maximum values. Consequently, we need
to analyze the nonlinear dynamics of the arising connected vehicle systems. Of spe-
cific interest is to identify the domains of bistability in the parameter space where
smooth traffic flow can be achieved, but sufficiently large perturbations may lead to
stop-and-go traffic jams (Gasser et al. 2004; Helbing and Moussaid 2009; Orosz and
Stépán 2006; Orosz et al. 2009). In Helbing andMoussaid (2009), the critical densities
at which bistability appears were derived analytically for a simplified model, while
nonlinear oscillatory solutions were characterized in Gasser et al. (2004) using Hopf
calculations and numerical continuation. By extending these techniques to infinite-
dimensional state spaces, the effects of driver reaction time were investigated in Orosz
and Stépán (2006) and Orosz et al. (2009). While these techniques were successful
when considering simplified human–driver models, they become cumbersome and
inefficient when considering more complicated connected cruise control strategies.
This demands new tools for the analysis of nonlinear networked systems to allow fast
CCC prototyping where the control algorithms can be designed at the vehicle level,
but their impact on the large-scale dynamics can also be evaluated.

One way to characterize nonlinear dynamics of high-dimensional systems is to
identify the so-called nonlinear normal modes (NNMs). Here we briefly discuss the
history of NNMs and refer the reader to the comprehensive summary presented in
Kerschen et al. (2009). The concept of NNMs can be traced back to Rosenberg
(1966), where he defined them as “vibrations-in-unison of the system”. Shaw and
Pierre expanded this definition in Shaw and Pierre (1993) to “a motion that takes place
on a two-dimensional invariant manifold embedded in state space”. (Themanifold was
two-dimensional since they were concerned about mechanical systems constructed
of one-degree-of-freedom elements, but the concept can be generalized to higher-
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dimensional manifolds.) By exploiting the invariance of these nonlinear manifolds,
they presented an analytical method for the approximation of NNMs that led to alge-
braic equations. Other analytical techniques used to compute NNMs include various
energy-based methods (Manevich andMikhlin 1972; Rosenberg 1966); the method of
multiple scales (Gendelman 2004; Nayfeh and Nayfeh 1994; Wang and Bajaj 2007);
the method of normal forms (Jézéquel and Lamarque 1991; Nayfeh 1995); and the
harmonic balance method (Haterbouch and Benamar 2005; Szemplinska-Stupnicka
1983). These analytical methods were applied to systems consisting of a small number
of oscillators due to the complexity of the calculations.

In Kerschen et al. (2009), it was suggested that numerical continuation (Cochelin
et al. 1994; Slater 1996) may be used to extend NNM analysis to systems containing
larger numbers of oscillators. The practicality of continuation in NNM analysis was
demonstrated in Peeters et al. (2009) along with several applications to mechanical
systems, while in Georgiades et al. (2009) and Grolet and Thouverez (2010), continu-
ation was used to obtain NNMs for structures with cyclic symmetry containing up to
60 oscillators. However, beyond this limit, numerical continuation becomes unfeasible
due to high computational demand. Furthermore, when using numerical methods, one
loses the intuition that can be gained when applying analytical approaches.

The analysis of networked systems with large numbers of nodes is not feasible
with the current analytical and numerical methods since they lead to large numbers
of coupled linear algebraic equations that need to be solved simultaneously to obtain
the modal equations. Our goal is to extend these limitations by exploiting the network
structure. Using network-based linear and nonlinear transformations, we decompose
the system into uncoupled nonlinear modal equations. Each modal equation can be
obtained by solving a small number of algebraic equations without considering the
other modes. When bifurcations occur in the corresponding modal subspace, normal
forms can be used to characterize the nonlinear behavior of the entire system.

In this paper, we present themathematicalmethods for systemswith cyclic structure
and apply the developed tools to investigate the dynamics of a connected vehicle system
where each vehicle is equipped with CCC and utilizes information about the motion of
the vehicle immediately ahead; see Fig. 1a. The corresponding mathematical model is

Fig. 1 a Connected vehicles traveling in a single lane with their kinematic properties indicated. b–d Range
policies defined by (2) with their middle sections given by (3), (4), (5), respectively
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Fig. 2 Directed graph arising
through V2V communication on
a circular road. The nodes
(vehicles) in the system are
depicted by red dots, and dashed
blue arrows show the flow of
V2V information between them.
The red arrow indicates the
direction of motion of vehicles
along the road (Color figure
online)

presented in Sect. 2. In Sect. 3,we develop a network-based algorithm for decomposing
general systems with cyclic symmetry into nonlinear modes. In Sect. 4, we apply
this algorithm to analyze nonlinear oscillations arising through a Hopf bifurcation in
the connected vehicle system. Analytical results are compared to those of numerical
continuation in Sect. 5, wherewe evaluate the effects of the CCC control parameters on
the dynamics of the network. Finally, we discuss the implications of the network-based
algorithms as well as future research directions in Sect. 6.

2 Modeling Framework

The model described in Orosz et al. (2011) and Orosz et al. (2010) is adopted here
to motivate the nonlinear network-based analysis. We assume that identical vehicles
travel on a single lane, and the i-th vehicle monitors the motion of the i + 1-st vehicle
ahead using V2V communication; see Fig. 1a. The position of the i-th vehicle is
denoted by si , its velocity is vi , and � represents the vehicle length. For simplicity,
here we consider a controller that responds to the headway hi = si+1 − si − � and the
rate of change in headway ḣi = vi+1 − vi (also called relative velocity). The received
information is used to actuate the vehicle according to

ṡi = vi ,

v̇i = α
(
V (si+1 − si − �) − vi

)+ β (vi+1 − vi ),
(1)

where the gains α > 0 and β ≥ 0 are associated with the headway and relative
velocity, respectively. In order to analyze the large-scale dynamics of the connected
vehicle system, we place N cars on a circular road; see Fig. 2. In this configuration, the
first vehicle follows the N -th vehicle, i.e., we have the periodic boundary conditions
sN+1 = s1, vN+1 = v1, which result in an autonomous system. The total length of the
road is L + N �, where L is called the effective road length. In this paper, we will use
the average headway h∗ = L/N as the bifurcation parameter and present the results
for different numbers of vehicles.
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The headway feedback term in (1) involves the nonlinear function V (h), which is
called the range policy (or the optimal velocity function) and satisfies the following
properties:

1. V (h) is continuous and monotonically increasing (the more sparse the traffic is,
the faster the vehicles want to travel).

2. V (h) ≡ 0 for h ≤ hst (in dense traffic vehicles intend to stop).
3. V (h) ≡ vmax for h ≥ hgo (in sparse traffic vehicles intend to travel with the

maximum speed, also called the free-flow speed).

These properties can be summarized as

V (h) =

⎧
⎪⎨

⎪⎩

0 if h ≤ hst,

F(h) if hst < h < hgo,

vmax if h ≥ hgo,

(2)

where F(h) is strictlymonotonically increasing such that F(hst) = 0, F(hgo) = vmax.
For instance, the range policies with functions

F(h) = vmax
h − hst
hgo − hst

, (3)

F(h) = vmax

2

[
1 − cos

(
π

h − hst
hgo − hst

)]
, (4)

F(h) = vmax

2

[
1 + tanh

(
tan

(
π

2
· 2h − hgo − hst

hgo − hst

))]
, (5)

are shown in Fig. 1b–d. We remark that the analytical calculations presented in this
paper do not require a specific range policy. When comparing the analytical results to
numerical ones, we will use the function (4), but any function satisfying the properties
1–3 would result in similar qualitative results.

One can show that (1) admits a pseudo-equilibrium state where all cars are equidis-
tant and travel with the same velocity, that is,

s∗
i = v∗

i t + s0i , i = 1, . . . , N , (6)

such that

s0i+1 − s0i − � = L

N
= h∗, i = 1, . . . , N − 1,

s01 − s0N − � = L

N
= h∗,

v∗
i = v∗ = V (h∗), i = 1, . . . , N .

(7)

We define the perturbations

s̃i = si − s∗
i , ṽi = vi − v∗, (8)

and approximate the system about the pseudo-equilibrium (6, 7) up to the cubic order
using Taylor expansion that yields
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˙̃si = ṽi ,

˙̃vi = p (̃si+1 − s̃i ) + q

2
(̃si+1 − s̃i )

2 + r

6
(̃si+1 − s̃i )

3 + β (̃vi+1 − ṽi ) − α ṽi ,
(9)

where
p = α V ′(h∗),
q = α V ′′(h∗),
r = α V ′′′(h∗),

(10)

and the prime denotes the derivative with respect to the headway h.
The system (1) for i = 1, . . . , N consists of 2N equations and the same holds for

the approximation (9) for i = 1, . . . , N . Thus, the nonlinear analysis by traditional
center manifold reduction is demanding for large N . However, the system possesses a
cyclic (ZN ) symmetry that may be exploited when analyzing the nonlinear dynamics.

3 Nonlinear Network-Based Analysis

In this section, we develop methods for the nonlinear analysis of a general system
with cyclic structure. For simplicity, we present the result for two equations per node
and unidirectional nearest-neighbor coupling, but the approach can be generalized for
arbitrary number of equations per node andmore general coupling structures that admit
ZN symmetry. We investigate the system in the vicinity of a uniform equilibrium,
where we approximate the dynamics using Taylor expansion up to third order. We
then write the quadratic and cubic terms of the approximated system into a compact
form, which allows us to perform a series of linear and nonlinear network-based
transformations. These transformations result in nonlinear modal equations that are
decoupled and can be analyzed separately in order to characterize the dynamics of the
entire system.

