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ABSTRACT
In this paper, we investigate the nonlinear dynamics of con-

nected vehicle systems. Vehicle-to-vehicle (V2V) communication
is exploited when controlling the longitudinal motion of a few ve-
hicles in the traffic flow. In order to achieve the desired system-
level behavior, the plant stability and the head-to-tail string sta-
bility are characterized at the nonlinear level using Lyapunov
functions. A motif-based approach is utilized that allows modu-
lar design for large-scale vehicle networks. Stability analysis of
motifs are summarized using stability diagrams, which are vali-
dated by numerical simulations.

1 INTRODUCTION
Wireless vehicle-to-vehicle (V2V) communication tech-

nologies can be utilized to monitor distant vehicles beyond the
line-of-sight in vehicular traffic. The traditional way of utilizing
V2V communication is to start with a designated leading vehicle
and then add following vehicles that monitor the motion of the
vehicle immediately ahead by radar and also communicate with
the leader. This setup is often referred to as cooperative adaptive
cruise control (CACC) [1,2]. Creating such systems may be pos-
sible for a few vehicles, but such design is not scalable for large
systems due to the limited range of the wireless communication
and the cost of sensors required for every vehicle. Moreover,
long tightly-controlled platoons may severely limit modularity
of the entire transportation system.

To solve this issue, the concept of connected cruise control
(CCC) was proposed [3–6], which relies on the ad-hoc wireless

∗Address all correspondence to this author.

V2V communication and does not require a designated leader.
CCC can be used to assist human drivers or to automatically reg-
ulate the longitudinal motion of vehicles. CCC also allows one
to incorporate in a platoon with vehicles that are not equipped
with radar and/or communication devices. When CCC vehicles
are mixed into the flow of non-CCC vehicles, a connected ve-
hicle system (CVS) arises. By appropriately designing the con-
nectivity structure and the control gains, it is possible to ensure
smooth flow when stop-and-go oscillations develop for a chain
of human-driven vehicles. However, allowing more flexibility
in the network architecture increases the complexity of analysis
and design of large-scale CVS. To handle this problem, a motif-
based approach was proposed in [3, 7] that is based on the idea
that connected vehicle networks can be constructed using net-
work motifs: simple networks where a CCC vehicle at the tail
monitors the motion of its immediate predecessor and the mo-
tion of a distant vehicle; see already Fig. 2. By analyzing the
dynamics of individual motifs and characterizing the effects of
interactions between motifs may allow one to modularly design
CVS that are scalable and robust against the variations in the
connectivity structure.

Plant stability and string stability can be used to evaluate the
performance of vehicle platoons. Plant stability means that, if
the head vehicle moves at a constant speed, all following vehi-
cles approach that speed. String stability characterizes the ability
of a platoon in attenuating velocity perturbations arising from ve-
hicles ahead. In this paper, we compare the velocity perturbation
of the head vehicle and the tail vehicle, and thus evaluate the
head-to-tail string stability. Plant stability and the string stability
of motifs were analyzed in [3,7] based on linearized models, but
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FIGURE 1. Communication network where a CCC vehicle (at the
tail) utilizes the information received from multiple vehicles ahead. The
headway and velocity of vehicle j are denoted by h j and v j , respective-
ly, where j = p, . . . , i. αi, j and βi, j are control gains corresponding to
the link between vehicle i and vehicle j.

such analysis is limited to the close vicinity of the equilibrium.
It was shown in [8] that due to nonlinearities, small perturbations
may decay while large perturbations may be amplified for certain
parameter combinations. In this paper, we directly investigate the
nonlinear dynamics of motifs and hence overcome the limitations
caused by linearized models. The Lyapunov approach is applied
to seek conditions for plant stability and for head-to-tail string
stability at the nonlinear level. Stability conditions for simple
motifs are summarized using stability diagrams in the plane of
control gains.

2 DYNAMICS AND STABILITY OF CONNECTED VEHI-
CLE SYSTEMS
In this section, we present dynamic car-following models for

CCC vehicles and for network motifs that consist of a chain of
non-CCC vehicles and a CCC vehicle at the tail. The mathemati-
cal definition of plant stability and head-to-tail string stability are
also given to evaluate the performance of vehicle networks.

2.1 Dynamics of Connected Cruise Control
In Fig. 1, the CCC vehicle i (at the tail) monitors the mo-

tion of vehicles j = p, . . . , i− 1 by using V2V communication.
Here h j denotes the distance between vehicle j−1 and vehicle j,
called “headway”, and v j represents the velocity of vehicle j. We
assume that the V2V communication provides information about
positions and velocities of other vehicles so that the correspond-
ing headways and relative velocities can be calculated. For sim-
plicity, the delays for receiving information are neglected in this
paper. Then, based on [3], the CCC vehicle can be modelled by

ḣi =vi−1 − vi ,

v̇i =
i−1

∑
j=p

αi, j

(
Vi

(
1

i− j

i

∑
k= j+1

hk

)
− vi

)
+

i−1

∑
j=p

βi, j
(
v j − vi

)
,

(1)

where αi, j and βi, j are control gains for headways and relative
velocities, respectively. Note that i > j since we assume that
V2V information is only utilized upstream. When there is no
connection between vehicle j and vehicle i, we have αi, j = βi, j =
0. Thus, model (1) can be also used for non-CCC vehicles by
setting αi, j = βi, j = 0 for all j < i−1.

The range policy Vi(h) gives the desired velocity for vehi-
cle i, and the quantity 1

i− j ∑i
k= j+1 hk represents the average head-

way between vehicle i and vehicle j, allowing one to compare
desired velocities obtained for different j’s. We assume that all
vehicles use the same range policy function, i.e., Vi(h) = V (h)
for all i. And we use the range policy function

V (h) =


0 , if h ≤ hst ,
vmax

2

[
1− cos

(
π h−hst

hgo−hst

)]
, if hst < h < hgo ,

vmax , if h ≥ hgo .

