Physica D 275 (2014) 54-66

Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd e

Nonlinear day-to-day traffic dynamics with driver experience delay:
Modeling, stability and bifurcation analysis

@ CrossMark

Xiaomei Zhao®P, Gabor Orosz “*

2School of Traffic and Transportation, Beijing Jiaotong University, Beijing, 100044, China
b MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, Beijing, 100044, China
¢ Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA

HIGHLIGHTS

GRAPHICAL ABSTRACT

e Time delays and nonlinearities are
introduced into day-to-day traffic
models.

e The linear and nonlinear stability of
the equilibrium is analyzed.

e Normal forms are derived for the Flip
and Neimark-Sacker bifurcations.

e Domains of bistability are deter-
mined by numerical continuation.

e Delays extend the bistable region
and increase the period of oscilla-
tions.

Day-to-day updating rules for cost and flow with driver experience delay 7:

i = aClE) + (1= ),
fios = 8 F(ci) + (1= B),

route 1

route 2

(24)
Figure 1: Left: a two-route traffic network. Middle: nonlinear cost func-
tion. Right: network loading function.
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Figure 2: Left: global stability chart with linearly stable (light gray), bistable
(dark gray), and unstable (white) domains. Middle: bifurcation diagram
for a = 1/2 with subcritical Neimark-Sacker bifurcation. Right: stable and
unstable tori in state space.
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1. Introduction

Traffic assignment models have been widely used for trans-
portation planning and network design. These models assign de-
mands for origin-destination (OD) pairs and generate the flow
pattern on the whole road network. A fundamental concept
in assignment problems is the user equilibrium proposed by
Wardrop [1], which is the Nash equilibrium for transportation net-
works [2]. At this state, all used routes on the same OD pair have
the same travel cost, while the unused ones have equal or higher
cost. The concept of user equilibrium has been extended to deal
with a more realistic driver behavior by incorporating uncertainty,
leading to the so-called stochastic user equilibrium [3]. This can be
viewed as an optimal state for transportation networks and many
papers discussed its existence and uniqueness. However, traffic
systems that are based on dynamic route adjustment do not nec-
essarily converge to the equilibrium, even when it is proven to ex-
ist. Therefore, stability and bifurcation analysis, which addresses
whether and how the flow evolves in time, is essential for under-
standing the traffic behavior.

Day-to-day traffic assignment models are suitable for analyzing
the time evolution of the traffic flow on networks, due to their
flexibility of accommodating a wide range of behavior rules, levels
of aggregation, and traffic models. These models describe how the
flow and the related cost (e.g., travel time) change on the network
from one day to another. Day-to-day dynamics have attracted
significant attention since the seminal work of Horowitz [4],
where a two-route scenario was considered and the stability of
the equilibrium was explored. In general, day-to-day dynamics
can be formulated as deterministic processes or as stochastic
processes [5]. In the deterministic framework, it is assumed that
travel cost can be perceived perfectly [6-8]. In particular, Smith [6]
assumed that the route switch rate is proportional to the difference
of travel cost on the routes, while Friesz et al. [7] proposed a
day-to-day model that captures both the dynamics of route flows
and OD demands. Zhang and Nagurney [8] used a minimum norm
projection operator to model the adjustment of day-to-day route
flows. All of these papers considered continuous time. However,
Watling and Hazelton [9] pointed out that the continuous-time
approach had two limitations: (i) continuous-time trip adjustment
is not plausible in reality, and (ii) homogeneous population
assumptions require additional dispersion modules.

In discrete-time day-to-day models, travelers’ route choice is
updated daily, in accordance with daily changes in traffic flow,
and it is assumed that each trip is executed at most once a day.
Specifically, Nagurney and Zhang [10] discretized their contin-
uous model and applied Euler’'s method to solve the obtained
discrete-time dynamical system. He and Liu [11] proposed a “pre-
diction-correction” framework for modeling discrete-time de-
terministic day-to-day traffic evolution and also gave sufficient
conditions for global stability of the equilibrium. They also cali-
brated their model for a real network with an unexpected disrup-
tion. Bie and Lo [12] investigated the stability of user equilibrium
pursued by a day-to-day adjustment process and provided tools
to determine the stability of the equilibrium and to estimate its
domain of attraction. Stochasticity has also been introduced into
day-to-day assignment processes, including models formulated as
Markov processes [13,14], and models assuming that route choice
probabilities depend on the experienced travel times [4,15-17].In
the latter case, the obtained nonlinear dynamical systems are in
fact deterministic, since the route choice probabilities are consid-
ered to be deterministic functions of averaged quantities.

Travelers forecast their travel costs on different routes by
mixing their own experience with information from other sources
(e.g., their friends’ experience, broadcast, traffic information center
etc.), and they make routing decisions according to their inertia

and forecasted cost. Acommon assumption in day-to-day studies is
that travelers make the same trip daily. However, in realistic traffic
scenarios, many commuters go to one place on some days and to
another place on others, so they execute a particular trip in every
few days (instead of every day). Recent research provides evidence
for the non-daily trips of travelers. By analyzing data collected
about multiple days of travel, one can observe variability in travel
behavior because people’s needs and desires vary significantly in
time [18]. By analyzing 149 individuals, Hanson and Huff [19-22]
and Raux et al. [23] pointed out that a one-day pattern is not
representative of a person’s route of travel. Stopher and Zhang [24]
classified all trips into twelve tour types, and concluded that a
particular tour happens typically two or three times a week, which
means that drivers make decision based information that is 2-3
days old. In addition, some traffic policies may bring such delays
into the decision making for the entire driving population: in urban
areas they often apply restrictions based on parity of the license
plate number which forces drivers to make their trips on every
other day.

These findings suggest that travelers’ experiences are a couple
of days old when they choose a route which introduces time
delays into the system. Such driver experience delays play a key
role in determining the arising traffic patterns. As day-to-day
models are constructed at the population level, all parameters
in this setup, including the delay, represent population averages,
that is, heterogeneities in driver behavior are omitted. However,
even after taking the population average the system parameters
may still vary in time stochastically. The deterministic models
considered in this paper describe the mean dynamics of these
processes with time-independent parameters. Our goal is to
understand how self-excited oscillations of different periods may
arise in these systems without external periodic forcing (i.e.,
without incorporating demand fluctuations). To explore such
behavior we vary the system parameters, including the delay, and
detect when qualitative changes occur in the dynamics. Such ideas
have been coined by Horowitz [4] and Cascetta and Cantarella [25],
but no formal analysis has been carried out to understand the
effects of the delay on the linear and nonlinear dynamics.