Consider a system composed of N nodes arranged in a cyclic structure where the
i + 1-st node is connected to the i-th node and the first node is connected to the N -th
node; see Fig. 2. Assuming that the state of the i-th node is described by the vector
xi = [x (1)

i x (2)
i ]T, where T denotes the transpose, the dynamics of the i-th node can

be written into the form
ẋi = g(xi , xi+1), (11)

for i = 1, . . . , N , where g = [g(1) g(2)]T and xN+1 ≡ x1. We assume that the system
possesses a uniform equilibrium

x∗
i = x∗, (12)

for i = 1, . . . , N which satisfies g(x∗, x∗) = 0.
By defining the perturbation

yi = xi − x∗, (13)
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where yi = [y(1)
i y(2)

i ]T, the third-order Taylor approximation of (11) around the
equilibrium (12) can be written as

ẏi = [J0]∗yi + [J1]∗yi+1+ 1

2

∑

b=0,1

∑

β=1,2

H(β)
b (yi+b)

(
[∂(β)

b J0]∗yi +[∂(β)
b J1]∗yi+1

)

+ 1

6

∑

b=0,1

∑

β=1,2

∑

d=0,1

∑

δ=1,2

H(β)
b (yi+b) H(δ)

d (yi+d)

×
(
[∂(β)

b ∂
(δ)
d J0]∗yi + [∂(β)

b ∂
(δ)
d J1]∗yi+1

)
,

(14)

where ∂
(β)
b = ∂

∂x (β)
i+b

, and the operators

Jb =
[
∂

(1)
b g(1) ∂

(2)
b g(1)

∂
(1)
b g(2) ∂

(2)
b g(2)

]

, (15)

where b = 0, 1 represent the derivatives of the function g. In (14), the asterisk denotes
that the derivatives are evaluated at the equilibrium. The quadratic and cubic terms
contain the diagonal matrices

H(β)
b (yi ) =

[
y(β)
i+b 0

0 y(β)
i+b

]

, (16)

for β = 1, 2, b = 0, 1, and i = 1, . . . , N . The matrix H(β)
0 (yi ) is related to the self-

feedback (the dependence of a node’s dynamics on its own states), while H(β)
1 (yi+1)

is related to the coupling (the dependence of a node’s dynamics on the state of the
neighboring node). We remark that the double sum in (14) results in four different
quadratic terms, while the quadruple sum results in 10 different cubic terms.

3.1 Network Structure

Before we proceed with the general analysis, we rewrite (14) into a form that allows
us to take advantage of the cyclic structure during the linear and nonlinear analysis. In
order to do this, we first define the direct product (or Kronecker product) of matrices
B = [bi j ] ∈ C

N×M and C ∈ C
P×Q as

B ⊗ C =

⎡

⎢⎢⎢
⎣

b11C b12C · · · b1MC
b21C b22C · · · b2MC

...
...

. . .
...

bN1C bN2C · · · bNMC

⎤

⎥⎥⎥
⎦

, (17)

where B ⊗ C ∈ C
N P×M Q . We also define the vector ŷ = col[y1 · · · yi · · · yN ],

where the operator col[·] stacks vectors into one large column vector. Thus, using (14)
and (17), the dynamics of the entire system can be written into the form
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˙̂y =
(

IN ⊗ [J0]∗ + AN ⊗ [J1]∗
)

ŷ + 1

2

∑

b=0,1

∑

β=1,2

L̂(β)
(
Ĥb(ŷ)

) (
IN ⊗ [∂(β)

b J0]∗

+ AN ⊗ [∂(β)
b J1]∗

)
ŷ

+ 1

6

∑

b=0,1

∑

β=1,2

∑

d=0,1

∑

δ=1,2

L̂(β)
(
Ĥb(ŷ)

)
L̂(δ)
(
Ĥd(ŷ)

)(
IN ⊗ [∂(β)

b ∂
(δ)
d J0]∗

+ AN ⊗ [∂(β)
b ∂

(δ)
d J1]∗

)
ŷ,

(18)

where IN is the N -dimensional identity matrix and AN = [ ai j ] is the N -dimensional
adjacency matrix with circulant structure, whose elements are defined as

ai j =
{
1 if j = i + 1,

0 otherwise.
(19)

As mentioned above, for i = N , we have j = 1. The Jacobian matrix in (18) con-
tains the blocks [J0]∗ along the diagonal and the blocks [J1]∗ above the diagonal
representing the self-coupling and the effects of the neighbors, respectively.

The nonlinear self-feedback terms feature the 2N -dimensional diagonal matrix

Ĥ0(ŷ) = diag

([
y(1)
i 0
0 y(2)

i

])

, (20)

where the operator diag(·) is defined by

diag(Bi ) = diag(B1, B2, . . . , BN ) =

⎡

⎢
⎢⎢
⎣

B1 0 . . . 0
0 B2 . . . 0
...

...
. . .

...

0 0 . . . BN

⎤

⎥
⎥⎥
⎦

, (21)

as adopted from Olson et al. (2014). To be able to represent the nonlinear coupling
terms, we shift the blocks along the diagonal in a circulant manner using

Ĥ1(ŷ) = (AN ⊗ I) Ĥ0(ŷ) (A−1
N ⊗ I) = diag

([
y(1)
i+1 0

0 y(2)
i+1

])

, (22)

where I is the two-dimensional identity matrix. Matrices (20) and (22) are the basic
building blocks for the quadratic and cubic terms for the system dynamics. To be able
to express all possible terms, we shuffle the variables within the blocks of Ĥ0(ŷ) and
Ĥ1(ŷ). First, we define two linear shuffling operators L(1) and L(2) whose action on
the diagonal matrix
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M =
[
μ 0
0 υ

]
, (23)

is given by

L(1)(M) =
[
1 0
0 0

]
M
[
1 0
0 0

]
+
[
0 0
1 0

]
M
[
0 1
0 0

]
=
[
μ 0
0 μ

]
,

L(2)(M) =
[
0 0
0 1

]
M
[
0 0
0 1

]
+
[
0 1
0 0

]
M
[
0 0
1 0

]
=
[
υ 0
0 υ

]
.

(24)

Consequently, considering a block matrix M̂ ∈ C
2N×2N with 2 × 2 diagonal blocks

M̂i j =
[
μi j 0
0 υi j

]
, (25)

we can define the shuffling operators

L̂(1)(M̂) =
(

IN ⊗
[
1 0
0 0

])
M̂
(

IN ⊗
[
1 0
0 0

])

+
(

IN ⊗
[
0 0
1 0

])
M̂
(

IN ⊗
[
0 1
0 0

])
,

L̂(2)(M̂) =
(

IN ⊗
[
0 0
0 1

])
M̂
(

IN ⊗
[
0 0
0 1

])

+
(

IN ⊗
[
0 1
0 0

])
M̂
(

IN ⊗
[
0 0
1 0

])
, (26)

where the blocks are given by

[L̂(1)(M̂)]i j =
[
μi j 0
0 μi j

]
,

[L̂(2)(M̂)]i j =
[
υi j 0
0 υi j

]
.

(27)

We remark that for themore general case, when the dynamics of each node are given by
n differential equations, we need to define n shuffling operators with similar structure
to (26). Notice the similarity of structure of the linear, quadratic, and cubic terms in
(18). In the next section, we exploit this structure while performing network-based
coordinate transformations.

3.2 Linear Modal Transformation

Prior to applying network-based nonlinear transformations, we transform the system
to modal coordinates using the linear coordinate transformation

ŷ = (TN ⊗ I) ẑ, (28)
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where the modal coordinates are defined as zk = [z(1)k z(2)k ]T, ẑ = col [z0 . . . zk . . .

zN−1]. Moreover, TN = [
e0 · · · ek · · · eN−1

]
, where ek is the k-th eigenvector of

the adjacency matrix AN corresponding to the k-th modal eigenvalue ei
2π k
N , so that

i2 = −1 and k = 0, . . . , N −1. Notice that the mode number k = 0 corresponds to a
translational symmetry of the system, the mode numbers k = 1, . . . , 	 N

2 
 correspond
to having k waves along the ring, while the mode numbers k = � N

2 �, . . . , N − 1
correspond to having N − k waves along the ring (Olson et al. 2014; Orosz et al.
2010). Using the modal coordinates (18) can be written as

˙̂z = D̂ ẑ + 1

2

∑

b=0,1

∑

β=1,2

L̂(β)
(
Ŝb(ẑ)

)
K̂(β)

b ẑ

+1

6

∑

b=0,1

∑

β=1,2

∑

d=0,1

∑

δ=1,2

L̂(β)
(
Ŝb(ẑ)

)
L̂(δ)
(
Ŝd(ẑ)

)
L̂(β δ)
bd ẑ. (29)

Here the matrix
D̂ = diag(Dk), (30)

is block diagonal, and the 2 × 2 block for mode k is given by

Dk = [J0]∗ + [J1]∗ ei 2π k
N , (31)

for k = 0, . . . , N − 1. Note that the block Dk is in fact the k + 1-st block along
the diagonal due to the presence of modal index 0. The matrices Ŝb(ẑ) ∈ C

2N × 2N ,
b = 0, 1 in (29) have block structures such that the blocks are given by

S0 k �(z fk� ) =
[
z(1)fk� 0

0 z(2)fk�

]

, S1 k �(z fk� ) =
[
ei

2π (k−�)
N z(1)fk� 0

0 ei
2π (k−�)

N z(2)fk�

]

, (32)

where the function

fk� =
{
k − � if k ≥ �,

N + k − � if k < �,
(33)

defines themodal indices for the blocks anddictates the cyclic structure of the nonlinear
terms.

Since the coefficient matrices in the quadratic and cubic terms of (18) have the
same block structure as the Jacobian, they are also diagonalized by the linear modal
transformation. The quadratic terms contain the block diagonal matrix

K̂(β)
b = diag(K(β)

bk ), (34)

with 2 × 2 blocks
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K(β)
bk = [∂(β)

b J0]∗ + [∂(β)
b J1]∗ ei 2π k

N , (35)

for k = 0, . . . , N − 1, while the cubic terms contain the block diagonal matrix

L̂(β δ)
bd = diag(L(β δ)

bdk ), (36)

with 2 × 2 blocks

L(β δ)
bdk = [∂(β)

b ∂
(δ)
d J0]∗ + [∂(β)

b ∂
(δ)
d J1]∗ ei 2π k

N , (37)

for k = 0, . . . , N − 1. The asterisk in (35) and (37) still indicates that the matrices
are evaluated at the equilibrium.

The linear coordinate transformation (28) serves two purposes. First, it simplifies
the linear analysis of the system: The linear part is decoupled into N pairs of complex
differential equations, representing the oscillation modes. Thus, linear stability can be
analyzed separately for each mode, and stability is ensured when all the modes are
stable. Moreover, the transformation (28) block diagonalizes the nonlinear coefficient
matrices in the quadratic and cubic terms [notice the similarity between (30, 31), (34,
35), and (36, 37)], and transforms the matrices Ĥ0(ŷ) and Ĥ1(ŷ) into modal matrices
Ŝ0(ẑ) and Ŝ1(ẑ), cf. (18, 29). The cyclic structure (33), that appears in both the quadratic
and the cubic terms allows us to define nonlinear near-identity transformations for
cyclic systems.