(2)

The physical meaning of (2) is as follows. When the headway
is below a threshold h ≤ hst, the vehicle tends to stop for safety
reasons. For large headways h ≥ hgo, the vehicle aims to main-
tain the preset maximum velocity vmax. Between hst and hgo, the
desired velocity monotonically increases with the headway. In
this paper, we use the following parameter values

hst = 5 [m] hgo = 35 [m] , vmax = 30 [m/s] , (3)

which corresponds to the data collected in real traffic [8].
Considering a platoon of n+ 1 vehicles where all vehicles

use that same range policy, model (1) ensures the the existence
of uniform flow equilibrium

hi(t)≡ h∗ , vi(t)≡ v∗ =V (h∗) , i = 0, . . . ,n , (4)

which is independent of platoon length, connectivity structures,
and control gains.

2.2 Motifs for Connected Vehicle Systems
To decrease the complexity of stability analysis for con-

nected vehicle networks, a motif-based approach was proposed
in [3, 7]. The key idea is that vehicle networks can be construct-
ed from network motifs and analyzing these motifs allows one
to modularly design CVS so that the design remains scalable for
large systems. Motif n is depicted in Fig. 2(a), where the CCC
vehicle n at the tail utilizes data about the motion of vehicle n−1
and vehicle 0, while the other vehicles j = 1, . . . ,n−1 only react
to the motion of the vehicle immediately ahead.

For simplicity, we assume that the control gains are non-
negative and also are identical for links of same length, i.e.,
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αi, j = αi− j ≥ 0 and βi, j = βi− j ≥ 0. Applying (1), the governing
equations for motif n become

ḣ j = v j−1 − v j ,

v̇ j = α1
(
V (h j)− v j

)
+β1(v j−1 − v j) ,

ḣn = vn−1 − vn ,

v̇n = α1
(
V (hn)− vn

)
+β1(vn−1 − vn)

+αn

(
V
(

1
n

n

∑
k=1

hk

)
− vn

)
+βn(v0 − vn) ,

(5)

for j = 1, . . . ,n−1.
Define the perturbations about the uniform flow equilibrium

(4) such that

h̃i = hi −h∗ , ṽi = vi − v∗ = vi −V (h∗) , i = 0, . . . ,n . (6)

Substituting (6) into (5) results in

˙̃h j = ṽ j−1 − ṽ j ,

˙̃v j = α1
(
V (h̃ j +h∗)−V (h∗)− ṽ j

)
+β1(ṽ j−1 − ṽ j) ,

˙̃hn = ṽn−1 − ṽn ,

˙̃vn = α1
(
V (h̃n +h∗)−V (h∗)− ṽn

)
+β1(ṽn−1 − ṽn)

+αn

(
V
(

1
n

n

∑
k=1

h̃k +h∗
)
−V (h∗)− ṽn

)
+βn(ṽ0 − ṽn) ,

(7)

for j = 1, . . . ,n−1.
Generally, the headway can be any positive value, i.e., hi ∈

R+ for i = 1, . . . ,n, but the domain of our interest is the normal
operating domain D = {hst < hi < hgo} that covers the whole
velocity domain 0 < v < vmax; cf. (2). It follows that the equilib-
rium headway h∗ ∈ D . Then, based on the mean value theorem,
there exist variables ξ j,ηn ∈ D such that

V (h̃ j +h∗)−V (h∗) =V ′(ξ j)h̃ j ,

V
(

1
n

n

∑
k=1

h̃k +h∗
)
−V (h∗) =V ′(ηn

)1
n

n

∑
k=1

h̃k ,
(8)

where the prime denotes differentiation with respect to h, and
ξ j, ηn ∈ D depend on headway perturbations such that

ξ j = hst +
hgo −hst

π
K(h̃ j) ,

ηn = hst +
hgo −hst

π
K
( n

∑
k=1

h̃k

)
,

(9)

1 1,a b 1 1,a b 1 1,a b...

,
n n

a b

(a) Motif n

1 1,a b

No. n No. (n-1) No. 0

No. 0No. 1

(b) Motif 1

1 1,a b 1 1,a b
(c) Motif 2

2 2,a b

No. 0No. 1No. 2

FIGURE 2. Network motifs with the CCC vehicle at the tail. Control
gains are shown along the links.

where

K(h̃) =

 J(h̃) , if h̃ ∈
(

hst −h∗, hst+hgo−2h∗

2

]
,

π − J(h̃) , if h̃ ∈
(

hst+hgo−2h∗

2 , hgo −h∗
)
,

(10)

where

J(h̃) = arcsin
(

2(hgo −hst)
(
V (h̃+h∗)−V (h∗)

)
πvmaxh̃

)
, (11)

which can be obtained from (2). According to (3), we also have

V ′(ξ j) ,V ′(ηn) ∈
(
0,π/2

]
, ∀ξ j,ηn ∈ D . (12)

Substituting (8) into (7) yields

˙̃h j = ṽ j−1 − ṽ j ,

˙̃v j = φ1(ξ j)h̃ j −κ1ṽ j +β1ṽ j−1 ,

˙̃hn = ṽn−1 − ṽn ,

˙̃vn = φ1(ξn)h̃n +φn(ηn)
n

∑
k=1

h̃k − (κ1 +κn)ṽn +β1ṽn−1 +βnṽ0 ,

(13)

for j = 1, . . . ,n−1, where

φm(h) =
αmV ′(h)

m
, κm = αm +βm , (14)

for m = 1, . . . ,n. System (13) can be written in the form

Ẋn = An(Ξn)Xn +Bnṽ0 ,

y = ṽn =CnXn ,
(15)
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where Ξn = [ξ1, . . . ,ξn,ηn]
T ∈ Dn+1 and

Xn =
[

xT
1 · · · xT

n
]T

, An(Ξn) = In ⊗D+Gn ⊗E +H ,

Bn =
[

1 β1 0 · · · 0 βn
]T

, Cn =
[

0 · · · 0 1
]
.