In this paper, for the first time, we utilize state-of-the-art
analytical and numerical techniques from dynamical systems
theory to investigate the linear and nonlinear stability of the
equilibrium when varying delays and other system parameters.
This extends the results by Cantarella and Velond [26] and
Cantarella [17] obtained for the linear behavior of non-delayed
models. Our generalized model reveals physical phenomena that
have not yet been explained before. We show that, apart from
extending the linearly unstable domain, the delay also increases
the period of arising oscillations significantly so that it can become
much larger than the delay itself. Moreover, applying normal form
calculations and numerical continuation, we determine regions
of bistability in parameter space where the equilibrium coexists
with stable and unstable oscillations. In order to quantify the
effects of initial conditions we estimate the domain of attraction
of the equilibrium by calculating the amplitude of the unstable
oscillations. Finally, we remark that larger the delay is the more
complex the nonlinear dynamics may become as the number of
coexisting oscillations also increases with the delay.

Prior work on vehicular platoons show that time delays can
significantly influence the dynamics of transportation systems
and change the arising large-scale patterns [27-30]. In platooning
problems, delays occur due to driver reaction time that is typically
in order of seconds and can significantly affect the nonlinear
oscillations with periods in the order of minutes. In day-to-day
traffic models, driver experience delays are in the order of 1-3
days and the corresponding nonlinear oscillations have periods of
the order of 5-7 days. Nevertheless, the qualitative dynamics are
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remarkably similar as both systems exhibit delay-induced bistable
behavior.

The remainder of this paper is organized as follows. In Section 2
nonlinear models with driver experience delay are formulated.
The linear stability properties of the equilibrium are studied in
Section 3, while the effects of nonlinearities are discussed in
Section 4. In Section 5 a two-route network is presented and its
linear and nonlinear behaviors are analyzed for different delay
values. Finally, Section 6 summarizes our findings and suggests
future research directions.

2. Nonlinear discrete-time models with driver experience delay

As mentioned above, the dynamics of the flow on transporta-
tion networks can be studied using nonlinear discrete-time traffic
assignment models that are formulated as deterministic dynam-
ical systems. These models provide effective tools to analyze dy-
namic day-to-day assignment scenarios and are widely used for
transportation design and evaluation. Nonlinearities arise in the
route-choice probability function as well as in the cost function
and time delays occur because drivers choose the route by averag-
ing their past experiences. In this section we give a description of
the modeling framework used in the paper that extends the frame-
work in [15,26] by incorporating the driver experience delay.

In this paper we use the following notation:

N—node set,

A—arc set,

nag—number of arcs,

W —set of origin—destination (OD) pairs,

K,,—set of routes connecting the OD pair w € W,

n,—number of routes connecting the OD pair w € W,
d,,—flow demand for the OD pair w € W,

A, € R™*™ —arc-route incident matrix for the OD pairw € W
with entries 84, = 1if arca € A belongs to the route k € K,
and g4k, = 0 otherwise,

¢, € R™—vector of forecasted arc costs at day t with entries
Car, 0 €A,

f, € R"A—vector of arc flows at day t with entries f; ;, a € A,

o, T—driver experience delays,

C(-)—arc cost function,

F(-)—network loading function.

We also assume that there is at least one route connecting
any OD pair and there are no loops. Fig. B.1 gives an example
to explain the notations. In this network, there are four nodes in
the node set N = {O;, D, O,, D,} and five arcs in the arc set
A={1, 2, 3, 4, 5}, thatis, ny = 5. The network has two OD pairs
W = {04Dq, 0,D,}. The origin-destination pair O;D; has three
routesK; = {1 —2, 3—4, 1 -5 —4},ie, n; = 3; while 0,D,
has only one route K, = {5}, that is, n, = 1. Finally, the arc-route
incident matrices are given by

10 1 0
100 0

Ar=|0 1 0| and a,=]|0], (1)
01 1 0
0 0 1 1

for 01Dy and O,D,, respectively, and they describe the network
structure by establishing connections between the arcs and the
routes.

Day-to-day assignment models describe the user cost updating
and route choice updating processes; that is, how users forecast
travel conditions according to their own experience and informa-
tion from other sources, and how they make their route decisions,

either by repeating their previous choice or re-routing according to
their forecast. To update these quantities (at the population level)
we propose the dynamic model

Cy1 =0 Z weC(fi—o) + (1 — )¢,
o=0 (2)

fi1=BF(c)+(0=pB)f.

The first equation describes the cost updating process, that is, how
users forecast the costs by combining their delayed experience
with those from other sources. Here, w, weights travelers experi-
ence o + 1 days ago, that is, drivers predict the cost based on their
experiences in the last T 4 1 days using the arc cost function C(f).
We require that )7, w, = 1. The parameter « is the weight at-
tributed to the forecasted costs against yesterday’s actual costs. The
second equation updates the flow according to how many users
decide to re-route based on the network loading function F(c) and
how many are inertial. The parameter f is the weight attributed to
reconsidering the previous choice. Notice that the delays are also
incorporated in the flow updating process because the function F
depends on the “current cost” (forecasted by the drivers to the day
the flow is calculated for).

We remark that the parameters « and 8 are averaged over the
population as well as in time. It is difficult to determine the exact
value of these parameters but we require «, 8 € [0, 1] to obtain
a physically meaningful model. Similarly, the distributed delay on
the right hand side arises after taking averages so that (2) describes
the mean dynamics, as is was proven in [31]. Since the individual

weights w,, 0 = 0, ..., 7 are difficult to determine from data, in
this paper we consider the simplified setup

0 ifoe=0,...,7T—1,
l%:Liwzr (3)

and vary the parameter 7 to investigate the delay-initiated effects.
In this case (2) simplifies to

cr=aCf_)+(1—-0a)c,
fioi=BFc)+0—-pB)F,

and from now on we refer the parameter r = 0, 1, 2, ... as the
driver experience delay. For t = 0 Eqs. (2) and (4) recover the non-
delayed model in [15,26]. To explore the qualitative changes in the
dynamics we will vary the parameters «, 3, 7.

In Eq. (4), there are two important nonlinear functions, the arc
cost function C(f) and the network loading function F(c). The arc
cost function describes how the arc cost depends on the arc flow.
We assume that C(f) is continuously differentiable and strictly
monotonously increasing, that is, the Jacobian matrix Jac[C(f)] is
positive definite. One simple example of an arc cost is given by the
Bureau of Public Roads (BPR) function

£\
Ci(fl,~--»an)=lo(1+11 (f) >, (5)

fori =1, ..., na, where [ is the zero-flow cost, [; is a dimension-
less constant, and f; is the arc capacity; see the middle panel in
Fig. B.3. This function has been calibrated with empirical data and
it is widely used in the traffic assignment literature [32-34]. No-
tice that there is no link interaction in this example, that is, the
cost along each arc only depends on the flow on that particular
arc, which results in a diagonal Jacobian Jac[C(f)]. The analytical
framework presented in this paper can accommodate cost func-
tions with link interactions but we present the numerical results
using the BPR function for the sake of simplicity.