3.3 Nonlinear Network-Based Coordinate Transformations

After obtaining the modal coordinates where the linear terms are decoupled, we pro-
ceed to simplify the quadratic and cubic terms using network-based transformations.
These transformations exploit the structure of the network and allow us to eliminate
the second-order and third-order terms for a given mode by solving a small number of
algebraic equations. Specifically, for a cyclic system with two equations per node, we
need to solve eight coupled algebraic equations to eliminate the quadratic terms for a
given mode and 16 coupled equations to eliminate the cubic terms for a given mode.
For n equations per mode, these are n3 and n4, respectively. For a given mode, we can
either eliminate the nonlinear terms up to third order or obtain the normal form if the
mode undergoes a bifurcation. We emphasize that this method is independent of the
number of nodes N in the system.

3.3.1 Network-Based Quadratic Near-Identity Transformation

To eliminate the quadratic terms in (29), we use the quadratic near-identity transfor-
mation

ẑ = (Î + �̂(û)
)
û, (38)
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where û = col [u0 . . . uk . . . uN−1] and uk = [u(1)
k u(2)

k ]T. In �̂(û) the 2× 2 block
corresponding to the mode numbers k, � = 0, . . . , N − 1 is given by

�k�(u fk� ) =
[
ψ

(11)
k� · u fk� ψ

(12)
k� · u fk�

ψ
(21)
k� · u fk� ψ

(22)
k� · u fk�

]

, (39)

where ψ
(m n)
k� = [ψ(m n1)

k� ψ
(m n2)
k� ]T, the bar denotes complex conjugate, fk� is given

by (33), and the dot stands for the inner product defined as

a · b = a1b1 + a2b2. (40)

The matrix �̂(û) has the same structure as the modal matrices in (32) that appear in
the quadratic terms of (29).

In order to derive the coefficients, we obtain ˙̂z in two different ways up to sec-
ond order. On one hand, we substitute (38) into the right-hand side of (29). On the
other hand, we take the time derivative of (38). Comparing these two approaches and
considering ˙̂u = D̂û + O(û3), (41)

we obtain

(
�̂(D̂ û) + �̂(û) D̂ − D̂ �̂(û)

)
û = 1

2

( ∑

b=0,1

∑

β=1,2

L̂(β)
(
Ŝb(û)

)
K̂(β)

b

)
û, (42)

where the left-hand side contains the coefficients of the transformation matrix, while
the right-hand side contains the quadratic terms we seek to eliminate via the trans-
formation. The similar structure of the matrices on the two sides of (42) allows us to
eliminate vector û and comparing the appropriate blocks yields

�k�(D fk� u fk� ) + �k�(u fk� )D� − Dk�k�(u fk� )

= 1

2

∑

b=0,1

∑

β=1,2

L(β)
(
Sbk�(u fk� )

)
K(β)

b� . (43)

For each k, � pair this gives a linear system of eight equations with eight unknowns
of the form

Ak� bk� = ck�, (44)

where the coefficient matrix Ak� ∈ C
8×8 is composed of 2 × 2 blocks as

Ak� =

⎡

⎢⎢⎢
⎢
⎣

DT
fk�

+ ξ
(11) ∗
k� I κ

(21) ∗
�0 I −κ

(12) ∗
k0 I 0

κ
(12) ∗
�0 I DT

fk�
+ ξ

(21) ∗
k� I 0 −κ

(12) ∗
k0 I

−κ
(21) ∗
k0 I 0 DT

fk�
+ ξ

(12) ∗
k� I κ

(21) ∗
�0 I

0 −κ
(21) ∗
k0 I κ

(12) ∗
� 0 I DT

fk�
+ ξ

(22) ∗
k� I

⎤

⎥⎥⎥
⎥
⎦

. (45)
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Here we have
κ

(β δ)
k� = ∂

(δ)
0 g(β) + ∂

(δ)
1 g(β) ei

2π (k−�)
N , (46)

and
ξ

(β δ) ∗
k� = κ

(β β) ∗
�0 − κ

(δ δ) ∗
k0 , (47)

for β, δ = 1, 2 where the asterisk indicates that the derivatives are evaluated at the
equilibrium. The vector bk� ∈ C

8 contains the near-identity coefficients defined in
(39) that appear on the left-hand side of (43), i.e.,

bk� =
[
ψ

(111)
k� ψ

(112)
k� ψ

(121)
k� ψ

(122)
k� ψ

(211)
k� ψ

(212)
k� ψ

(221)
k� ψ

(222)
k�

]T
, (48)

while the vector ck� ∈ C
8 contains the terms that appear on the right-hand side of

(43), that is,

ck� = 1

2

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

[(
∂

(1)
0 + ∂

(1)
1 ei

2π �
N
)
(κ

(11)
k� )

]∗

[(
∂

(1)
0 + ∂

(1)
1 ei

2π �
N
)
(κ

(12)
k� )

]∗

[(
∂

(2)
0 + ∂

(2)
1 ei

2π �
N
)
(κ

(11)
k� )

]∗

[(
∂

(2)
0 + ∂

(2)
1 ei

2π �
N
)
(κ

(12)
k� )

]∗

[(
∂

(1)
0 + ∂

(1)
1 ei

2π �
N
)
(κ

(21)
k� )

]∗

[
(
∂

(1)
0 + ∂

(1)
1 ei

2π �
N
)
(κ

(22)
k� )

]∗

[(
∂

(2)
0 + ∂

(2)
1 ei

2π �
N
)
(κ

(21)
k� )

]∗

[(
∂

(2)
0 + ∂

(2)
1 ei

2π �
N
)
(κ

(22)
k� )

]∗

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

. (49)

We remark that (44) can be solved for each k, �pair separately, that is,when focusing
on a chosen mode k, we need to solve N decoupled systems of eight equations. On the
other hand, using traditional near-identity transformations would require one to solve
8 N 2 coupled equations. Unless a fold bifurcation (or any other resonance) occurs,
we shall be able to select the matrix �̂(û) so that the dynamics of the system do not
contain second-order terms. Using the new coordinates, (41) can be expressed as

˙̂u = D̂û + 1

2

∑

b=0,1

∑

β=1,2

(
L̂(β)

(
Ŝb(�̂(û)û)

)
K̂(β)

b + L̂(β)
(
Ŝb(û)

)
K̂(β)

b �̂(û)
)

û

+ 1

6

∑

b=0,1

∑

β=1,2

∑

d=0,1

∑

δ=1,2

L̂(β)
(
Ŝb(û)

)
L̂(δ)
(
Ŝd(û)

)
L̂(β δ)
bd û.

(50)
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When comparing (29) and (50), one may notice that while the second-order terms
disappear, the transformation generates additional third-order terms. The cubic terms
in the bottom row of (50) originate from the cubic terms present in the modal system
(29), while the cubic terms in the top row appear due to the quadratic near-identity
transformation. It is shown in “Appendix 1” that the two terms appearing in the top
row are equal, which yields

˙̂u = D̂û +
∑

b=0,1

∑

β=1,2

L̂(β)
(
Ŝb(û)

)
K̂(β)

b �̂(û)û

+ 1

6

∑

b=0,1

∑

β=1,2

∑

d=0,1

∑

δ=1,2

L̂(β)
(
Ŝb(û)

)
L̂(δ)
(
Ŝd(û)

)
L̂(β δ)
bd û.

(51)

3.3.2 Network-Based Cubic Near-Identity Transformation

Based on the structure of the cubic terms in (51), we define the cubic near-identity
transformation

û = (Î + �̂(ŵ) �̂(ŵ)
)
ŵ, (52)

where ŵ = col [w0 . . . wk . . . wN−1] and wk = [w(1)
k w

(2)
k ]T. The matrices

�̂(ŵ) and �̂(ŵ) have a circulant block structure, where the blocks for mode numbers
k, � = 0, . . . , N − 1 are given by

�k�(w fk,� ) =
[
γ

(11)
k� · w fk� γ

(12)
k� · w fk�

γ
(21)
k� · w fk� γ

(22)
k� · w fk�

]

,

�k�(w fk� ) =
[
φ

(11)
k� · w fk� φ

(12)
k� · w fk�

φ
(21)
k� · w fk� φ

(22)
k� · w fk�

]

,

(53)

where γ
(m n)
k� = [γ (m n1)

k� γ
(m n2)
k� ]T and φ

(m n)
k� = [φ(m n1)

k� φ
(m n2)
k� ]T, fk� is given by

(33), and the inner product is defined by (40).
Again, wemay obtain ˙̂u in twoways. On one hand, wemay substitute (52) into (51),

while on the other hand, we may differentiate (52) with respect to time. Considering

˙̂w = D̂ ŵ + O(ŵ4), (54)

we obtain

(
�̂(D̂ŵ) �̂(ŵ) + �̂(ŵ) �̂(D̂ŵ) + �̂(ŵ) �̂(ŵ)D̂ − D̂�̂(ŵ)�̂(ŵ)

)
ŵ

=
( ∑

b=0,1

∑

β=1,2

L̂(β)
(
Ŝb(ŵ)

)
K̂(β)

b �̂(ŵ)

+ 1

6

∑

b=0,1

∑

β=1,2

∑

d=0,1

∑

δ=1,2

L̂(β)
(
Ŝb(ŵ)

)
L̂(δ)
(
Ŝd(ŵ)

)
L̂(β δ)
bd

)
ŵ.