(16)

Here ⊗ denotes the Kronecker product, In is an n-dimensional
identity matrix, and other matrices are given by

xi =

[
h̃i
ṽi

]
, D =

[
0 −1

φ1(ξ j) −κ1

]
, E =

[
0 1
0 β1

]
,

Gn = [gi j]n×n , gi j =

{
1, if i = j+1 ,
0, otherwise ,

H = [hi j]2n×2n , hi j =

φn(ηn) , if i = n and j = 2k+1 ,
−κn , if i = j = 2n ,
0 , otherwise ,

(17)

for k = 0, . . . ,n− 1. Notice that An(Ξn) depends on the states
h̃1, . . . , h̃n (see (9)). We emphasize that (15) is equivalent to
the original nonlinear model (7) since no approximation is used
through the derivation.

2.3 Stability of Connected Vehicle Systems
Plant stability and head-to-tail string stability are used to e-

valuate the performance of connected vehicle systems. Plant sta-
bility means that, when the head vehicle moves with a constant
speed, perturbations in the states of following vehicles decay to
zero [9]. That is, ṽ0 ≡ 0 in (7) or (15) leads to

h̃i, ṽi → 0 , as t → ∞ , i = 1, . . . ,n . (18)

Head-to-tail string stability requires that the disturbances
arising in the velocity of head vehicle are attenuated by the tail
vehicle [3]. There are a variety of ways to characterize the head-
to-tail string stability depending on the disturbance signals and
the norm used. In this paper, the platoon is said to be head-to-tail
string stable if, for an arbitrary sinusoidal perturbation arising in
the velocity of the head vehicle, the magnitude of the steady-state
perturbation in the velocity of the tail vehicle is smaller than that
of the head vehicle. That is, suppose that ṽ0(t) = asin(ωt +ϕ),
where a,ϕ ∈ R and ω ∈ R+ are all constants, then the platoon is
head-to-tail string stable if

∥ṽns∥∞ < ∥ṽ0∥∞ , (19)

where the subscript “s” denotes steady-state response after tran-
sients and the infinite-norm ∥ṽ js∥∞ = supt>0 |ṽ js(t)| gives the

peak value of |ṽ js(t)|. Note that head-to-tail string stability al-
lows that disturbances generated by the head vehicle 0 may be
amplified by some vehicles in the platoon but finally attenuat-
ed when reaching the tail vehicle n. This definition also allows
one to compare the dynamics of platoons of the same length but
different connectivity structures.

At the linear level, plant stability and head-to-tail string sta-
bility can be investigated by using the transfer function Gn,0(s) =
Ṽn(s)/Ṽ0(s), where Ṽi(s) denotes the Laplace transformation of
ṽi(t). The plant stability (18) is equivalent to that all poles of
Gn,0(s) are in the left-half complex plane. On the other hand, the
head-to-tail string stability (19) is guaranteed if the magnitude
of transfer function is smaller than 1 for all positive frequencies,
i.e., |Gn,0(jω)| < 1 for ∀ω ∈ R+, where j2 = −1. However, the
linear stability results may not be used to characterize the behav-
ior of the nonlinear system. To handle this problem, we directly
analyze the nonlinear dynamics of vehicle networks using Lya-
punov techniques. For the sake of simplicity, we focus on the
stability analysis of simple motifs at the nonlinear level.

3 STABILITY ANALYSIS OF MOTIF 1
In this section, we study the nonlinear dynamics of motif 1

(see Fig. 2(b)), which represents a simple predecessor follow-
ing configuration where the following vehicle only reacts to the
motion of the vehicle immediately ahead. Based on (5), the gov-
erning equations for motif 1 are given by

ḣ1 = v0 − v1 ,

v̇1 = α1
(
V (h1)− v1

)
+β1(v0 − v1) .

(20)

Substituting (6) into (20) yields the perturbation model

˙̃h1 = ṽ0 − ṽ1 ,

˙̃v1 = α1
(
V (h̃1 +h∗)−V (h∗)− ṽ1

)
+β1(ṽ0 − ṽ1) ,

(21)

which can be written in the following form

ẋ1 = A1(ξ1)x1 +B1ṽ0 ,

ṽ1 =C1x1 ,
(22)

where

x1 =

[
h̃1
ṽ1

]
, A1(ξ1) =

[
0 −1

φ1(ξ1) −κ1

]
,

B1 =

[
1
β1

]
, C1 =

[
0 1

]
,

(23)

cf. (15)–(17). The form of the models (20), (21), and (22) corre-
spond to the general forms (5), (7) and (15), respectively.
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3.1 Plant Stability of Motif 1
When analyzing the plant stability, we neglect the perturba-

tions in the velocity of the head vehicle, i.e., ṽ0(t) ≡ 0 in (22).
Then, based on the Lyapunov theory [10], the system is plant
stable if there exists a Lyapunov function

L = xT
1 Px1 > 0 , L̇ = xT

1
(
(A1(ξ1))

TP+PA1(ξ1)
)
x1 < 0 . (24)

Here P is a positive definite matrix. That is

P =

[
p1 p2
p2 p3

]
, p1 > 0 , p3 > 0 , p1 p3 − p2

2 > 0 . (25)

To ensure L̇ < 0 in (24), the matrix (A1(ξ1))
TP+PA1(ξ1) has to

be negative definite for ∀ξ1 ∈ D . This is equivalent to that the
coefficients of the characteristic polynomial

det
(
λ I2 −

(
(A1(ξ1))

TP+PA1(ξ1)
))

= λ 2 + γ1λ + γ0 , (26)

are positive for ∀ξ1 ∈ D , that is,

γ1 = 2
(
1−φ1(ξ1)

)
p2 +2κ1 p3 > 0 ,

γ0 =−p2
3
(
φ1(ξ1)

)2
+2

(
p1 p3 −2p2

2 −κ1 p2 p3
)
φ1(ξ1)

− (p1 +κ1 p2)
2 > 0 .