The network loading function establishes relations between the
arc costs and the arc flows and describes how the demands d,, for

(4)
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the OD pairs w € W are assigned on the arcs a € A. For each
OD pair, the arc-route relation and flow-demand constraint can be
described using the arc-route incidence matrix, that is, g,, = AE, c
and f = A, h,, where g,, € R™ is the route cost vector and h,, €
R™ is the route flow vector. The route flow h,, = d,, p,, contains
the route choice probability vector p, = P(g,). Using these
definitions, the network loading function can be constructed as

F(©) = Zpew Ay hy
= Z‘IwEde Ay Pw
= Yyewdw Ay P(81)
= Zyewdy Ay P(A] ©). (6)

We remark that this function satisfies all flow constraints implied
by the network structure as these are incorporated in the arc-route
incidence matrices A,,, w € W.

We assume that the nonlinear route choice probability function
P(g,,) is continuously differentiable and monotonously decreasing
thus F(c) has the same properties. Consequently, the Jacobian
matrix Jac[F(c)] = Xyewdy AyJac[P(AT ©)] AT is negative
semi-definite. A particular example for route choice probability is
the logit function

exp(—guw,i/0)
- Buny) = o2 E0/D) 7

Z exp(_gw,j/e)
j=1

Pi(gw.L ..

that is often used to represent multiple choice probabilities. Here ¢
represents the agility of drivers’ decision making: the smaller 6 is,
the smaller price difference is needed to switch the route; see the
right panel of Fig. B.3 for a single OD pair with two routes (n,, = 2)
given by two arcs (ny = 2) implying g,,; = ¢, 1 = 1, 2. Arrows
indicate the distance between the inflection points.

3. Fixed point and linear stability

In this section, we analyze the dynamics in the vicinity of the
stochastic user equilibrium, that is, in a small neighborhood of the
fixed point of the deterministic dynamical systems (2), (4). The
fixed point is a state that is mapped to itself by the dynamics, that
is, 41 = ¢ = ¢* and f;1 = f; = £* for all t. Substituting this into
(2), (4) we obtain

¢ =C(f"),
£ = F(c"), (8)
which allows us to derive the equilibrium cost ¢* and the
equilibrium flow f*. Notice that the equilibrium is independent
of the delay. Since the continuously differentiable functions C(f)
and F(c) are strictly monotonously increasing and monotonously
decreasing, respectively, the uniqueness of the equilibrium can
be guaranteed [2,35]. Now we derive necessary and sufficient
conditions which guarantee that system (4) converges to the fixed
point (8) when started from a small neighborhood, i.e., this state
is linearly asymptotically stable [36,37]. In order to obtain such
conditions we linearize the system about the equilibrium and
calculate the eigenvalues of the corresponding Jacobian matrix
evaluated at the fixed point. If all eigenvalues are located inside
the unit circle in the complex plane then the fixed point is linearly
asymptotically stable [36,37].

First, we rewrite (4) as a dynamical system that maps the state
at time t to the state at time t + 1. Thus, we introduce (2 + 7) X 14

state variables:

g; i ‘f::} 2 x ny4 variables
V3. =fiq

Var =fi (9)
: T X N4 variables

Vet = fr_rpa

Voo =f;
which allow us to reformulate (4) as

Vi1 =& C¥rqo) + (1 —a) yie
Vo1 = BFla- C¥rnd + =@ yic] + (1= By

V3. t+1 = Yot
Va 41 = Y3t (10)

Yet+1,641 =Yoo
Yeio,041 = Yot1t-

By defining the (2 + t) x ns-dimensional state vector y, =
col[y1.¢, ¥a.ts - - - » Yr+2.¢] one may formally write

Vo1 = HEo). (11)
The fixed point of this dynamical system can be written as y* =
col[c*, f*, ..., f*] which indeed satisfies y* = H(y*). Introducing

the perturbation X, = y; — y*, the linearized equation can be
written as
Repr =]k, (12)
where
- (1—a)l 0 0 O 0 oJec T
(I-w)flr 1=p1 0 0 0  aflc
0 I 0 O 0 0
~ 0 0 I O 0 0
J= (13)
0 1 0 0
L 0 0 o o .- 1 0o 4

Here, we used the notation Jc = Jac[C(f*)] and Jr = Jac[F(c*)]
while I denotes the n,-dimensional identity matrix. Indeed, the
(24 1)ns-dimensional Jacobian matrixj = Jac[I:I (y*)1is evaluated
at the fixed point and all of its eigenvalues must be inside the unit
circle in the complex plane to ensure the stability of (8).

Theorem 1. The (2 + 7)n, eigenvalues of j are given by
det[(A + & — DA + B — DATT — afAJe)c]| = 0. (14)

Furthermore, when the matrix Jg)c is diagonalizable Eq. (14) can be
rewritten as

A4+a—1DA+B—1DA" —afry; =0, (15)
fori=1,..., nu where y; is the ith eigenvalue of the matrix JgJc.

The proof of this theorem is provided in Appendix A.

Corollary 1. For t = 0, the 2ny4 eigenvalues can be obtained from

det[(A + & — DA + B — DI—aBJe)c] =0, (16)
and for diagonalizable JzJc we have

A+a—1DA+B—-1) —apfy;=0, (17)
fori=1,...,ny. This corresponds to the results in [17,26].
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Corollary 2. For t > O there are always ny zero eigenvalues, and
other (14 t)n, eigenvalues are given by

det[(A + o — DA+ B — DA 'T—aBJe)c]| =0, (18)

and for diagonalizable Jr]Jc we have

A+a—DA+B-DA ' —aBy =0, (19)
fori=1,...,n4

As mentioned above in order to ensure the linear stability of
the fixed point all the (2 + 7)n4 eigenvalues must be inside the
unit circle in the complex plane. The goal of stability analysis is to
determine the parameter domains where stability is maintained
without explicitly calculating the eigenvalues. The stability of the
fixed point changes when eigenvalues cross the unit circle while
varying parameters. Three qualitatively different stability losses
are possible [17,26,36,37]:

1. A real eigenvalue crosses the unit circle at 1 (called fold
bifurcation) which can result in additional fixed points;

2. A real eigenvalue crosses the unit circle at —1 (called flip
or period-doubling bifurcation) which leads to oscillations of
period 2 (days);

3. A pair of complex conjugate eigenvalues crosses the unit
circle (called Neimark-Sacker bifurcation) which results in
oscillations of period 277 /¢ > 2 (days), where ¢ € (0, ) is the
angle of the crossing eigenvalue with positive imaginary part.