(55)
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where the left-hand side contains the coefficients of the transformationmatrices, while
the right-hand side contains the cubic termswe seek to eliminate via the transformation.
Again, exploiting the similarity of structure of the matrices on the two sides of (55),
we can eliminate ŵ and compare the appropriate blocks to get

N−1∑

j=0

(
�k j (D fk j w fk j )� j�(w f j� ) + �k j (w fk j )� j�(D f j�w f j� )

+ �k j (w fk j )� j�(w f j� )D� − Dk�k j (w fk j )� j�(w f j� )

)

=
N−1∑

j=0

( ∑

b=0,1

∑

β=1,2

L(β)
(
Sbk j (w fk j )

)
K(β)

bj � j�(w f j� )

+ 1

6

∑

b=0,1

∑

β=1,2

∑

d=0,1

∑

δ=1,2

L(β)
(
Sbk j (w fk j )

)
L(δ)
(
Sd j�(w f j� )

)
L(β δ)
bd�

)
,

(56)

where the sum over j appears due to the multiplication of circulant matrices.
Each triplet k, j, � yields 16 equations for the products of coefficients γk j φ j�,

(cf. (53)), and 32 different products exist. However, we can combine certain pairs
of products (that always occur together) and obtain a set of 16 equations with 16
unknowns for each k, j, � triplet:

Ãk j� b̃k j� = c̃k j�. (57)

The matrix Ãk j� ∈ C
16×16 is composed of four 8 × 8 blocks such that

Ãk j� =
[

Ek j� Fk j�

Gk j� Hk j�

]
, (58)

where

Ek j� =

⎡

⎢⎢⎢⎢
⎣

DT
f j�

+ ξ
(111) ∗
k j� I κ

(21) ∗
k j I κ

(21) ∗
�0 I 0

κ
(12) ∗
k j I DT

f j�
+ ξ

(211) ∗
k j� I 0 κ

(21) ∗
�0 I

κ
(12) ∗
�0 I 0 DT

f j�
+ ξ

(121) ∗
k j� I κ

(21) ∗
k j I

0 κ
(12) ∗
�0 I κ

(12) ∗
k j I DT

f j�
+ ξ

(221) ∗
k j� I

⎤

⎥⎥⎥⎥
⎦

,

Fk j� = −κ
(12) ∗
k0

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦⊗ I, Gk j� = −κ

(21) ∗
k0

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦⊗ I,
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Hk j� =

⎡

⎢⎢
⎢⎢
⎣

DT
f j�

+ ξ
(112) ∗
k j� I κ

(21) ∗
k j I κ

(21) ∗
�0 I 0

κ
(12) ∗
k j I DT

f j�
+ ξ

(212) ∗
k j� I 0 κ

(21) ∗
�0 I

κ
(12) ∗
�0 I 0 DT

f j�
+ ξ

(122) ∗
k j� I κ

(21) ∗
k j I

0 κ
(12) ∗
�0 I κ

(12) ∗
k j I DT

f j�
+ ξ

(222) ∗
k j� I

⎤

⎥⎥
⎥⎥
⎦

.

(59)

Here we have
ξ

(β δ θ) ∗
k j� = κ

(β β) ∗
k j + κ

(δ δ) ∗
�0 − κ

(θ θ) ∗
k0 , (60)

forβ, δ, θ = 1, 2 and κ
(β δ)
k� is defined in (46). The vector b̃k j� contains the coefficients

defined in (53) that appear on the left-hand side of (56) (see “Appendix 2”), while
vector c̃k j� contains the cubic coefficients that appear on the right-hand side of (56)
(see “Appendix 3”). Similar to the quadratic case, (57) can be solved for each k, j, �

triplet separately, that is, for a chosen k one need to solve N 2 decoupled systems of 16
equations. Again, using traditional nonlinear near-identity transformations would lead
to 16 N 3 coupled equations. If there are no bifurcations or resonant third-order terms,
(57) can be solved for all triplets k, j, � and all cubic coefficients can be eliminated
yielding the form (54).

When bifurcations or resonances occur certain terms cannot be eliminated. How-
ever, the set of nonlinear transformations described above allows us to decouple the
mode responsible for the bifurcation from the rest of the system. By performing one
more linear transformation on this small system, the normal form of the bifurcation
can be derived.

4 Network-Based Analysis of the Connected Vehicle System

In this section, we analyze the connected vehicle system (1) using the framework
developed above. First, we decompose the connected vehicle network into modes at
the linear level and analyze the linear stability of the modes. Then we use nonlinear
network-based analysis to eliminate the nonlinearities for the modes responsible for
the stability loss. Finally, we investigate the criticality of bifurcations and determine
the amplitude of nonlinear oscillations associated with the modal stability loss using
normal forms.

Using the vector notation yi = [̃si ṽi ]T, we can rewrite the Taylor approximation
(9) into the compact form

ẏi = [J0]∗yi + [J1]∗yi+1 + 1

2

∑

b=0,1

H(1)
b (yi+b)

(
[∂(1)

b J0]∗yi + [∂(1)
b J1]∗yi+1

)

+ 1

6

∑

b=0,1

∑

d=0,1

H(1)
b (yi+b) H(1)

d (yi+d)
(
[∂(1)

b ∂
(1)
d J0]∗yi + [∂(1)

b ∂
(1)
d J1]∗yi+1

)
.

(61)
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cf. (14). Notice that since only the position coordinates s̃i appear in the nonlinear
terms, we do not have to sum for the individual coordinates of yi . The linear terms in
(61) contain the matrices

[J0]∗ =
[

0 1
−p −(α + β)

]
, [J1]∗ =

[
0 0
p β

]
, (62)

while the coefficient matrices in the quadratic terms are given by

[∂(1)
0 J0]∗ = −[∂(1)

0 J1]∗ = −[∂(1)
1 J0]∗ = [∂(1)

1 J1]∗ =
[
0 0
q 0

]
, (63)

and the cubic terms contain

−[∂(1)
0 ∂

(1)
0 J0]∗ = −[∂(1)

0 ∂
(1)
1 J1]∗ = −[∂(1)

1 ∂
(1)
1 J0]∗ =

[
0 0
r 0

]
,

[∂(1)
0 ∂

(1)
0 J1]∗ = [∂(1)

0 ∂
(1)
1 J0]∗ = [∂(1)

1 ∂
(1)
1 J1]∗ =

[
0 0
r 0

]
,

(64)

where p, q, r are given by (10). For the whole system, (61) can be reformulated as

˙̂y =
(

IN ⊗ [J0]∗ + AN ⊗ [J1]∗
)

ŷ + 1

2

∑

b=0,1

L̂(1)(Ĥb(ŷ)
) (

IN ⊗ [∂(1)
b J0]∗

+ AN ⊗ [∂(1)
b J1]∗

)
ŷ

+ 1

6

∑

b=0,1

∑

d=0,1

L̂(1)(Ĥb(ŷ)
)
L̂(1)(Ĥd(ŷ)

)(
IN ⊗ [∂(1)

b ∂
(1)
d J0]∗

+ AN ⊗ [∂(1)
b ∂

(1)
d J1]∗

)
ŷ,

(65)

cf. (18). The linear coordinate transformation (28) yields

˙̂z = D̂ ẑ+ 1

2

∑

b=0,1

L̂(1)(Ŝb(ẑ)
)

K̂(1)
b ẑ+ 1

6

∑

b=0,1

∑

d=0,1

L̂(1)(Ŝb(ẑ)
)
L̂(1)(Ŝd(ẑ)

)
L̂(11)
bd ẑ,

(66)
cf. (29), where D̂, Ŝb(ẑ), K̂(1)

b , L̂(11)
bd ∈ C

2N×2N are given by (30, 32, 34, 36).

4.1 Linear Stability Analysis

The linear part of (66) consists of N decoupled complex differential equations which
represent the linear modes in the system. For the k-th mode, the linear dynamics are
given by
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[
ż(1)k

ż(2)k

]

=
[

0 1
p ηk0 β ηk0 − α

] [
z(1)k

z(2)k

]

, (67)

where
ηk� = ei

2π (k−�)
N − 1, (68)

for k, � = 0, . . . , N − 1. Thus, using the trial solution z(1)k (t) = z(1)k 0e
λ t , z(2)k (t) =

z(2)k 0e
λ t with λ, z(1)k 0, z

(2)
k 0 ∈ C the characteristic equation for mode k becomes

λ2 + (α + β) λ + p − (β λ + p) ei
2π k
N = 0. (69)

If both solutions λ have negative real parts, themode is stable.We remark that when the
solutions are complex, they are not complex conjugates, since (67) contains complex
coefficients. In fact, mode N−k provides the complex conjugate eigenvalues for mode
k. The special mode k = 0 gives the eigenvalues λ0,1 = 0 and λ0,2 = −α. The former
one corresponds to a translational symmetry of (1) (see Orosz and Stépán 2006), while
the latter one stays in the left-half complex plane for α > 0. We note that for even
N , there is another special mode k = N/2 which does not have a complex conjugate
mode. The eigenvalues of this mode have negative real parts for α + 2β > 0.

The critical value of p = α V ′(h∗), where modes k and N − k lose stability, can
be obtained by substituting λ = iω into (69), taking the real and imaginary parts, and
performing some algebraic manipulation to eliminate ω. This yields

pk = 1
2 (2β + α)

(
(2β + α) tan2

(
k π
N

)
+ α
)
. (70)

On the other hand, eliminating p, we may obtain the critical angular frequency

ωk = (2β + α) tan
(
k π
N

)
, (71)

for k = 1, . . . , N − 1.
Figure 3 shows how the eigenvalues vary with parameter p for N = 11 cars and

parameters α = 1 [1/s], β = 0 [1/s]. When p is increased, the eigenvalues move in
the complex plane and cross the imaginary axis at pk with imaginary part ωk . Here we
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s ]
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(a) p = 0.2 [1/s2 (b)] p = 0.65 [1/s2 (c)] p = 1.1 [1/s2]
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k = N − 1

k = 1

k = N − 1

k = 2

k = N − 2

Fig. 3 Eigenvalues in the complex plane for the connected vehicle model (1) when considering N = 11
cars and parameters α = 1 [1/s], β = 0 [1/s] and varying the parameter p = α V ′(h∗). Stable eigenvalues
are shown as green crosses, while unstable eigenvalues are depicted as red crosses. The mode numbers for
unstable eigenvalues are indicated in cases (b) and (c) (Color figure online)
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restrict our discussion to k = 1, . . . , 	 N
2 
, because for k = � N

2 �, . . . , N − 1, we get
pk = pN−k ,ωk = −ωN−k due to the complex conjugacy of modes k and N −k. Since
(70) is monotonically increasing with k when 1 ≤ k ≤ 	 N

2 
, the modes lose stability
in the increasing order of mode number k. Thus, the uniform flow loses stability when
modes 1 (and N − 1) lose stability. Since the eigenvalues cross the imaginary axis
with a nonzero imaginary part and with finite speed (i.e., ωk > 0,Re d λ

dp (pk) > 0),
Hopf bifurcations occur in the corresponding nonlinear system. This leads to nonlinear
oscillations with frequency close to (71) and wavelength (L+N �)/k; see Orosz et al.
(2009). The corresponding periodic orbit is embedded in the modal subspace given
by modes k and N − k. At the linear level, the oscillations can be characterized by
the modal coordinates zk and zN−k [see (67)], while at the nonlinear level, further
nonlinear transformations are needed to describe the oscillations.