(27)

The equivalence above is because (A1(ξ1))
TP+PA1(ξ1) is sym-

metric, and thus there exists an orthonormal matrix Z(ξ1) such
that (A1(ξ1))

TP + PA1(ξ1) = ZT(ξ1)∆(ξ1)Z(ξ1) where ∆(ξ1)
is a diagonal matrix. Substituting this in (24), we have L̇ =(
Z(ξ1)x1

)T∆(ξ1)
(
Z(ξ1)x1

)
. As a result, L̇ is negative definite

if ∆(ξ1) is Hurwitz for ∀ξ1 ∈ D .
For positive control gains, we have φ1(ξ1) > 0; cf. (14).

Thus, to ensure γ0 > 0 for ∀ξ1 ∈D , we must have (p1+κ1 p2) =
0. Considering this together with (14) and (25), we get

p1 =−κ1 p2 > 0 , p2 < 0 , κ1 p3 >−p2 . (28)

Plugging (14) and the first equation of (28) into (27) yields(
p3 −V ′(ξ1)p2

)
α1 + p2 + p3β1 > 0 ,(

−V ′(ξ1)p2
3 −4p2 p3

)
α1 −4p2

2 −4p2 p3β1 > 0 .
(29)

To ensure these inequalities, the minima of the left hand sides
must be positive. Considering (12), we obtain

p3α1 + p2 + p3β1 > 0 ,(
−

π p2
3

2
−4p2 p3

)
α1 −4p2

2 −4p2 p3β1 > 0 ,
(30)

which results in

α1 +β1 +
p2

p3
> 0 ,

(
π p3

8p2
+1

)
α1 +β1 +

p2

p3
> 0 . (31)

Choosing p1, p2, p3 according to (28) and using control gains
α1,β1 given by (31), one can guarantee (27). Hence condition
(24) is satisfied, which implies that x1 → 0 in (22) as t → ∞, i.e.,
h̃1 → 0 and ṽ1 → 0.

Observing the stable domain given by (31) in the (α1,β1)-
plane for different values of p2/p3, we obtain a sufficiently large
stable domain when p2/p3 = −π/8. In particular, we choose
p2 = −π and p3 = 8 and draw the corresponding plant stable
domain in Section 5.

3.2 String Stability of Motif 1
As mentioned in Section 2, when evaluating the string sta-

bility of motif 1, we assume that the perturbation in the velocity
of the head vehicle is a sinusoidal signal such that

ṽ0(t) = r0 cos(ωt)+ s0 sin(ωt) = asin(ωt +ϕ) , (32)

where r0,s0 ∈ R, ω ∈ R+ are constants while a =
√

r2
0 + s2

0 and
ϕ = arctan(r0/s0) denote the amplitude and phase, respectively.
It follows that

∥ṽ0∥∞ = sup
t≥0

|ṽ0(t)|=
√

r2
0 + s2

0 . (33)

Note that ṽ0(t +T ) = ṽ0(t) where the period is T = 2π/ω .
Here we show that, when the sufficient condition for plant stabil-
ity (24) is ensured, the steady-state perturbations of vehicle 1 are
also T -periodic. Considering t = t + T in (21) and subtracting
(21) from the result, we obtain

˙̃h1(t +T )− ˙̃h1(t) =−
(
ṽ1(t +T )− ṽ1(t)

)
,

˙̃v1(t +T )− ˙̃v1(t) = α1
(
V (h̃1(t +T )+h∗)−V (h̃1(t)+h∗)

)
−κ1

(
ṽ1(t +T )− ṽ1(t)

)
.

(34)

When vehicles travel in the normal operating domain, i.e.,
h̃1(t)+h∗ ∈ D , we can utilize the mean value theorem and state
that there exists a variable ψ ∈ D satisfying

V
(
h̃1(t +T )+h∗

)
−V

(
h̃1(t)+h∗

)
=V ′(ψ)

(
h̃1(t +T )− h̃1(t)

)
,

(35)
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cf. (8)–(11). Substituting (35) into (34), we can write the result
in the form

ė(t) = A1(ψ)e(t) , (36)

where

e(t) = x1(t +T )− x1(t) , A1(ψ) =

[
0 −1

φ1(ψ) −κ1

]
, (37)

and x1 is defined in (17). Note that A1(ψ) in (37) is equivalent to
A1(ξ1) in (23) in terms of bounds for their elements. As result,
if the plant stability condition (31) is satisfied, one can use the
same matrix P as in (24) to define the Lyapunov function such
that, for ∀ψ ∈ D , the following condition holds

L = eTPe > 0 , L̇ = eT((A1(ψ))TP+PA1(ψ)
)
e < 0 . (38)

This implies that e(t) → 0 as t → ∞. That is, the steady-state
error is es(t) = 0 yielding x1s(t +T ) = x1s(t).