These conditions can be tested by inserting A = 1, = -1,
and A = exp(i¢) into (14) or (15) and the corresponding curves
can be plotted on a chosen parameter plane. We found that in the
physically relevant domain «, 8 € (0, 1) the system may lose
stability via flip and Neimark-Sacker bifurcations which corre-
sponds to the uniqueness of the equilibrium. Using (14), (15)
stability charts will be drawn for the example in Section 5 to
demonstrate graphically how the stability of the fixed point is in-
fluenced by the delay.

4. Bifurcations and domains of attraction

The linear stability analysis of the fixed point gives a boundary
separating the linearly stable region and the unstable region in
parameter space. When parameters are chosen from the stable
region the linearized system (12), (13) converges to the fixed point
(8) independent of the choice of initial conditions. This suggests
that the domain of attraction is the whole state space. However,
this may not be true for the corresponding nonlinear system where
linear stability only ensures convergence in a small neighborhood
of the fixed point. Here, by definition, the domain of attraction of
the fixed point is the set of initial conditions for which trajectories
converge to the fixed point. This may be estimated by running a
large number of simulations. However, considering the (2 + 7)n4-
dimensional state space, this may not be feasible for systems of
realistic size.

In this paper, instead of running extensive simulations, we take
a systematic approach to estimate the domain of attraction. Based
on the theory of dynamical systems the essential nonlinear dy-
namics of the system can be captured by the low dimensional
dynamics occurring on invariant manifolds embedded in the (2 +
T)nu-dimensional state space. These manifolds are 1-dimensional
for flip and 2-dimensional for Neimark-Sacker bifurcations. Choos-
ing the parameters close to the stability boundary and approximat-
ing the nonlinearities by Taylor expansion up to cubic order, one
may use a sequence of nonlinear coordinate transformations and
derive the low-dimensional normal form equations that govern the
dynamics on the invariant manifold. This way the amplitude, pe-
riod, and stability of the arising oscillations can be determined; see

Appendix B for more details. Transforming the equations back to
the original physical coordinates allow one to characterize the dy-
namics of the system.

In particular, for flip bifurcation the normal form calculations
result in the invariant motion

Ct a(B) e, | €
= —1 3 20
that has period Tz = 2 (days) and the amplitudes of oscillations are
given by a., a; € R™. These depend on the bifurcation parameter,
which is chosen to be 8 in this case, so that they are proportional to

/B — B Where the critical value B, gives the stability boundary.
Similarly, for Neimark-Sacker bifurcation we obtain

v b.(8) ¢
[ft] = |:bf(/3):| cos(¢t+z9)+|:f*} (21)
where the amplitudes b., by € R™ are also proportional to
/B — B The period Tys = 27 /¢ (days) is given by the angle of
the crossing eigenvalue ¢ € (0, ) at the critical point § = . As
the motion is invariant the phase angle ¥ is arbitrary.

As mentioned above, the normal form calculations also reveal
the stability of the arising nonlinear oscillations. Two different
cases are possible. For supercritical bifurcation, stable oscillations
appear in the parameter region where the fixed point is unstable
as shown in the left panel of Fig. B.2 where the minimum and
maximum of oscillations are plotted together with the fixed point
(horizontal line). Stable and unstable states are represented by
solid and dashed curves and this notation is used consistently in
the remaining part of this paper. In this case linear stability of the
fixed point indicates global stability and the corresponding domain
of attractions is the whole state space. On the other hand, for
subcritical bifurcation, unstable oscillations occur in the parameter
region where the fixed point is linearly stable; see the right panel
of Fig. B.2. This means that for initial conditions chosen close
to the fixed point the system converges to the fixed point, but
this is not the case for all initial conditions. The arising unstable
oscillations, while rarely visible in practice, are significant as they
give the “threshold” for how large perturbations are allowed so
that the system still approaches the fixed point. More precisely, the
stable manifold of the unstable periodic orbit gives the boundary
of the domain of attractions in state space. The figure suggests
that this domain increases as the parameter moves away from the
critical point. Appendix B provides some details about how the
criticality of the flip and Neimark-Sacker bifurcations are derived
and show their applicability using the example in Section 5. Similar
calculations have also been recently carried out by Habib et al.
in [38].

Indeed, both (20) and (21) are approximations and only
describe the oscillations in the vicinity of the bifurcation point. To
analyze the invariant motions of the fully nonlinear system (10),
(11) one needs to use numerical techniques. Numerical simulations
allow one to study stable motion as the system converges to
stable states (for a subset of initial conditions). However, this
becomes very difficult when one wishes to compute unstable
states, especially unstable oscillations. A different approach, called
numerical continuation, may be taken by formulating periodic
orbits as boundary value problems and using Newton iterations
to correct the initial guess. Then the computed orbit can be used
to initialize the Newton iterations when changing the bifurcation
parameter. This allows one to reproduce bifurcation diagrams
like those in Fig. B.2 and to repeat this for the fully nonlinear
system; see already Figs. B.7 and B.9. Notice that the global picture
reveals what happens in the subcritical case for initial conditions
that do not converge to the fixed point: the system converges
to large amplitude oscillations that arise when the oscillatory
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branch folds back. This creates regions of bistability where despite
having a stable fixed point one can observe sustained oscillations
for a subset of initial conditions. To compute invariant period-2
branches arising from the flip bifurcation point we use the software
MATCONT [39]. In fact, this is analogous to computing the fixed
point of the double map H (H (§)); cf. (11). To compute the branches
arising from the Neimark-Sacker bifurcation point one needs to
compute invariant tori in state space. In order to do this we adapted
the method developed by Dankowicz and Thakur [40] for discrete
time systems.

5. Two-route example

To illustrate the linear and nonlinear phenomena described
above, we consider a simple network as shown on the left panel
of Fig. B.3 with one origin-destination pair and two routes given
by two arcs. The arc cost function for this system is given by
Eq. (5), that s,

(14(2))
0 +h f_
_ 1G] _ c
c® = I:Cz(f1,f2):| - £\ ’ (22)
ly (1 + I (f_> )

which is plotted in the middle panel of Fig. B.3, where the zero-flow
cost Iy, the cost range Iylq, and the arc capacity f. are shown. Since
there is only one OD pair in the network the w index can be omitted
when constructing the network loading function (6). Moreover, the
arcs and the routes in the system are identical implying that the
arc-route incident matrix A is the 2 x 2 identity matrix. Using the
route choice probability function (7), the network loading function
can be written as

d
1+ exp(—(c — ¢1)/6
ro=[fed]=| Tl e
1+ exp(—(c1 — ©2)/0)

This is depicted on the right panel of Fig. B.3 where the demand
d and the distance between the two inflection points are shown.
As can be seen, the parameter 0 gives the characteristic price
difference needed to switch the route.