4.2 Near-Identity Transformations

Let us use the network-based nonlinear transformations to eliminate nonlinear terms
in (66) at the Hopf point corresponding to the stability loss (i.e., p = p1). This way we
can obtain a nonlinear modal equations for modes 1 and N −1 that are decoupled from
the rest of the system. To eliminate the quadratic terms in (66), we use the near-identity
transformation (38). In this case, (42) simplifies to

(
�̂(D̂ û) + �̂(û) D̂ − D̂ �̂(û)

)
û = 1

2

( ∑

b=0,1

L̂(1)(Ŝb(û)
)

K̂(1)
b

)
û, (72)

which is equivalent to

�k�(D fk� u fk� )+�k�(u fk� )D�−Dk�k�(u fk� ) = 1

2

∑

b=0,1

L(1) (Sbk�(u fk� )
)
K(1)

b� , (73)

cf. (43). Thus, in (44), we have

Ak� =

⎡

⎢
⎢⎢⎢
⎣

DT
fk�

κ
(21) ∗
�0 I −I 0

I DT
fk�

+ κ
(22) ∗
�0 I 0 −I

−κ
(21) ∗
k0 I 0 DT

fk�
− κ

(22) ∗
k0 I κ

(21) ∗
�0 I

0 −κ
(21) ∗
k0 I I DT

fk�
+ (κ

(22) ∗
�0 − κ

(22) ∗
k0 )I

⎤

⎥
⎥⎥⎥
⎦

,

(74)

where
κ

(21) ∗
k� = p1 ηk�, κ

(22) ∗
k� = β ηk� − α, (75)

and ηk� is defined in (68). Note that unlike in (45) here we refrain from using ξ
(β δ) ∗
k�

defined in (47) because κ
(11) ∗
k� = 0 for all k, �. Moreover, the right-hand side (49)

simplifies to

ck� = col[0 0 0 0
q1
2

ηk� η�0 0 0 0]T, (76)
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where q1 indicates the value of q at the bifurcation point; cf. (10).
Solving (44) allows us to eliminate all but a few quadratic terms in the k = 0

mode in (66). However, as explained above, the k = 0 mode does not lose stability
and it does not influence the dynamics of the other modes. The equation in the new
coordinates becomes

˙̂u = D̂û + 1

2
R̂(û)û +

∑

b=0,1

L̂(1)(Ŝb(û)
)
K̂(1)

b �̂(û)û

+ 1

6

∑

b=0,1

∑

d=0,1

L̂(1)(Ŝb(û)
)
L̂(1)(Ŝd(û)

)
L̂(11)
bd û,

(77)

cf. (51), where the quadratic terms R̂(û)û appear in the k = 0 mode, see “Appendix
4”.

As our goal is to obtain the nonlinear modal equations for modes 1 and N − 1, we
proceed by simplifying the cubic terms using the transformation (52) which leads to
a simplified form of (55):
(
�̂(D̂ŵ) �̂(ŵ) + �̂(ŵ) �̂(D̂ŵ) + �̂(ŵ) �̂(ŵ)D̂ − D̂�̂(ŵ)�̂(ŵ)

)
ŵ

=
( ∑

b=0,1

L̂(1)(Ŝb(ŵ)
)
K̂(1)

b �̂(ŵ)+ 1

6

∑

b=0,1

∑

d=0,1

L̂(1)(Ŝb(ŵ)
)
L̂(1)(Ŝd(ŵ)

)
L̂(11)
bd

)
ŵ,

(78)
that is equivalent to

N−1∑

j=0

(
�k j (D fk j w fk j )� j�(w f j� ) + �k j (w fk j )� j�(D f j�w f j� )

+ �k j (w fk j )� j�(w f j� )D� − Dk�k j (w fk j )� j�(w f j� )
)

=
N−1∑

j=0

( ∑

b=0,1

L(1)(Sbk j (w fk j )
)
K(1)

bj � j�(w f j� )

+ 1

6

∑

b=0,1

∑

d=0,1

L(1)(Sbk j (w fk j )
)
L(1)(Sd j�(w f j� )

)
L(11)
bd�

)
,

(79)

cf. (56). The matrix Ãk j� in (57) has sub-matrices

Ek j� =

⎡

⎢⎢
⎢
⎢
⎣

DT
f j�

κ
(21) ∗
k j I κ

(21) ∗
�0 I 0

I DT
f j�

+ κ
(22) ∗
k j I 0 κ

(21) ∗
�0 I

I 0 DT
f j�

+ κ
(22) ∗
�0 I κ

(21) ∗
k j I

0 I I DT
f j�

+ (κ
(22) ∗
k j + κ

(22) ∗
�0 ) I

⎤

⎥⎥
⎥
⎥
⎦

,

Fk j� =

⎡

⎢
⎢
⎣

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎤

⎥
⎥
⎦ ⊗ I, Gk j� = κ

(21) ∗
k0 Fk j�, Hk j� = Ek j� − κ

(22) ∗
k0 I,

(80)
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cf. (59), where the κ
(21) ∗
k� and κ

(22) ∗
k� are given by (75). Finally, the right-hand side

(110) (in “Appendix 3”) simplifies to

c̃k j� = q1 ηk j η j0 [0 0 0 0 0 0 0 0 ψ
(111)
j� ψ

(112)
j� 0 0 ψ

(121)
j� ψ

(122)
j� 0 0]T

+ r1
6 ηk j η j� η�0 [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]T, (81)

where ηk� is given by (68), the ψ
(· · ·)
j� are the solution of (44), while q1 and r1 give the

values of q and r at the bifurcation point; cf. (10).
When considering the system at the Hopf bifurcation point (p = p1), some cubic

terms related to modes k = 1 and k = N − 1 cannot be eliminated by the nonlinear
transformations. In particular, considering (57) the determinant of the matrix Ãk j� is
0 for the index combinations

1) k = 1, j = 0, � = N − 1,

2) k = 1, j = 0, � = 1,

3) k = 1, j = 2, � = 1.

(82)

Thus, we obtain that the dynamics of mode 1 are governed by two complex differential
equations

[
ẇ

(1)
1

ẇ
(2)
1

]

=
[

0 1

κ
(21) ∗
10 κ

(22) ∗
10

] [
w

(1)
1

w
(2)
1

]

+ η210 η10 r1
2

[
0

(w
(1)
1 )2 w

(1)
N−1

]

+ η10 η20 q1

[
0

ψ
(111)
21

(
w

(1)
1

)2
w

(1)
N−1 + (ψ(112)

21 + ψ
(121)
21

)
w

(1)
1 w

(2)
1 w

(1)
N−1 + ψ

(122)
21

(
w

(2)
1

)2
w

(1)
N−1

]

,

(83)
where ηk� is defined in (68), while κ

(21) ∗
k� and κ

(22) ∗
k� are given by (75). The equations

forw(1)
N−1 andw

(2)
N−1 can be obtained by taking the complex conjugate of (83). Explicit

expressions for the quadratic near-identity coefficients ψ
(111)
21 , ψ

(112)
21 + ψ

(121)
21 and

ψ
(122)
21 are given in “Appendix 5”. We note that modes 1 and N − 1 result in cubic

terms in other modes. However, the dynamics for modes k = 1 and k = N − 1 are
not affected by the other modes.

4.3 Bifurcation Analysis

To characterize the nonlinear oscillations in the vicinity of the stability loss, we derive
the normal form of the Hopf bifurcation using the nonlinear modal equation (83).
Because modes 1 and N − 1 contain eigenvalues that cross the imaginary axis at
p = p1, the corresponding four-dimensional manifold contains the two-dimensional
center manifold. We can obtain the normal form of the Hopf bifurcation by projecting
the modal system onto the center manifold. Due to the complex conjugacy of the
modes 1 and N − 1 involved in the bifurcation, we only need to use one mode to
perform the projection and we choose mode 1. At the bifurcation point, mode 1 has
one purely imaginary eigenvalue λcr = iω1, where ω1 is given by (71). Using (75) in
the linear part of (83), one may obtain the corresponding eigenvector

123



1036 J Nonlinear Sci (2015) 25:1015–1049

e =
[

1
iω1

]
, (84)

while left eigenvector corresponding to λcr = − iω1 is given by

f = 1

α + ω1
(
2 tan( π

N ) − i
)
[
α + ω1 tan( π

N )

1 + i tan( π
N )

]
. (85)

The coefficient in front of the left eigenvector is obtained from the orthogonality con-
dition f · e = 1, where the inner product is defined by (40).

Let us define the complex variable

ζ = f · w1. (86)

Multiplying (83) by f from the left, we may project the dynamics onto the center
manifold; see Kuznetsov (2004). Exploiting w1 ≈ ζe we obtain the dynamics

ζ̇ = iω1 ζ + δ ζ 2 ζ , (87)

where the cubic coefficient is given by

δ = η10
(
1 − i tan( π

N )
)

2
(
α + ω1 (2 tan( π

N ) + i)
)
(
r1 η210 + 2 q1 η20

(
ψ

(111)
21

+ iω1

(
ψ

(112)
21 + ψ

(121)
21

)
− ω2

1 ψ
(122)
21

))
. (88)

The sign of Re δ determines whether the Hopf bifurcation is supercritical or subcrit-
ical. For a supercritical Hopf bifurcation (Re δ < 0), stable oscillations arise around
the unstable equilibrium, while in the subcritical case (Re δ > 0), unstable oscilla-
tions emerge around the stable equilibrium. Subcritical Hopf bifurcations may lead to
bistability as discussed in Orosz et al. (2009). Thus, it is important to determine the
criticality of the bifurcation in order to evaluate the effect of the CCC controllers at
the nonlinear level.

To calculate the amplitude of the nonlinear oscillations near the Hopf point, we
also need the “speed“ of the critical eigenvalues crossing the imaginary axis as the
parameter p is varied:

Re
dλ

d p
(p1) = ω1 sin( 2πN )

(
ω1 tan( π

N ) + α
)2 cos4( π

N ) + 4 tan2( π
N )
(
β(1 + sin2( π

N )) + α
)2 .