Since x1s(t) is T -periodic, it can be represented by the Fouri-
er series such that

x1s(t) =
∞

∑
k=1

r1,k cos(kωt)+ s1,k sin(kωt) , (39)

where r1,k,s1,k ∈ R2 are constant vectors. Applying trigonomet-
ric identities, one may obtain

x1s(t) = r1(t)cos(ωt)+ s1(t)sin(ωt) , (40)

where the vectors r1(t),s1(t) ∈ R2 are T -periodic and may con-
tain terms such as sin(kωt) and cos(kωt) for k = 1, . . . ,∞.

Substituting (32) and (40) into (22), and collecting terms ac-
cording to sin(ωt) and cos(ωt), we obtain

χ̇1 = A1(ξ1)χ1 +B1u ,

ṽ1s(t) =
[

cos(ωt) sin(ωt)
]
C1χ1

=C1r1(t)cos(ωt)+C1s1(t)sin(ωt)

= Λ1(t)sin
(
ωt +θ1(t)

)
,

(41)

where

χ1 =

[
r1
s1

]
, u =

[
r0
s0

]
, A1(ξ1) =

[
A1(ξ1) −ωI2

ωI2 A1(ξ1)

]
,

B1 = I2 ⊗B1 , C1 = I2 ⊗C1 , θ1 = arctan
(

C1r1

C1s1

)
,

Λ1 =

√(
C1r1

)2
+
(
C1s1

)2
=

√
(C1χ1)T(C1χ1) ,

(42)

where A1(ξ1),B1,C1 are given by (23). The quantity Λ1(t) gives
an upper bound for v1s since ∥ṽ1s∥∞ ≤ ∥Λ1∥∞ based on the sec-
ond equation in (41). We assume that Λ1(t) is a continuous and
smooth function of time t such that its supremum occurs when

Λ̇1(t) =
(C1χ1)

T(C1χ̇1)

2
√
(C1χ1)T(C1χ1)

= 0 . (43)

There are three possible solutions for (43) that are χ̇ = 0,
C1χ1⊥C1χ̇1, and C1⊥χ̇1. However, for the weak nonlinearities
|V (n)(h)| ≤ πn

2×30n−1 (cf. (2) and (3)), we find that the supremum
always occurs at χ̇1 = 0. Substituting this into the first equation
of (41) yields χ1 = −(A1(ξ1))

−1B1u. Plugging this into (42)
leads to

∥Λ1∥∞ =

√(
C1(A1(ξ1))−1B1u

)T(C1(A1(ξ1))−1B1u
)
. (44)

The right hand side of (44) is continuous in terms of elements in
A1(ξ1), which are bounded for ∀ξ1 ∈ D ; cf. (12), (14), (23) and
(42). Thus, there exists a constant ξ ∗

1 ∈ D where ∥Λ1∥∞ reaches
its maximum such that

∥Λ1∥∞ ≤
√(

C1(A1(ξ ∗
1 ))

−1B1u
)T(C1

(
A1(ξ ∗

1 ))
−1B1u

)
=
√

Γ1,0(ω)
√

r2
0 + s2

0 =
√

Γ1,0(ω)∥ṽ0∥∞ ,
(45)

where the amplification ratio is given by

Γ1,0(ω) =
ω2β 2

1 +φ1(ξ ∗
1 )

2

ω4 +(κ2
1 −2φ1(ξ ∗

1 ))ω2 +φ2
1 (ξ ∗

1 )
. (46)

Since ∥ṽ1s∥∞ ≤ ∥Λ∥∞ ≤
√

Γ1,0∥ṽ0∥∞, the head-to-tail string sta-
bility (19) of motif 1 is ensured if Γ1,0(ω)< 1 for ∀ω ∈R+. This
is equivalent to that the difference between the denominator and
the numerator of (46) is always positive. That yields

ω2
(

ω2 +α1
(
α1 +2β1 −2V ′(ξ ∗

1 )
))

> 0 , ∀ω ∈ R+ . (47)

To guarantee that this inequality holds for ∀α1 > 0, one needs

α1 +2β1 −2V ′(ξ ∗
1 )> 0 , (48)

which implies that larger α1 or β1 are required when V ′(ξ ∗
1 ) in-

creases. In this sense, the worst-case scenario occurs when

ξ ∗
1 = 20 [m] , V ′(ξ ∗

1 ) = max
∀ξ1∈D

V ′(ξ1) = π/2 [1/s] , (49)
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cf. (2) and (12). Substituting (49) into (48) leads to

α1 +2β1 −π > 0 , (50)

which is a sufficient condition for the head-to-tail string stability
of motif 1 network. We remark that this condition is equivalent
to the string stability condition derived in [3] for the linearized
system in the most conservative case.

4 STABILITY ANALYSIS OF MOTIF 2
In case of motif 2, the CCC vehicle reacts to the motion of

the nearest two vehicles in front; see Fig. 2(c). The car-following
dynamics of motif 2 is governed by

ḣ1 = v0 − v1 ,

v̇1 = α1
(
V (h1)− v1

)
+β1(v0 − v1) ,

ḣ2 = v1 − v2 ,

v̇2 = α1
(
V (h2)− v2

)
+β1(v1 − v2)

+α2

(
V
(h1 +h2

2

)
− v2

)
+β1(v0 − v2) ,

(51)

cf. (5). Following (7)–(15), one can obtain the perturbation mod-
el of motif 2 in the form

Ẋ2 = A2(Ξ2)X2 +B2ṽ0 ,

ṽ2 =C2X2 ,
(52)

where Ξ2 = [ξ1,ξ2,η2]
T ∈ D3 and

A2(Ξ2) =

[
A1(ξ1) 02×2

A2,1(η2) A2,2(ξ2,η2)

]
, B2 =

[
B1

B2,2

]
,

C2 =
[

01×2 C2,2
]
.