5.1. Linear stability

One may show that the fixed point of the two route system is
given by
f1* :fz* = d/2,

e s d\* (24)
=i (3))

which is unique due to the monotonous properties of functions
(22), (23). By evaluating the Jacobian for the arc cost function (22)
and the network loading function (23) at the fixed point (24), we
obtain

blhid®>[1 0
Je="m o 1
2f;

d -1 1

where the dimensionless parameter

lolyd*
= >
807

= Jdc = q [‘11 _11] , (25)

0 (26)

contains the “width” and the “height” of the dynamical regimes of
the nonlinear functions (22), (23). Here the matrix JgJc (25) can be

diagonalized and has the two eigenvalues y; = 0and y, = —2q <
0, that is, Eq. (15) leads to the equations

A+a—DRA+B—-1DA" =0, (27)
A+a—1RA+p— DA +apr2q=0. (28)

The eigenvalues given by (27) are located inside the unit circle
in the complex plane if and only if

O<a<2 and 0<fB <?2. (29)

Ata = 0and 8 = 0 a real eigenvalue crosses the unit circle
at 1 (fold bifurcation occurs), while at ¢ = 2 and § = 2 a real
eigenvalue crosses the unit circle at —1 (flip bifurcation occurs).
Recall that the physically realistic parameter domain is given by
O<a<land0< g < 1.

For g = 0 Eq. (28) is equivalent to (27) while the g > 0 case
requires further analysis. By substituting A = 1 into (28) one can
show that the fold stability boundaries are stillatee = 0and 8 = 0,
while substituting . = —1 gives the flip stability boundaries

4 —2a .
p=——— 'ift=0,2,4,...
2—a(l—29)
4 — 2o (30)
p=——— ift=1,3,5,....
2—a(1+4+29)

Finally, substituting . = exp(i¢), ¢ € (0, ), separating the
real and the imaginary parts, and using some algebraic manipula-
tions one can show that a pair of complex conjugate eigenvalues
crosses the unit circle at the Neimark-Sacker curve given by

2(1 — cos ¢) sing
sing + [sin(r¢) —sin((r — 1)¢)]2q’
2(1 — cos ¢)(sin ¢ + sin(r¢)2q)
sing + [sin(rqb) —sin((r — l)d))]Zq.

From these equations « and § can be calculated as a function ¢ €
(0, ) and the corresponding parametric curves can be plotted on
the (o, B)-plane. All curves generated by (29), (30),(31) are plotted
in Fig. B.4 for different values of t and g where the shaded domain
corresponds to linear stability of the fixed point and the physically
relevant domain is bounded by dashed lines. Comparing the dif-
ferent panels one can observe that the size of the stable domain
is reduced when g and t are increased. In the physically relevant
domain instabilities only occur for ¢ > 1/2. The flip boundaries
o = 2,8 = 2, and (30) are shown as black curves and these are
indeed the same in every second row. The Neimark-Sacker bound-
aries (31) are shown as red curves and the maximum number of
Neimark-Sacker curves increases by one for every odd value of the
delay.

aff =

a+p =

5.2. Normal form calculations

As explained in Section 4 considering the nonlinearity of the
system up to the cubic order, we can transform the model into
normal form in the vicinity of the flip bifurcation or the Neimark-
Sacker bifurcation. To demonstrate the fundamental nonlinear
phenomena we focus on the cases T = 0 and T = 1 because only
flip bifurcations occur for r = 0 and only Neimark-Sacker bifur-
cations occur for T = 1, as shown in the first two rows of Fig. B.4.
Indeed, the methods can also be used for r > 1 where both types
of bifurcations occur making the global picture more intricate with
many coexisting solutions. The details of the normal form calcula-
tions are shown in Appendix B and here we only state the main
results.
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For the flip bifurcation (t = 0) the first equation in (30) gives
the critical value

4 —2a
2—a(1-29’°

and the normal form calculations give the flow oscillations

fre = /Se(B — Bar) (=1 +dl2, (33)

where

ﬂcr = (32)

2 _ _ _ 2
5 — 3d% (e —2)[2 —a (1 —29)] . (34)
16aq[12(1 — &) + @2(3 — 4¢?)]

As the fixed point looses stability when S is increased the sign of
Sk determines the criticality of the bifurcation:

23
2q+«/§

< o < 2 = supercritical flip,

if0 <o <

243
2+ /3

which is demonstrated on the left panel of Fig. B.5 for different
values of the demand d and g = 1. Note that in order to keep
g constant we change ¢ parallel to d while keeping Iy = 8,[; =
1, fc = 1 constant; cf. (26).

For the Neimark-Sacker bifurcation (t = 1) eliminating ¢ from
the formulae (31) the critical value

Ss<0 = subcritical flip,
(35)

SF>O if

o
a(1+2q) —1’

can be obtained. On the other hand, eliminating 8 from (31) gives
the crossing angle

ﬁcr = (36)

2142
¢ = arccos(l — a(_—i—q)) (37)
2[a(1+2q) — 1]

The normal form calculations result in

fre = /Sns(B — Bar) cos(gt +0)+d/2, (38)
where

?[a(1+2q) — 1]
Sns = [ | (39)

202q[20q(1 +2q) —2q — 3]
Again, the sign of Sys determines the criticality of the bifurcation:

3+2q

2q(1+2q)
3+2q

2q(1 4+ 29)

where «q is the lowest possible value of « along the stability
boundary; see the second row of Fig. B.4. For ¢ > 1/2 it is given
by the location of the vertical asymptote of the Neimark-Sacker
curve, ie., g = 1/(1 + 2q), cf. (36). Eq. (40) is demonstrated on
the right panel of Fig. B.5 for different values of the demand d and
q=1.