(89)
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In the vicinity of the Hopf point, the invariant oscillations are well approximated by

ζ(t) ≈ Ampζ e
i(ω1 t+α0), (90)

where the phase α0 can be chosen arbitrarily, the frequency ω1 is given by (71), while
the amplitude is given by

Ampζ =
√

−Re dλ
d p (p1)

Re δ
(p − p1). (91)

Using (86) the approximations w1 ≈ ζe and z1 ≈ w1 result in

z1(t) =
[
z(1)1 (t)

z(2)1 (t)

]

≈
[

Ampζ e
i(ω1 t+α0)

ω1 Ampζ e
i(ω1 t+ π

2 +α0)

]
. (92)

Finally, using (28) and yi = [̃si , ṽi ]T, the velocity of the i-th vehicle can be
approximated as

ṽi (t) = ei
2π (i−1)

N z(2)1 + e−i 2π (i−1)
N z(2)N−1 ≈ Ampv

2
cos(ω1 t + αi ), (93)

where the peak-to-peak amplitude is given by

Ampv = 4ω1

√

−Re dλ
d p (p1)

Re δ
(p − p1), (94)

andαi = α0+ π
2 + 2π

N (i−1) is the phase offset for the i-th car. Choosingα0 = −π
2 + 2π

N
yields αi = 2π

N i ; making it obvious that (93) describes a traveling wave (Orosz and
Stépán 2006).

Notice that according to (10), we have p1 = α V ′(h∗
cr), that is, when varying the

average distance of vehicles h∗, the parameter p changes and the critical value of p1
corresponds to some critical headway h∗

cr. If we wish to consider h
∗ as the bifurcation

parameter, we can use (10) to obtain

Re
dλ

d h∗ (h∗
cr) = Re

dλ

d p
(p1)

d p

d h∗ (h∗
cr) = q1 Re

dλ

d p
(p1), (95)

and rewrite the peak-to-peak amplitude for velocity oscillations (94) as

Ampv = 4ω1

√

−q1
Re dλ

d p (p1)

Re δ
(h∗ − h∗

cr). (96)
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Fig. 4 The nonlinear range policy function (4) (left) and its derivative (right). The headways hst and hgo,
the free-flow speed vmax, and the maximum of the derivative V ′

max are indicated. In this case, hst = 5 [m],
hgo = 35 [m], vmax = 30 [m/s], V ′

max = π
2 [1/s]

5 Numerical Verification

In this section, we validate our analytical results using numerical continuation
for the specific nonlinear function (4); that is plotted together with its deriva-
tive in Fig. 4 for hst = 5 [m], hgo = 35 [m], and vmax = 30 [m/s] yeilding
V ′
max = π

2 [1/s] that is used in the rest of this section. We chose h∗ = L/N
as the bifurcation parameter and present the results for different values of the
parameters α and β to evaluate the effects of the CCC controller on the system
dynamics. Note that due to the properties of the range policy (4), each p1 cor-
responds to two h∗

cr, values, such that p > p1 holds for the middle range of
headways.

5.1 Bifurcation Diagrams

In Fig. 5, the results are summarized in the (h∗, α)-plane for different values of the
parameter β when considering N = 11 cars. Solid black curves denote the modal
stability boundaries, while green dashed curves denote the fold bifurcations of the
oscillatory solutions for k = 1 (explained further below). In the light gray region, the
uniform flow equilibrium is globally stable. In the white region, the equilibrium is
unstable and there exist globally stable oscillatory solutions. In the dark gray region,
bistability occurs between the stable uniform flow and the oscillations. Since the
stability boundaries for modes k and N − k are the same due to complex conjugacy,
we only consider k = 1, . . . , 	 N

2 
. Each modal boundary encloses a region in the
parameter space where the corresponding mode is linearly unstable. Notice that the
instability regions for higher mode numbers are contained in the instability regions for
lower mode numbers. This corresponds to the fact that (70) increases monotonically
with the mode number k between 1 and 	 N

2 
. Thus, k = 1 gives the stability boundary
of the uniform flow. Figure 5a shows the two-dimensional bifurcation diagramwithout
relative velocity feedback (β = 0). In this case, all five modal stability boundaries
appear. For β > 0 the modal stability boundaries become closed curves and the modal
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Fig. 5 Two-dimensional bifurcation diagrams in the (h∗, α)-plane for N = 11 cars when considering
different values of β as indicated. The black curves are the linear stability boundaries for the modes k =
1, . . . , 5. The dashed green curves show where the periodic solutions for k = 1 undergo fold bifurcations.
Light gray shading indicates globally stable uniform flow. In the white region, the uniform flow is unstable
and stable oscillations appear. The dark gray region corresponds to bistability between the equilibrium and
oscillations. The red horizontal lines correspond to the panels in Fig. 6 (Color figure online)

instability regions shrink (and may even disappear) when β is increased as depicted in
Fig. 5b,c.

In order to quantify how the stability chart changes with β, we determine the
maximum α+ and the minimum α−; see Fig. 5, and use these extrema to calculate
the critical value of β where the linearly unstable domain disappears. To find α±, we
substitute V ′(h) = V ′

max and k = 1 into (70) which yields

α± = (β + V ′
max) cos

2( π
N ) − 2β ±

√(
(β + V ′

max) cos
2( π

N ) − 2β
)2 − 4 sin2( π

N )β2.

(97)
One can show that α− increases, while α+ decreases with β and the instability region
disappears when α+ = α− that occurs at the β value

βcr = V ′
max

1 − sin( π
N )

1 + sin( π
N )

. (98)

That is, for β > βcr no unstable region exists. For N = 11 cars we obtain βcr ≈
0.880 [1/s].

While the linear stability analysis reveals where the uniform traffic flow loses linear
stability, the bifurcation analysis gives insight about what happens at the nonlinear
level. Here we compare the peak-to-peak amplitude (96) calculated analytically to the
amplitudes computed using numerical continuation (Roose and Szalai 2007). In Fig. 6,
we plot the branches of oscillations for mode 1 considering different values of β for
N = 11 cars and α = 1[1/s]; see the red horizontal lines in Fig. 5. The horizontal axis
represents the uniform flow equilibrium. Stable and unstable solutions are shown as
solid green and dashed red curves, respectively. The oscillatory solutions arise from
Hopf bifurcations marked by blue stars and may undergo fold bifurcations marked
by black pluses. The zoom-ins at the bottom compare the analytical results (black)
and the numerical results (colored) at the vicinity of the Hopf bifurcation points. The
bifurcation diagrams are symmetric about h∗ = hgo+hst

2 due to the symmetry of the
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Fig. 6 Bifurcation diagrams for N = 11 cars and α = 1 [1/s] for different values of β as indicated. In
each panel, the peak-to-peak velocity amplitude Ampv is shown as a function of the bifurcation parameter
h∗. The horizontal axis represents the uniform flow equilibrium. Stable states are depicted as solid green,
and unstable states are shown as dashed red curves. Hopf bifurcations are marked by blue stars, and fold
bifurcations of periodic orbits are marked by black pluses. The bottom panels zoom onto the Hopf points
and also show the analytical predictions 96 as black lines (Color figure online)

range policy function (4). In each case, the bifurcations partition the diagrams into
different regimes of qualitative behavior.

In Fig. 6a, the Hopf bifurcations are supercritical and give rise to stable peri-
odic solutions, but the stability changes via fold bifurcations soon after birth (see
the zoomed panels at the bottom). For large amplitudes, the stability of the periodic
orbits changes again through fold bifurcations leading to stable large-amplitude oscil-
lations. These bifurcations yield four qualitatively different regimes. For headways
outside the high amplitude fold points, the uniform flow is globally stable and no
oscillations appear. In the region in between the low-amplitude fold points, the uni-
form flow is unstable, while the high-amplitude oscillations are globally stable. In
the bistable regimes bordered by a high-amplitude fold point and a Hopf point, the
uniform flow is linearly stable, but stable large-amplitude oscillations are also present,
and the stable states are separated by unstable oscillations. Other bistable regimes are
bordered by a Hopf point and a low-amplitude fold point where the uniform flow is
unstable, but there exist stable low-amplitude and high-amplitude oscillations sepa-
rated by unstable oscillations. We remark that this behavior happens in a very narrow
parameter domain and is not visible in the two-dimensional bifurcation diagram in
Fig. 5a.

When β is increased, the domain where the equilibrium is unstable shrinks as
can be observed in Fig. 6b (cf. Fig. 5b). Nonlinear analysis shows that the Hopf
bifurcations are now subcritical, leading to unstable oscillations. The low-amplitude
fold bifurcations disappear while the high amplitude fold points move closer to each
other. Here the bifurcations create three regimes of qualitatively different behavior.
Again outside the fold points, the uniform flow is globally stable, while between the
Hopf points, the uniform flow is unstable and the high-amplitude velocity oscillations
are globally stable. However, only one kind of bistable regime exists between the
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Fig. 7 a Two-dimensional bifurcation diagram for N = 33 cars and β = 0.6 [1/s]. b Bifurcation diagram
for N = 33 cars, α = 1 [1/s], and β = 0.6 [1/s]. The same notation is used as in Figs. 5 and 6. The blue
dotted curves in panels (b2) and (b3) show the analytical prediction for N → ∞ as given by (102) (Color
figure online)

Hopf and fold points, where the equilibrium and the large-amplitude oscillations are
both stable. For larger β values, stable oscillatory solutions exist only between the
Hopf points where the uniform flow is unstable as shown in Fig. 6c and outside this
regime, the uniform flow is globally stable.When β is increased even further, the Hopf
points move closer to each other and the branch of stable oscillations disappears at
β ≈ 0.786 [1/s].

5.2 Large N Limit

Now we demonstrate how the number of cars N influences the nonlinear behav-
ior. Indeed, we are interested in the large N limit. First, we consider N = 33 cars
and β = 0.6 [1/s]. Figure 7a shows a two-dimensional bifurcation diagram in the
(h∗, α)-plane (cf. Fig. 5b), while a bifurcation diagram is displayed in Fig. 7b for
α = 1 [1/s], (cf. Fig. 6b). The linearly unstable region is similar to the 11-car case,
but we have larger number of modal stability boundaries. Still mode 1 determines the
linear stability of the uniform flow. Onemay observe that stability is lost via subcritical
Hopf bifurcations, and the bifurcation diagram is qualitatively similar to the one in
Fig. 6b.