(53)

Here A1(ξ1),B1 are given by (23) while other matrices are

A2,1(η2) =

[
0 1

φ2(η2) β1

]
, B2,2 =

[
0
β2

]
, C2,2 =

[
0 1

]
,

A2,2(ξ2,η2) =

[
0 −1

φ1(ξ2)+φ2(η2) −κ1 −κ2

]
.

(54)

4.1 Plant Stability of Motif 2
Since motif 2 is plant unstable if vehicle 1 loses plant sta-

bility, we assume that the plant stability of vehicle 1 has been

ensured by (31). Thus, we only need to investigate the plant sta-
bility of the CCC vehicle 2. Its motion is governed by

ẋ2 = A2,2(ξ2,η2)x2 +A2,1(ξ2)x1 +B2,2ṽ0 ,

ṽ2 =C2,2x2 ,
(55)

which can be obtained from (52) while matrices A2,1(ξ2),
A2,2(ξ2,η2), B2,2 and C2,2 are given by (54).

When studying the plant stability of vehicle 2, we neglect the
excitation arising from vehicle 0 and vehicle 1, i.e., ṽ0(t)≡ 0 and
x1(t) ≡ 0. Then, the plant stability of vehicle 2 can be ensured
by finding a Lyapunov function L = xT

2 Px2 > 0 such that

L̇ = xT
2
(
(A2,2(ξ2,η2))

TP+PA2,2(ξ2,η2)
)
x2 < 0 , (56)

for ∀ξ2,η2 ∈D . Since A2,2(ξ2,η2) in (54) is analogous to A1(ξ1)
given by (23), the plant stability conditions for vehicle 2 can be
obtained using (27) and (28) while replacing φ1(ξ1) by φ1(ξ2)+
φ2(η2), and κ1 by κ1 +κ2. Then, using (14), we obtain

α1 +β1 +α2 +β2 +
p2

p3
> 0 ,(

π p3

8p2
+1

)
α1 +β1 +

(
π p3

16p2
+1

)
α2 +β2 +

p2

p3
> 0 .

(57)

4.2 String Stability of Motif 2
Here, we show that the head-to-tail string stability can be

ensured by designing the dynamics of the CCC vehicle 2, even
when vehicle 1 is string unstable. Following the analysis for mo-
tif 1, it can be shown that, if the condition (57) holds, the si-
nusoidal perturbation ṽ0(t) in (32) leads to periodic steady-state
perturbations for the following vehicles with period T = 2π/ω .
That is,

x js(t) =
∞

∑
k=1

r j,k cos(kωt)+ s j,k sin(kωt)

= r j(t)cos(ωt)+ s j(t)sin(ωt) , j = 1,2 ,
(58)

where r j,k,s j,k ∈ R2 are constant vectors while the vectors
r j(t),s j(t) ∈ R2 are T -periodic and may contain terms like
sin(kωt) and cos(kωt) for k = 1, . . . ,∞; cf. (39), (40). When
analyzing the head-to-tail string stability of motif 2, we use the
model (52). Substituting (32) and (58) into (52) and collecting
terms according to sin(ωt) and cos(ωt) leads to

χ̇2 = A2(Ξ2)χ2 +B2u ,

ṽ2s(t) =
[

cos(ωt) sin(ωt)
]
C2χ2

=C2R2(t)cos(ωt)+C2S2(t)sin(ωt)

= Λ2(t)sin
(
ωt +θ2(t)

)
,

(59)
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where

χ2 =

[
R2
S2

]
, R2 =

[
r1
r2

]
, S2 =

[
s1
s2

]
,

A2(Ξ2) =

[
A2(Ξ2) −ωI4

ωI4 A2(Ξ2)

]
, B2 = I2 ⊗B2 , C2 = I2 ⊗C2 ,

Λ2 =

√(
C2R2

)2
+
(
C2S2

)2
=

√
(C2χ2)T(C2χ2) ,

θ2 = arctan
(

C2R2

C2S2

)
,

(60)

where A2(Ξ2), B2, C2 are given by (53). From the second equa-
tion of (59), we have ∥ṽ2s∥∞ ≤ ∥Λ2∥∞. Due to the weak nonlin-
earities, we again postulate that the supremum of Λ2 occurs at
χ̇2 = 0, leading to χ2 = (A2(Ξ2))

−1B2u. Substituting this in (60)
results in

∥Λ2∥∞ =

√(
C2(A2(Ξ2))−1B2u

)T(C2(A2(Ξ2))−1B2u
)
. (61)

Since ∥Λ2∥∞ is continuous in terms of the elements in A2(Ξ2),
which are bounded for ∀Ξ2 ∈ D3, there exist constants Ξ∗

2 ∈ D3

where ∥Λ2∥∞ reaches its maximum, that is,

∥Λ2∥∞ ≤
√(

C2(A2(Ξ∗
2))

−1B2u
)T(C2(A2(Ξ∗

2))
−1B2u

)
=
√

Γ2,0(ω)(r2
0 + s2

0) =
√

Γ2,0(ω)∥ṽ0∥∞ .
(62)

Here the amplification ratio is

Γ2,0(ω) =
n3ω6 +n2ω4 +n1ω2 +n0

ω8 +d3ω6 +d2ω4 +d1ω2 +d0
, (63)

where

n3 = β 2
2 ,

n2 = 2β 2
1 β2κ1 +β 2

2 κ2
1 −2β1β2

(
φ1(ξ ∗

1 )+φ1(ξ ∗
2 )
)

−2β 2
2 φ1(ξ ∗

1 )+β 4
1 +φ2

2 (η∗
2 )+2β 2

1 φ2(η∗
2 ) ,

n1 = β 2
1 φ2

1 (ξ ∗
2 )+(β 2

1 +β 2
2 +2β1β2)φ2

1 (ξ ∗
1 )