Fig. B.6 summarizes the dynamics for the flip bifurcation (z =
0) and the Neimark-Sacker bifurcation (r = 1) whenq = 1 and
d = 1.Both subcritical and supercritical bifurcations are found and
the change between the two behaviors is marked by a star which
corresponds to the conditions (35) and (40). In both cases subcrit-
icality is observed for small values of « that changes into super-
criticality as « is increased. In the light gray region the fixed point
is globally stable while in the white region it is unstable. The dark

Sns <0 ifay <o < = subcritical NS,

(40)

Sns >0 ifa > = supercritical NS,

gray region is a bistable region, where both the fixed point and the
large amplitude oscillations are linearly stable and their domains
of attractions are separated by the stable manifold of the unsta-
ble oscillation. The boundaries of the bistable domain are given by
the linear stability boundary of the fixed point (red curve) and the
fold boundary of the oscillatory solutions (blue curve); see already
Figs. B.7 and B.9. Notice that for T = 1 the bistable domain is much
larger compared to the t = 0 case, which indicates that, apart from
increasing the domain of linear instability for the fixed point, the
delay also increases the bistable domain. To fully explore the global
behavior and its dependence on the delay r and the demand d we
use numerical continuation and simulation as explained below.

5.3. Global dynamics

In this section we show the details of the dynamical behavior
in the different shaded domains in Fig. B.6. We demonstrate the
fundamental differences between the global dynamics implied by
super- and subcritical bifurcations and highlight the effects of the
delay on nonlinear behavior. In particular, we present the bifurca-
tion diagrams for « = 1 where the bifurcations are supercritical
for botht = 0 and r = 1, and also for « = 1/2 where the bi-
furcations are subcritical. We fix ¢ = 1, that is, for the flip bifurca-
tion « = 1 implies B = 2/3 and « = 1/2 implies B, = 6/5;
see (32) and the left panel of Fig. B.6. For the Neimark-Sacker
bifurcation « = 1 implies B = 1/2 and @ = 1/2 implies
B = 1; see (36) and the right panel of Fig. B.6. To demonstrate
the global behavior, we also display the invariant orbits in state
space and show the time evolution of the flow for chosen sets of
parameters.

For T = O flip bifurcations take place and the arising branches
represent oscillations of period 2 (days). These states constitute
the fixed point of the double map H (I:I (¥)) (cf. (11)), which can be
computed by the numerical continuation package MATCONT [39].
The left and right columns of Fig. B.7 show the branches arising
from supercritical and subcritical flip bifurcations, respectively.
In each panel, the maximum and the minimum of the flow
oscillations are depicted as a function of the bifurcation parameter
B. Stable and unstable states are represented by solid and dashed
curves and the horizontal line at d/2 represents the fixed point.
The results of the analytical normal form calculations (33), (34)
are shown as black curves while colored curves are obtained
by numerical continuation. The analytical and numerical results
match very well in the vicinity of the flip bifurcation (black cross
at Ber).

In case of the supercritical bifurcation (left column) linear
stability of the equilibrium (8 < f.) implies global stability and
when the equilibrium is unstable (8 > f.), stable oscillations
appear whose amplitude increases with S. For large 3, the curves
exceed the horizontal lines at 0 and 1 which indicate the physically
relevant domain for the flow. (By enforcing explicit flow constraint
in the model one may ensure that the flow stays between
these lines.) In case of subcritical bifurcation (right column), the
unstable branches of oscillations fold back (black star at Ss,;,) and
the oscillations become stable. This leads to three domains of
qualitatively different dynamics. For 8 < Bsup the fixed point is
globally stable while for 8 > f the fixed point is unstable and
the large-amplitude oscillations are globally stable. For Bgp <
B < B bistability is observed where the stable fixed point
and the stable large-amplitude oscillations coexist with unstable
oscillations. Depending on the initial conditions the system may
approach the fixed point or the large-amplitude oscillations. Their
domains of attraction are separated by the stable manifold of the
unstable state.

The different rows in Fig. B.7 correspond to different values of
the demand d while ¢ = 1 is kept fixed. In particular, we chose
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# = d* while fixing Iy = 8,1; = 1, f. = 1; cf. (26). One may ob-
serve that the fixed point is located at d/2 (see (24)) and that the
amplitude is also proportional to d (see (33), (34)). The flip bifur-
cation point (cross at 8 = B.;) does not move when changing d as
q is kept fixed, cf. (32). Moreover, the fold bifurcation point (star
at f = Bsup) does not move significantly with d. Such invariance is
observed for the entire subcritical regime 0 < @ < 2+/3/(2g++/3)
(cf. (35)) which means that the chart shown in the left panel of
Fig. B.6 is approximately the same for all d.

In order to demonstrate the time evolution of the system when
it undergoes super- or subcritical flip bifurcation, we marked
the points Ay, By, C1, Dy in the middle panels of Fig. B.7. Fig. B.8
displays the corresponding trajectories in state space (cq, f;) on the
left and shows the time evolution of the flow f; on the right. The
initial flow f; ¢ is chosen as explained below and we use f, o =
d — fio,cio = C(fio),i = 1, 2. In the supercritical case, point
Ay is at B = 0.6 that is in the region where the fixed point is
globally stable while By is at 8 = 0.75 that is in the region where
oscillations are globally stable. In both cases f; o = 0.6 is selected
and the simulation results are shown in the corresponding panels
of Fig. B.8: for A; the system approaches the fixed point while for
B, it approaches oscillations of period-2 days. (The attractors are
marked by blue circles in state space.) In the subcritical case, both
points C; and D, are chosen for the same parameter 8§ = 1.1in the
bistable region, so they only differ in initial conditions: for point
C; we choose f1 o = 0.6319 while for D; we have f; o = 0.6320.
The corresponding numerical simulations in Fig. B.8 stay close
to the unstable orbit (red triangle) before approaching the stable
fixed point or the stable large-amplitude period-2 oscillations
(blue circles). This demonstrates the role of the unstable motion
in separating the domains of attractions of the stable motions.

For t = 1 Neimark-Sacker bifurcations occur and the cor-
responding branches represent oscillations with period close to
21 /¢ where ¢ is the crossing angle given by (37). Considering
q = 1fore = Tando = 1/2 we obtain ¢ = arccos(1/4) ~ 0.42w
giving the period 27t /¢ &~ 4.77 (days). As this is an irrational num-
ber the corresponding periodic motion becomes a torus in state
space (where one of the periods is 1 while the other is close to
27 /¢). To compute tori we adapt the Newton iteration scheme
developed in [40] for continuous-time systems. In particular, we
modify the interpolation that is used to create a more dense repre-
sentation of the torus so that, instead of interpolating in time, we
interpolate in state space. After calculating the torus for a given pa-
rameter 3, the result is used to initialize the Newton iterations for
nearby $-s. This way the branch of oscillations is computed.