To get a broader picture about how the nonlinear oscillatory solutions depend on
the number of vehicles, we consider α = 1 [1/s] and evaluate the sign of Re δ in
(87) while varying N and β. We plot the results in Fig. 8, where supercritical Hopf
bifurcations occur in the green area, subcritical Hopf bifurcations occur in the red
area, and no bifurcations take place in the white area. The black curve denotes the
linear stability boundary, while the blue curve denotes the boundary where criticality
of the Hopf bifurcation changes. For a small numbers of cars (N < 10), only super-
critical Hopf bifurcations are possible. When N is increased, the unstable regime
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Fig. 8 Criticality diagram for α = 1 [1/s]. Green shading represents supercritical Hopf bifurcations, red
shading represents subcritical Hopf bifurcations. These are separated by the blue curve. The system does
not undergo a Hopf bifurcation in the white region and the Hopf boundary is represented by the black curve.
The points marked (a), (b), (c) correspond to the three cases examined in Figs. 5 and 6, while the point
marked (d) corresponds to Fig. 7 (Color figure online)

expands and the bifurcation turns subcritical for a range of β that also grows with
N .

In the large N limit, the black stability boundary approaches an asymptotic value
that can be obtained by using p1 = αV ′

max and N → ∞ in (70):

βmax = V ′
max − α

2
. (99)

Considering the range policy (4) and α = 1 [1/s] yields βmax = (π − 1)/2 ≈
1.071 [1/s]; see the black curve inFig. 8.Also, the blue criticality boundary approaches
the horizontal axis and the black Hopf bifurcation boundary which indicates that the
typical behavior is subcritical for large number of cars as demonstrated in Fig. 7. This
can also be seen when replacing the trigonometric functions in (88) by their Taylor
series which in the large N limit yields

Re δ∞ ≈ 3 q21 β

(3β + α)2α2

(
2π

N

)2
> 0, (100)

showing that Re δ∞ is positive for the whole domain 0 < β < βmax.
Similarly, taking the large N limit in (89) gives

Re
dλ

d h∗ (h∗
cr∞) ≈ q1(2β + α)

2α2

(
2π

N

)2
. (101)
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Thus, for large N , the Hopf amplitude (96) is given by

Ampv∞ ≈ 4(3β + α)(2β + α)
π

N

√

−2β + α

6β q1
(h∗ − h∗

cr), (102)

where we used (71) with k = 1. The blue dotted curves in Fig. 7 correspond to
(102), and these are well approximated by the black curves shown for N = 33.
However, observe that Ampv∞ → ∞ as β → 0 or q1 → 0. The latter case cor-
responds to β → βmax, since the black stability boundary in Fig. 8 corresponds to
the inflection point of the range policy. This shows that in the large N limit, the
lower criticality boundary tends to β = 0, while the upper criticality boundary tends
to β = βmax. Thus, choosing sufficiently large β guarantees global stability of the
uniform flow, which demonstrates the benefit of relative velocity feedback in CCC
design.

6 Conclusion

In this paper, we analyzed the dynamics of connected vehicle systems where vehi-
cles execute nonlinear connected cruise control (CCC) while responding to signals
received fromother vehicles ahead.These systemswere used as amotivation to develop
network-based bifurcation analysis based on nonlinear normal modes (NNMs). Our
method simplified the bifurcation analysis of large coupled systems with cyclic sym-
metry. A linear transformation was used to write the dynamics into modal coordinates,
and subsequent nonlinear network-based transformations were used to eliminate
the quadratic and cubic terms. These led to a small number of algebraic equa-
tions for each mode that can be solved without considering the dynamics of other
modes.

We applied the algorithm to a connected vehicle system where each vehicle
reacts to the distance and the relative velocity to the vehicle directly ahead. After
performing the linear transformation, we detected the mode responsible for the
stability loss of the uniform flow. We then decoupled this mode from the rest
of the system using the nonlinear near-identity transformations and projected the
dynamics onto the center manifold to find the normal form of the Hopf bifur-
cation. This allowed us to analytically determine the criticality and amplitudes
the nonlinear oscillations arising at the bifurcation point and observe the effects
of the CCC feedback law on the system dynamics. We validated our network-
based algorithm by comparing the analytical results to those obtained by numerical
continuation.

Because we found the network-based algorithm to be effective in analyz-
ing the dynamics of the connected vehicle system with simple structure, we
seek to extend this algorithm to more realistic scenarios. Future work includes
generalizing the algorithm to systems with more complicated communication
structures where vehicles may respond to multiple cars ahead and to nonho-
mogenous systems where different vehicles have different control parameters and
communication strategies. We are also planning to analyze the effect of time
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delays arising in the V2V communication due to intermittencies and packet drops
(Qin et al. 2014).
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Appendix 1: Simplification of Cubic Terms

Before applying the cubic near-identity transformation (52), we need to express all
the cubic terms of (50) using multiples of two circulant matrices. However, the cubic

term L̂(β)
(

Ŝb
(
�̂(û)û

))
K̂(β)

b û does not appear to have such structure. By spelling out

the components corresponding to the dynamics of mode k (in other words the k +1-st
row pair), we obtain

[ ∑

b=0,1

∑

β=1,2

L̂(β)(Ŝb(�̂(û)û)
)
K̂(β)
b û

]

k

=
N−1∑

j=0

N−1∑

�=0

∑

b=0,1

∑

β=1,2

∑

δ=1,2

⎡

⎢
⎣
e
i 2π b (k−�)

N
[
∂
(β)
b κ

(1 δ)
�0

]∗(
ψ

(β1)
m(�) j · u fm(�) j

u(1)
j + ψ

(β2)
m(�) j · u fm(�) j

u(2)
j

)
u(δ)
�

e
i 2π b (k−�)

N
[
∂
(β)
b κ

(2 δ)
�0

]∗(
ψ

(β1)
m(�) j · u fm(�) j

u(1)
j + ψ

(β2)
m(�) j · u fm(�) j

u(2)
j

)
u(δ)
�

⎤

⎥
⎦ ,

(103)
where m(�) is given as

m(�) = fk� =
{
k − � if k ≥ �,

N + k − � if k < �.
(104)

If we consider a change of indexes σ = fk�, we get

[ ∑

b=0,1

L̂(β)(Ŝb(�̂(û)û)
)
K̂(β)
b û

]

k

=
N−1∑

j=0

N−1∑

σ=0

∑

b=0,1

∑

β=1,2

∑

δ=1,2

⎡

⎢
⎣
e
i 2π b σ

N
[
∂
(β)
b κ

(1 δ)
fkσ 0

]∗(
ψ

(β1)
σ j · u fσ j

u(1)
j + ψ

(β2)
σ j · u fσ j

u(2)
j

)
u(δ)
fkσ

e
i 2π b σ

N
[
∂
(β)
b κ

(2 δ)
fkσ 0

]∗(
ψ

(β1)
σ j · u fσ j

u(1)
j + ψ

(β2)
σ j · u fσ j

u(2)
j

)
u(δ)
fkσ

⎤

⎥
⎦ .

(105)

Similarly, the k-th modal component of L̂(β)
(
Ŝb(û)

)
K̂(β)

b �̂(û)û can be expanded as

[ ∑

b=0,1

∑

β=1,2

L̂(β)(Ŝb(û)
)
K̂(β)
b �̂(û)û

]

k

=
N−1∑

j=0

N−1∑

�=0

∑

b=0,1

∑

δ=1,2

∑

β=1,2

⎡

⎢
⎣
e
i 2π b (k−�)

N
[
∂
(β)
b κ

(1 δ)
�0

]∗(
ψ

(δ1)
� j · u f� j

u(1)
j + ψ

(δ2)
� j · u f� j

u(2)
j

)
u(β)
fk�

e
i 2π b (k−�)

N
[
∂
(β)
b κ

(2 δ)
�0

]∗(
ψ

(δ1)
� j · u f� j

u(1)
j + ψ

(δ2)
� j · u f� j

u(2)
j

)
u(β)
fk�

⎤

⎥
⎦ .

(106)
If we re-label the δ and β, we obtain
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[ ∑

b=0,1

∑

β=1,2

L̂(β)(Ŝb(û)
)
K̂(β)
b �̂(û)û

]

k

=
N−1∑

j=0

N−1∑

�=0

∑

b=0,1

∑

β=1,2

∑

δ=1,2

⎡

⎢
⎣
e
i 2π b (k−�)

N
[
∂
(δ)
b κ

(1β)
�0

]∗(
ψ

(β1)
� j · u f� j

u(1)
j + ψ

(β2)
� j · u f� j

u(2)
j

)
u(δ)
fk�

e
i 2π b (k−�)

N
[
∂
(δ)
b κ

(2 β)
�0

]∗(
ψ

(β1)
� j · u f� j

u(1)
j + ψ

(β2)
� j · u f� j

u(2)
j

)
u(δ)
fk�

⎤

⎥
⎦ .

(107)
Considering (105) and (107) for the same values of j, β, and δ, and for σ = �, we
can show that

∑

b=0,1

ei
2π b σ

N

[
∂

(β)
b κ

(1 δ)
fkσ 0

]∗ =
∑

b=0,1

ei
2π b (k−�)

N

[
∂

(δ)
b κ

(1β)
�0

]∗
, (108)

and hence (105) and (107) are equal. This means that (50) and (51) are identical.

Appendix 2: Cubic Near-Identity Coefficients (Left Hand Side)

The coefficient vector b̃k j� in (57) is given by

b̃k j� =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

γ
(111)
k j φ

(111)
j� + γ

(121)
k j φ

(211)
j�

γ
(111)
k j φ

(112)
j� + γ

(121)
k j φ

(212)
j�

γ
(112)
k j φ

(111)
j� + γ

(122)
k j φ

(211)
j�

γ
(112)
k j φ

(112)
j� + γ

(122)
k j φ

(212)
j�

γ
(111)
k j φ

(121)
j� + γ

(121)
k j φ

(221)
j�

γ
(111)
k j φ

(122)
j� + γ

(121)
k j φ

(222)
j�

γ
(112)
k j φ

(121)
j� + γ

(122)
k j φ

(221)
j�

γ
(112)
k j φ

(122)
j� + γ

(122)
k j φ

(222)
j�

γ
(211)
k j φ

(111)
j� + γ

(221)
k j φ

(211)
j�

γ
(211)
k j φ

(112)
j� + γ

(221)
k j φ

(212)
j�

γ
(212)
k j φ

(111)
j� + γ

(222)
k j φ

(211)
j�

γ
(212)
k j φ

(112)
j� + γ

(222)
k j φ

(212)
j�

γ
(211)
k j φ

(121)
j� + γ

(221)
k j φ

(221)
j�

γ
(211)
k j φ

(122)
j� + γ

(221)
k j φ

(222)
j�

γ
(212)
k j φ

(121)
j� + γ

(222)
k j φ

(221)
j�

γ
(212)
k j φ

(122)
j� + γ

(222)
k j φ

(222)
j�

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

, (109)

where the constants γ
(··· )
k j and φ

(··· )
j� are defined in (53).