+2
(
β1κ1 −2φ2(η∗

2 )−β 2
1
)
φ2(η∗

2 )φ1(ξ ∗
1 )+2β1κ1φ1(ξ2)φ2(η∗

2 )

+2
(
β1β2 −β2κ1 −φ2(η∗

2 )
)
φ1(ξ ∗

1 )φ1(ξ ∗
2 )+κ2

1 φ2
2 (η∗

2 ) ,

n0 = φ2
1 (ξ ∗

1 )φ2
1 (ξ ∗

2 )+φ2
1 (ξ ∗

1 )φ2
2 (η∗

2 )+2φ2
1 (ξ ∗

1 )φ1(ξ ∗
2 )φ2(η∗

2 ) ,

d3 =−2φ2(η∗
2 )−2φ1(ξ ∗

1 )−2φ1(ξ ∗
2 )+κ2

2 +2κ2
1 +2κ1κ2 ,

d2 = φ2
2 (η∗

2 )+2
(
2φ1(ξ ∗

1 )+φ1(ξ ∗
2 )−κ2

1
)
φ2(η∗

2 )+φ2
1 (ξ ∗

2 )

+2
(
2φ1(ξ ∗

1 )−κ2
1
)
φ1(ξ ∗

2 )+φ2
1 (ξ ∗

1 )+κ4
1 +2κ3

1 κ2

−2
(
κ2

1 +κ2
2 +2κ1κ2

)
φ1(ξ ∗

1 ) ,

d1 = (κ2
1 −2φ1(ξ ∗

1 ))φ2
2 (η∗)+

(
κ2

1 −2φ1(ξ ∗
1 )
)
φ2

1 (ξ ∗
2 )

+2
((

κ2
1 −2φ1(ξ ∗

1 )
)
φ1(ξ ∗

2 )−2φ2
1 (ξ ∗

1 ))
)
φ2(η∗

2 )

−2φ2
1 (ξ ∗

1 )φ1(ξ ∗
2 )+(κ2

1 +κ2
2 )

2φ2
1 (ξ ∗

1 ) ,

d0 = n0 .

(64)

Since ∥ṽ2s∥∞ ≤ ∥Λ2∥∞ ≤
√

Γ2,0∥ṽ0∥∞, motif 2 is head-to-
tail string stable if Γ2,0(ω) < 1 for ∀ω ∈ R+. This holds if the
difference between the denominator and the numerator of (63) is
positive such that

ω2(ω6 +(d3 −n3)ω4 +(d2 −n2)ω2 +(d1 −n1)
)
> 0 , (65)

for ∀ω ∈ R+. To satisfy (65), it is necessary that

d1 −n1 = 2α2
1 β2V ′(ξ ∗

1 )(α1V ′(ξ ∗
1 )+α1V ′(ξ ∗

2 )+α2V ′(ξ ∗
1 ))

+α2
1 α2

2
(
V ′(ξ ∗

1 )
)2

+a1α2
1 α2 +a0α2

1 > 0 ,
(66)

where

a0 =V ′(ξ ∗
1 )
(
α1 +2β1 −2V ′(ξ ∗

2 )
)
+V ′(ξ ∗

2 )
(
α1 +2β1 −2V ′(ξ ∗

1 )
)
,

a1 =V ′(η∗
2 )
(
α1V ′(ξ ∗

2 )−V ′(ξ ∗
1 )V

′(ξ ∗
2 )−β1V ′(ξ ∗

1 )+β1V ′(ξ ∗
2 )
)

+
(
V ′(ξ ∗

1 )
)2(2α1 +2β1 −V ′(η∗

2 )
)
.

(67)

When a0 < 0 and a1 < 0 decreases, larger α2 or β2 are required
to satisfy (66), leading to small head-to-tail string stable domain.
Thus, the smallest a0 and a1 correspond to the worst-case sce-
nario. Note that ξ ∗

1 is related to vehicle 1 while ξ ∗
2 ,η∗

2 are related
to vehicle 2. We consider that vehicle 1 is string unstable such
that α1 +2β1 −2V ′(ξ ∗

1 )< 0 and in the worst-case scenario (49).
Then, to find the minimum of a0, we solve

∂a0

∂ξ ∗
2
=

π2vmax
(
α1 +2β1 −4V ′(ξ ∗

1 )
)

2(hgo −hst)2 cos
(

π
ξ ∗

2 −hst

hgo −hst

)
= 0 ,

(68)

for ξ ∗
2 . Note that α1 +2β1 −4V ′(ξ ∗

1 )< α1 +2β1 −2V ′(ξ ∗
1 )< 0.

Thus, the solution of (68) is

ξ ∗
2 = (hgo +hst)/2 = 20 [m] , V ′(ξ ∗

2 ) = π/2 [1/s] . (69)
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Plugging (49) and (69) into the second equation of (67), and solv-
ing ∂a1/∂η∗

2 = 0, we can also show that the minimum of a1 oc-
curs at

η∗
2 = (hgo +hst)/2 = 20 [m] , V ′(η∗

2 ) = π/2 [1/s] . (70)

Substituting (49), (69) and (70) into (64) and (65) leads to
head-to-tail string stability conditions, but solutions cannot be
obtained analytically. Thus, we utilize the D-subdivision method
[11] and seek the stability boundaries. Dividing (65) by ω2 and
collecting terms according to α2 and β2 yields