The left and right columns of Fig. B.9 show the branches arising
from the supercritical and subcritical Neimark-Sacker bifurcations
(crosses at B ). The notation is the same as in Fig. B.7 and
indeed the analytical (black) curves given by (38), (39) match
the numerical ones (colored) in the vicinity of the critical point.
Note that the amplitude is still proportional to d. Again, in the
supercritical case, 8 < P and B > B correspond to regions
where the fixed point and the oscillations are globally stable,
respectively. In the subcritical case these regions are given by f <
Bsuwp and B > P, while bistability is observed for By, < B < B
Changing the demand d still does not change the location of the
fold bifurcation (star at 8 = PBsyp) significantly, and this holds for
all feasible g < o < (3 + 2q)/(2q(1 + 2q)); cf. (40). This makes
the right panel of Fig. B.6 (approximately) demand-independent.

To observe the main difference caused by the delay we marked
the points A,, B,, C3, D, in the middle panels of Fig. B.9 and dis-
play the corresponding simulation results in Fig. B.10. The orbits
are shown in state space (f1, c1) (left column) together with the
time-profiles of f; (right column) and the same notation is used
as in Fig. B.8. For the initial conditions of the delayed model, we
set f1,—1 as explained below while considering f, _1 = d — f1,_1,

Dy

Fig. B.1. A transportation network with four nodes N = {O;, D;, 0,, D} and
ny = 5arcsA = {1, 2, 3, 4, 5}. Arrows represent the direction of the flow. There
are two origin-destination pairs W = {0;D;, 0,D,}, so that O1D; has n; = 3
routes: K; = {1—2, 3—4, 1—5 — 4}, while 0,D; has n, = 1route: K, = {5}.

¢i.—1 = C(fi—1), i = 1, 2 and generate the values for t = 0 using
the non-delayed model. Points A, and B, are located at § = 0.47
and B = 0.6 and we choose f; _; = 0.6. The corresponding
simulation results show the globally stable fixed point and glob-
ally stable oscillations. Notice that the geometry of the orbit in
state spaces and the time profiles (including the period) change
significantly compared to the non-delayed case (cf. By in Fig. B.8
with B, in Fig. B.10). Points C, and D, are located at 8 = 0.85 in
the bistable domain and only differ in initial conditions: choosing
fi,—1 = 0.6248 and f; _; = 0.6250 lead the system to the fixed
point and to the large-amplitude oscillations, respectively. Notice
that the geometry of the stable and unstable tori are much more
complicated than the period-2 orbits (cf. C; and D, in Fig. B.8 with
C, and D, in Fig. B.10) which lead to more complicated oscillations
in the time domain as well.

6. Conclusion and discussion

Day-to-day traffic dynamics were studied by incorporating
driver experience delays that arise due to the fact that many trav-
elers execute their trips in every few days. We proposed a non-
linear, discrete-time, deterministic model that explicitly includes
the nonlinear route choice probability function of drivers as well
as the driver experience delay. The stochastic user equilibrium is
a fixed point of this deterministic dynamical system. We analyzed
the dynamics at the linear and the nonlinear level by using stabil-
ity analysis, normal form calculations, numerical continuation and
simulation. The theoretical results were demonstrated on a simple
two-link network.

We found that the delay impacts the dynamics significantly
as it increases the linearly unstable domain in parameter space.
Moreover, we identified regions of bistability where, depending
on the initial conditions, the traffic system converges to the
equilibrium (with equal costs on used routes) or develops large-
amplitude oscillations. We showed that even having 1 day delay in
route selection increases the period of the oscillations significantly
(from 2 to appr. 5 days in our example). Moreover, the delay makes
the bistable behavior much more pronounced by enlarging the
corresponding domain in parameter space.

Our study demonstrates that linear design is not adequate
for transportation networks but nonlinear phenomena must
be taken into account, especially when delays are present. In
particular, examining the effects of initial conditions on the
dynamics provides an explanation about long period oscillations
in transportation networks that may appear and disappear from
time to time even without significant changes in the demands.
To avoid such phenomena, the designer has two major tools to
influence the nonlinear dynamics. One is to design the physical
structure of the road network and the corresponding maximal flow
fe, the zero flow cost Iy, and the cost range lyl; appropriately. On
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Fig.B.2. Bifurcation diagrams for supercritical and subcritical bifurcations showing
the minimum and the maximum of the oscillating states as the function of the
bifurcation parameter $. The horizontal line represents the fixed point. Stable states
are represented by solid curves while unstable states are represented by dashed
curves. Note that the difference between flip and Neimark-Sacker bifurcations
appears in the period as Tr = 2 and Tys > 2 (not visible in this figure).

the other hand, one may tune the driver parameters «, 8, 6, d
by introducing tolls as well as by providing feedback to the
drivers using advanced information systems. The goal is to create
systems which stay in the parameter domain with a globally stable
equilibrium.

The methodology presented in this paper provides a first
insight to the effects of driver experience delay on day-to-day traf-
fic dynamics and the approach can also be used to study the non-
linear dynamics of more complicated transportation networks. In
our future research, more complex network structures will be con-
sidered, link interaction in the cost function will be incorporated,
and additional information delays will be taken into account that
arise when travelers gather information about traffic conditions
from other travelers or through intelligent transportation systems
(ITS).

F;
route 1 dr -2
|
O D I
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|
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243
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Fig.B.3. Left: a two-route traffic network with one origin-destination pair. Middle: nonlinear cost function given by Eq. (22). Right: the network loading function given by

Eq. (23).
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Fig. B4. Linear stability charts depicting the stability curves in the («, 8) parameter plane for different values of parameters q and t. For each panel the shaded domain
corresponds to linearly stable equilibrium and the physically relevant domain is indicated by a dashed frame. The stable region is bounded by flip (black) and Neimark-Sacker
(red) bifurcation curves. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. B.5. The coefficients (34) and (39) are plotted as a function of « for different
demand values d as indicated when g = 1. The left and right panels visualize the
criticality of flip and Neimark-Sacker bifurcations, respectively. The bifurcations are
subcritical for S < 0 and supercritical for S > 0.
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Fig. B.6. Two dimensional bifurcation diagrams showing the global dynamics for
flip (left) and Neimark-Sacker (right) bifurcations whenq = 1and d = 1. The
change of criticality is indicated by a star that corresponds to the formulae (35) and
(40) and the vertical asymptotes in Fig. B.5. White, light gray and dark gray regions
correspond to unstable, globally stable and bistable dynamics for the fixed point.
The blue curve shows the location of fold bifurcations along the branches of the
oscillations, cf. Figs. B.7 and B.9. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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Appendix A. Proof of Theorem 1