Appendix 3: Cubic Near-Identity Coefficients (Right Hand Side)

The coefficient vector c̃k j� in (57) is given by
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c̃k j� =

⎡

⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢
⎣

(
∑

β=1,2 ψ
(β11)
j� (∂

(β)
0 + ei

2π ( j)
N ∂

(β)
1 )

)
κ

(11) ∗
k j

(
∑

β=1,2 ψ
(β12)
j� (∂

(β)
0 + ei

2π ( j)
N ∂

(β)
1 )

)
κ

(11) ∗
k j

(
∑

β=1,2 ψ
(β11)
j� (∂

(β)
0 + ei

2π ( j)
N ∂

(β)
1 )

)
κ

(12) ∗
k j

(
∑

β=1,2 ψ
(β12)
j� (∂

(β)
0 + ei

2π ( j)
N ∂

(β)
1 )

)
κ

(12) ∗
k j

(
∑

β=1,2 ψ
(β21)
j� (∂

(β)
0 + ei

2π ( j)
N ∂

(β)
1 )

)
κ

(11) ∗
k j

(
∑

β=1,2 ψ
(β22)
j� (∂

(β)
0 + ei

2π ( j)
N ∂

(β)
1 )

)
κ

(11) ∗
k j

(
∑

β=1,2 ψ
(β21)
j� (∂

(β)
0 + ei

2π ( j)
N ∂

(β)
1 )

)
κ

(12) ∗
k j

(
∑

β=1,2 ψ
(β22)
j� (∂

(β)
0 + ei

2π ( j)
N ∂

(β)
1 )

)
κ

(12) ∗
k j

(
∑

β=1,2 ψ
(β11)
j� (∂

(β)
0 + ei

2π ( j)
N ∂

(β)
1 )

)
κ

(21) ∗
k j

(
∑

β=1,2 ψ
(β12)
j� (∂

(β)
0 + ei

2π ( j)
N ∂

(β)
1 )

)
κ

(21) ∗
k j

(
∑

β=1,2 ψ
(β11)
j� (∂

(β)
0 + ei

2π ( j)
N ∂

(β)
1 )

)
κ

(22) ∗
k j

(
∑

β=1,2 ψ
(β12)
j� (∂

(β)
0 + ei

2π ( j)
N ∂

(β)
1 )

)
κ

(22) ∗
k j

(
∑

β=1,2 ψ
(β21)
j� (∂

(β)
0 + ei

2π ( j)
N ∂

(β)
1 )

)
κ

(21) ∗
k j

(
∑

β=1,2 ψ
(β22)
j� (∂

(β)
0 + ei

2π ( j)
N ∂

(β)
1 )

)
κ

(21) ∗
k j

(
∑

β=1,2 ψ
(β21)
j� (∂

(β)
0 + ei

2π ( j)
N ∂

(β)
1 )

)
κ

(22) ∗
k j

(
∑

β=1,2 ψ
(β22)
j� (∂

(β)
0 + ei

2π ( j)
N ∂

(β)
1 )

)
κ

(22) ∗
k j

⎤

⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥
⎦

+ 1

6

⎡

⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢
⎣

(∂
(1)
0 + ei

2π (k− j)
N ∂

(1)
1 ) (∂

(1)
0 + ei

2π ( j−�)
N ∂

(1)
1 )κ

(11) ∗
�0

(∂
(1)
0 + ei

2π (k− j)
N ∂

(1)
1 ) (∂

(2)
0 + ei

2π ( j−�)
N ∂

(2)
1 )κ

(11) ∗
�0

(∂
(2)
0 + ei

2π (k− j)
N ∂

(2)
1 ) (∂

(1)
0 + ei

2π ( j−�)
N ∂

(1)
1 )κ

(11) ∗
�0

(∂
(2)
0 + ei

2π (k− j)
N ∂

(2)
1 ) (∂

(2)
0 + ei

2π ( j−�)
N ∂

(2)
1 )κ

(11) ∗
�0

(∂
(1)
0 + ei

2π (k− j)
N ∂

(1)
1 ) (∂

(1)
0 + ei

2π ( j−�)
N ∂

(1)
1 )κ

(12) ∗
�0

(∂
(1)
0 + ei

2π (k− j)
N ∂

(1)
1 ) (∂

(2)
0 + ei

2π ( j−�)
N ∂

(2)
1 )κ

(12) ∗
�0

(∂
(2)
0 + ei

2π (k− j)
N ∂

(2)
1 ) (∂

(1)
0 + ei

2π ( j−�)
N ∂

(1)
1 )κ

(12) ∗
�0

(∂
(2)
0 + ei

2π (k− j)
N ∂

(2)
1 ) (∂

(2)
0 + ei

2π ( j−�)
N ∂

(2)
1 )κ

(12) ∗
�0

(∂
(1)
0 + ei

2π (k− j)
N ∂

(1)
1 ) (∂

(1)
0 + ei

2π ( j−�)
N ∂

(1)
1 )κ

(21) ∗
�0

(∂
(1)
0 + ei

2π (k− j)
N ∂

(1)
1 ) (∂

(2)
0 + ei

2π ( j−�)
N ∂

(2)
1 )κ

(21) ∗
�0

(∂
(2)
0 + ei

2π (k− j)
N ∂

(2)
1 ) (∂

(1)
0 + ei

2π ( j−�)
N ∂

(1)
1 )κ

(21) ∗
�0

(∂
(2)
0 + ei

2π (k− j)
N ∂

(2)
1 ) (∂

(2)
0 + ei

2π ( j−�)
N ∂

(2)
1 )κ

(21) ∗
�0

(∂
(1)
0 + ei

2π (k− j)
N ∂

(1)
1 ) (∂

(1)
0 + ei

2π ( j−�)
N ∂

(1)
1 )κ

(22) ∗
�0

(∂
(1)
0 + ei

2π (k− j)
N ∂

(1)
1 ) (∂

(2)
0 + ei

2π ( j−�)
N ∂

(2)
1 )κ

(22) ∗
�0

(∂
(2)
0 + ei

2π (k− j)
N ∂

(2)
1 ) (∂

(1)
0 + ei

2π ( j−�)
N ∂

(1)
1 )κ

(22) ∗
�0

(∂
(2)
0 + ei

2π (k− j)
N ∂

(2)
1 ) (∂

(2)
0 + ei

2π ( j−�)
N ∂

(2)
1 )κ

(22) ∗
�0

⎤

⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥
⎦

.

(110)
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Appendix 4: Remaining Quadratic Terms for Mode 0

In Eq. (77), 1
2 R̂(û)û represents the quadratic terms that cannot be eliminated by the

near-identity transformation (38)whenmodes 1 and N−1 undergo aHopf bifurcation.
The only two nonzero entries in matrix R̂(û) are given by

[R̂(û)](1,2) =
[

0 0

4 q1 sin2
(

π
N

)
z(1)N−1 0

]

, [R̂(û)](1,N ) =
[

0 0

4 q1 sin2
(

π
N

)
z(1)1 0

]

,

(111)
where subscripts denote the location of the block in R̂(û), and q1 gives the value of
q at the bifurcation point; cf. (10). Indeed, these quadratic terms correspond to the
modes 1 and N − 1, and they only appear in the dynamics of the k = 0 mode. In the
special case, when β = 0 and even N the term

[R̂(û)]
(1, N2 +1) =

[
0 0

4 q1 z
(1)
N
2

0

]

, (112)

also remains in the equation of the k = 0 mode due to mode N/2.

Appendix 5: Quadratic Near-Identity Coefficients for the Connected
Vehicle Example

Equations (83) and (88) contain four nonzero quadratic near-identity coefficients that
can be obtained by solving (57) for the car following model:

ψ
(111)
21 = q1 (ei

2π
N − 1)2

2�

(
− (2 κ

(21) ∗
10 − κ

(21) ∗
20

) (
4 κ

(21) ∗
10 − κ

(21) ∗
20

)

− 2 κ
(21) ∗
10

(
κ

(22) ∗
10 − κ

(22) ∗
20

)
κ

(22) ∗
20 + κ

(21) ∗
20 κ

(22) ∗
10

(
5 κ

(22) ∗
10 − 3 κ

(22) ∗
20

)

− 2
(
κ

(22) ∗
10

)2 (
κ

(22) ∗
10 − κ

(22) ∗
20

) (
2 κ

(22) ∗
10 − κ

(22) ∗
20

))
,

ψ
(112)
21 + ψ

(121)
21 = −q1 (ei

2π
N − 1)2

�

(
4 κ

(21) ∗
10 κ

(22) ∗
10 + κ

(21) ∗
20

(
κ

(22) ∗
10 − κ

(22) ∗
20

)

− 2 κ
(22) ∗
10

(
κ

(22) ∗
10 − κ

(22) ∗
20

) (
2κ(22) ∗

10 − κ
(22) ∗
20

))
,

ψ
(122)
21 = q1 (ei

2π
N − 1)2

�

(
(
4 κ

(21) ∗
10 − κ

(21) ∗
20

)− (κ(22) ∗
10 − κ

(22) ∗
20

) (
2κ(22) ∗

10 − κ
(22) ∗
20

)
)

,

(113)
where the factor � is

� = κ
(21) ∗
20

(
4 κ

(21) ∗
10 − κ

(21) ∗
20

)2 − 16 κ
(22) ∗
10

(
κ

(22) ∗
10 − κ

(22) ∗
20

) (
κ

(21) ∗
10

)2

+ 4
(
2 (κ

(22) ∗
10 )2 − (κ

(22) ∗
20 )2

)
κ

(21) ∗
10 κ

(21) ∗
20 − κ

(22) ∗
10

(
5κ(22) ∗

10 − 3κ(22) ∗
20

) (
κ

(22) ∗
20

)2

+ 2 κ
(22) ∗
10

(
κ

(22) ∗
10 − κ

(22) ∗
20

) (
2 κ

(22) ∗
10 − κ

(22) ∗
20

) (− 2 κ
(21) ∗
10 κ

(22) ∗
20 + κ

(21) ∗
20 κ

(22) ∗
10

)
,

(114)
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and q1 gives the value of q at the bifurcation point; cf. (10). We remark that the
coefficients ψ

(112)
21 and ψ

(121)
21 do not need to be evaluated individually since (83, 88)

only include their sum.
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