Θ(ω) =U1 +U2(α2
2 +2α2β2)+U3α2 +U4β2 > 0 , (71)

for ∀ω > 0, where

U1 = ω6 +2(2α1β1 −α1π +α2
1 +β 2

1 )ω4 +
[3

2
α2

1 π2 +6α2
1 β 2

1

−2α1(2α1β1 +α2
1 +β 2

1 )π +α1(4β 3
1 +4α2

1 β1 +α3
1 )
]
ω2

+
α2

1 π2

4
(2β1 −π +3α1) ,

U2 = ω4 +(α2
1 +β 2

1 −α1π +2α1β1)ω2 +
1
4

α2
1 π2 ,

U3 =
(

2α1 +2β1 −
π
2

)
ω4 +

[3
4

α1π2 −
(

3α1β1 +β 2
1 − 5

2
α2

1

)
π

+2(α3
1 +β 3

1 +3α2
1 β1 +3α1β 2

1 )
]
ω2 +

α2
1 π2

4
(2β1 −π +3α1) ,

U4 = 2(α1 +β1)ω4 +2α1(2β 2
1 +α2

1 +3α1β1 −α1π)ω2 +α3
1 π2 .

(72)

At the boundary, we have Θ(ω) = 0 and ∂Θ(ω)/∂ω = 0,
which yields

α2(ω) =
−2U2W1 −U3 −U4W2 ±

√
∆

2(U2 +2W2)
,

β2(ω) =W1 +W2α2(ω) ,

(73)

where

W1 =
(∂ωU1)U2 −U1(∂ωU2)

(∂ωU2)U4 −U2(∂ωU4)
, W2 =

(∂ωU3)U2 −U3(∂ωU2)

(∂ωU2)U4 −U2(∂ωU4)
,

∆ = (2U2W1 +U3 +U4W2)
2 −4(U2 +2W2)(U1 +U4W1) .

(74)

Here ∂ωU j denotes the differentiation of U j with respect to ω .

FIGURE 3. Stability diagrams for motif 1 (left) and motif 2 (right).
For motif 2, we choose α1 = 0.5 [1/s] and β1 = 0.6 [1/s] as shown by
point A in left panel. Red lines and blue lines denote the plant stabili-
ty boundary and the head-to-tail string stability boundary, respectively.
The plant stable domain and the head-to-tail string stable domain are
shaded by light gray and dark gray, respectively.
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FIGURE 4. Simulation results for motif 2. (a,b): simulations for
points B and C in terms of plant stability; (c,d): simulations for points
C and D in terms of head-to-tail string stability.

For ω → 0, applying L’Hôpital’s rule in (73) leads to the zero-
frequency boundary

α2 =−2α1 , α2 =−2β2 −α1 −2β1 +π . (75)

Plotting the boundaries (73) and (75) for all ω ≥ 0 in the (β2,α2)-
plane leads to the head-to-tail string stability diagram for motif 2.

5 STABILITY DIAGRAMS AND SIMULATIONS
Stability diagrams for motifs 1 and 2 are demonstrated by

the left and the right panels in Fig. 3, respectively, where the red
lines indicate the plant stability boundaries (31) and (57) while
the blue lines are the string stability boundaries (50) and (75).
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Here, the plant stable and the head-to-tail string stable domains
are indicated by light gray and dark gray shadings, respectively.
Note that p2 = −π and p3 = 8 are used when plotting the plant
stability boundaries, as discussed in Section 3.1. The dash-dotted
and the solid red lines denote the plant stability boundaries given
by the first and the second inequalities in (31) and (57), respec-
tively. For motif 2, we consider that vehicle 1 is plant stable
but string unstable, and then set (α1, β1) = (0.6, 0.7) [1/s], as
marked by point A in Fig. 3.

To demonstrate the stability behavior of motif 2, we select
the points B–D in Fig. 3. Point C (α2 = β2 = 0) implies that there
is no communication between vehicle 0 and vehicle 2. We set the
initial conditions h1(0) = 18 [m], v1(0) = 18 [m/s], h2(0) = 22
[m], and v2(0) = 16 [m/s]. To show the plant stability of motif 2,
we assume that vehicle 0 moves at the constant speed v0(t)≡ 15
[m/s]. The simulation results corresponding to cases B and C are
shown in Fig. 4(a) and (b), which show that case B is plant unsta-
ble while case C is plant stable. To demonstrate the head-to-tail
string stability of motif 2, we assume the speed of vehicle 0 as
v0(t) = 15+ sin(0.6t) [m/s], where the sinusoidal term can be
seen as a perturbation to the head vehicle. The simulation results
corresponding to cases C and D are demonstrated in Fig. 4(c) and
(d). When there is no communication between vehicle 0 and ve-
hicle 2 (case C), the disturbance is amplified when propagating
upstream. But if vehicle 2 utilizes the information received from
vehicle 0 (case D), the disturbance is attenuated by vehicle 2 even
though vehicle 1 amplifies the signal. This demonstrates the ad-
vantages of V2V communication in stabilizing a platoon.

It should be pointed out that the stable domain for motif 2
(the right panel in Fig. 3) covers the negative control gains, im-
plying that one may stabilize motif 2 network by using negative
gains α2 and/or β2.

6 CONCLUSIONS
In this paper, we investigated the nonlinear dynamics of con-

nected vehicle systems and analyzed their plant stability and
head-to-tail string stability. The results were summarized us-
ing stability diagrams, which allows one to select control gain-
s in order to ensure stability of vehicle networks. In practice,
vehicle-to-vehicle communication may lead to delays for receiv-
ing information due to intermittency and packet drops. Also, the
communication may be lost due to sensor faults or signal dis-
connection, resulting in variation of connectivity structures. The
robustness of the connected vehicle systems against communica-
tion delays and variation of connectivity structures will be stud-
ied in future. We remark that the plant stability and the string
stability are related to safety of vehicles but do not necessarily
guarantee collision-free behavior. Ensuring stability and safety
simultaneously is another future research direction.
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