The eigenvalues of the matrixj in (13) can be obtained by
solving

det[ki —j]
r+a—1l 0 0 o 0 —ajc
(=D  (+p—DI 0 0 0 —apJrlc
0 —1 A0 0 0
0 0 -1 Al 0 0
= det
o -1 . 0 0
L o 0 0 o -1 ) B
=o. (A1)
One may exploit that the determinant of the block matrix
~ A B
P= [c D} (A.2)

can be calculated as

det[P] = det[D] det[A — BD™C], (A3)

o=1.0 o=0.5
1852 185 =
1 e i e
1 1}
0.25 0.25 ——
-0.35 -0.35 e
0.45 0.85 1.25 0.45 0.85 1.25
B B
1.85 1.85
d=1.0 f d=1.0
1 1
1 1}
A, FTB
0.5 Sed - 05
0 . o} R
-0.35 -0.35 —
0.45 0.85 1.25 0.45 0.85 1.25
B B
1.85———
A =1
1 .
0.75
0 .
-0.35
0.45 0.85 1.25 0.45 0.85

B

Fig. B.7. Super- and subcritical flip bifurcations shown on the left and right,
respectively, for different values of « and d as indicated while ¢ = 1and t = 0.The
horizontal line at d/2 represents the fixed point while the other curves represent
the minima and maxima of oscillations. Stable and unstable solutions are shown
as solid and dashed curves. Black curves are the results of analytical normal form
calculations while colored curves are obtained by numerical continuation. The flip
bifurcations are marked by crosses while fold bifurcations are marked by stars. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

if D is invertible. Partitioning the matrix in (A.1) such that A is
chosen to be the 2n4 x 2n, matrix at the top left corner and
recognizing that

— ll O —_
A
1 1
LY
1 1 1
p'=| = =l ;I , (A4)
1 1 1 1
I BEERR) Y B B

formula (14) can be derived.

If JrJc is diagonalizable then there exist n, linearly independent
(na-dimensional) eigenvectors that can be used as the columns of
a transformation matrix T to obtain

diag[y;] = T~ 'JelcT, (A5)
where y; is the ith eigenvalue of JgJc. Using this and the identity
det[ABC] = det[A] det[B] det[C], (A6)

one can derive (15) from (14). We remark that if JgJc is not
diagonalizable, then the above transformation leads to a Jordan
normal form which still allows a calculation of eigenvalues but the
algebraic calculations become more involved.
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Fig. B.8. Simulation results corresponding to the points Aq, By, C;, D; marked in
the middle panels of Fig. B.7. Trajectories are shown in the space (f;, c;) on the
left where stable and unstable invariant orbits are marked as blue circles and
red triangles, respectively. The time evolution of f; is shown on the right. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Appendix B. Normal form calculations

As mentioned in the main text, using a set of nonlinear coor-
dinate transformations one may derive low-dimensional normal
form equations that govern the dynamics of the high-dimensional
system. Here we provide some insight into how this applies to the
two-route transportation network (ny = n,, = 2)discussed in Sec-
tion 5; see [41] for more technical details. In this case the subspace
defined by the flow conservation constraint f; + f, = d is invari-
ant. Moreover, the network loading function (23) only depends on
the cost difference c; — c,. These allow us to reduce the dimen-
sion of the state space by 2 + 7 before performing the normal form
calculations.

Thus, for t = 0 the dimension of the system reduces to (2 +
7) X (ng—1) = 2 and this has to be projected to a one-dimensional
invariant manifold corresponding to the flip bifurcation. This yields
the normal form

Eri = AP —(BE, (B.1)
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p
1.85 1.85
d=1.0 d=1.0
fl ‘f 1

"0.45 0.85 1.25 0.45 0.85 1.25
B
1.85 1.85
d=1.5 =1.
f, 5] a=1s
1 Apo ': DR SUREE
————————————— [———— = = =
0.75 0.75 7
: 7%
M o b S
-0.35—< -0.35 -
0.45 0.85 5 1.25 0.45 0.85 1.25

Fig. B.9. Super- and subcritical Neimark-Sacker bifurcations shown on the left
and right, respectively, for different values of & and d as indicated while ¢ = 1
and t = 1. The same notation is used as in Fig. B.7 except that crosses indicate
Neimark-Sacker bifurcations. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

where & € R and 8 € R is the bifurcation parameter so that
ABo) = —1, ie, the linear part gives the eigenvalues —1 at the
critical case 8 = f.. In the vicinity of the bifurcation the oscilla-
tions can be written as

djA]
b= |~ (B = ) (-1 (2)
N 8B “ ' '
In this formula ‘fjl—,’;'mﬂ determines whether stability is lost or
gained when increasing 8 through f.. In our case

[2 -1 —29)]

dial|
fo A0 —a) +a?2(1+29)

dp
which means stability is lost when increasing S that corresponds

to the linear stability charts in Fig. B.4. Moreover, the criticality of
the bifurcation is given by §(8,;) so that

(B.3)

8(Be) > 0 = subcritical, (54)
8(Ber) < 0 = supercritical. -
In our case
—16aq[12(1 — @) + (3 — 44¢?)
8(,3cr) - [ ] (B.S)

32 (e — 2)[4(1 — @) + &2(1429)]

That is, using (B.2), (B.3), (B.4), (B.5) and transforming the system
back to the original variables one may derive (33), (34), (35).

For T = 1 the dimension of the system reduces to (2 4+ 7) X
(ny — 1) = 3 and this has to be projected to the two-dimensional
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Fig. B.10. Simulation results corresponding to the points A;, B, C;, D, marked in
the middle panels of Fig. B.9. Trajectories are shown in the space (fi, ¢1) on the left
while the time evolution of f; is shown on the right. The same notation is used as in
Fig. B.8.

invariant manifold corresponding to the Neimark-Sacker bifurca-
tion in order to obtain the normal form

e+ = r(B) cosy(B) siny(B)||&
Negr | —siny(B) cosy(B) || ne

cosy(B)  siny(B)
+ & +np) |:—sin1//(ﬁ) cosw(ﬁ)]
8B «kB)||&
x [_Kw) 6(;3)] [m]’ oo

where &, n; € R, 7(Bo) = 1,and ¥ () = ¢ € (0, 7), ie, the
linear part gives the eigenvalues ¥ (8.) = exp(xi¢) at 8 = B
Close to the bifurcation the oscillations can be written as

gt " e Cos ¢t
= . , B.7
[m - ( S B FD | g (B.7)
where again W | g determines on which side of B, the system is

stable while §(f;) gives the criticality as in (B.4). In our case

dpl| _e(i+29) -1
dp 2

d\M

> 0, (B.8)

Ber

and
2q[2aq(1 +2q) — 29 — 3]
d[a(142q) — 1]

Thus, (B.7), (B.8), (B.4), (B.9) yields (38), (39), (40) for the physical
variables.

5(Ber) = —— (B.9)
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