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ABSTRACT
This paper considers the problem of designing the right-

most eigenvalues of linear scalar distributed delay systems using
two different but complementary methods: generalized stability
charts and matrix Lambert W functions. The generalized stability
charts are based on generalized Hopf and fold curves that pro-
vide important insight into the problem, but the geometry of the
curves may become complicated for certain delay distributions.
The Lambert W function approach can be applied to general de-
lay distributions, but requires numerical solutions which can suf-
fer from convergence problems. We present simple examples for
both approaches.

1 INTRODUCTION
In many engineering applications one tries to achieve a de-

sired dynamic behavior, e.g., settling time in the vicinity of an
equilibrium, by designing the eigenvalues of the corresponding
linear systems. Examples include, vibration absorbers [1,2], ma-
chining processes [3, 4], vehicle steering [5, 6], and connected
vehicles [7, 8]. Of special interest are the rightmost or leading
eigenvalues. These determine the linear stability of the equilib-
rium and, for a stable system, they correspond to solutions with
the slowest decay [9]. Thus, the desired dynamic behavior may
be achieved by selecting the system parameters (including con-
trol gains) so that the rightmost eigenvalues are placed appropri-
ately as demonstrated in the recent papers [10–12].

However, systems with time delay exhibit an infinite spec-
trum, which makes eigenvalue placement very challenging, even

∗Address all correspondence to this author.

though the dynamic response is still dominated by the rightmost
eigenvalues [13–15]. Here, apart from designing the system pa-
rameters, one may also tune the delays in order to place the
eigenvalues appropriately [16, 17], though limitations may arise
due to the achievable minimal value of the delay. Such limita-
tions may be compensated for in systems with distributed delays
where apart from system parameters one may design the delay
distribution [18,19]. Practical examples include the design of the
cutting profile of helical milling tools in machining [3, 4], where
the delay distributions originate from spatial force distributions.
Similar ideas may also be used when designing transmission pro-
tocols for vehicle-to-vehicle communication in connected vehi-
cle systems [7, 8], where the delay distributions originate from
stochastic delay variations.

In this paper, we investigate the problem of spectrum design
for the rightmost eigenvalues of a linear scalar system with dis-
tributed delay while considering constant delay distribution. A
treatment of more general distributions can be found in [20]. We
apply two complementary approaches: the bifurcation theory ap-
proach and the Lambert W function approach. In the bifurcation
theory approach, we extend the idea of a stability chart [21, 22]
for a general case when the leading eigenvalues have non-zero
real part. That is we transform the design problem to finding the
locations of generalized Hopf and fold bifurcations in parame-
ter space. Design limitations are also investigated using numer-
ical continuation. As for the Lambert W function approach, we
reformulate the problem as a special case of a delayed system
with a single constant delay and then apply the matrix Lambert
W function method [15]. Here, we exploit the structure of the
arising system matrices to accelerate the numerical computation.
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FIGURE 1. An illustration of the spectrum design where the five
rightmost eigenvalues are placed and a spectral gap of size M is created.

We also highlight some numerical issues arising due to multiple
eigenvalues associated with this problem.

We present scenarios where the real part of the leading
eigenvalues is negative (stable systems) and also when it is posi-
tive (unstable systems). The former case is related to robust sta-
bility [21], which is important in many engineering applications.
The latter case is also relevant in that unstable systems can ex-
hibit high performance when operated by skilled operators or are
regulated by well-designed controllers. Examples include, nu-
clear reactors, steering systems, and aircrafts with forward swept
wings [23].

2 PROBLEM FORMULATION
Consider the following scalar linear differential equation

with distributed delay:

d
dτ

x(τ) = α x(τ)+β
∫ 0

−h
w(ξ )x(τ +ξ )dξ , (1)

where the initial condition is given by x(τ) = ϕ(τ), −h ≤ τ ≤ 0,
and the delay distribution satisfies

∫ 0
−h w(ξ )dξ = 1. We know

that the eigenvalues give an infinite spectrum {λi}∞
i=1 and that

the solution of (1) can be written as x(τ) = ∑∞
i=1 Cieλiτ , where

the coefficients Ci depend on the initial condition ϕ(τ) (often
called preshape function) [15, 22]. The rightmost eigenvalues
with the largest real part dominate the system dynamics. Thus,
placing these appropriately and creating a spectral gap between
these and the rest of the eigenvalues allows us to design a system
with desired temporal behavior.

To place the rightmost p eigenvalues of (1) at λ1, . . . ,λp,
we need to select the appropriate parameter values α ,β and the
weight function w(ξ ). If we want the rightmost p eigenvalues
to dominate the dynamics, we also need to create a spectral gap

so that Re(λ j) ≤ Re(λi)−M,1 ≤ i ≤ p < j, where M is a posi-
tive real number. Such a setup is illustrated in Fig. 1, where we
specified the rightmost five eigenvalues as well as the spectral
gap of size M in the complex plane, i.e., all other eigenvalues are
located in the shaded region. We remark that this is equivalent
to designing the rightmost p+ 1 or p+ 2 eigenvalues such that
the difference between the real parts of the left-most designed
eigenvalues provides the spectral gap; see Fig. 1. In some appli-
cations, we only care about the real part of the eigenvalues, and
can, thus, formulate a less restrictive problem where only Re(λi),
i = 1, . . . , p+1 are assigned.

Rescaling time as τ = ht,ξ = hθ allows us to write (1) into
the form

ẋ(t) = ax(t)+b
∫ 0

−1
w(θ)x(t +θ)dθ , (2)

where the dot stands for differentiation with respect to the
rescaled time t and we have the design parameters

a = hα , b = h2β . (3)

where the maximum delay h appears as as a scaling factor.
In this paper, we focus on the special case of w(θ) ≡ 1,

which means that (2) simplifies to

ẋ(t) = ax(t)+b
∫ 0

−1
x(t +θ)dθ . (4)

More general weight functions are considered in [20]. Substitut-
ing the trial solution x(t) = eλ t results in the characteristic equa-
tion

D(λ ) = λ −a−b
1− e−λ

λ
= 0 , (5)

which has infinitely many solutions for the eigenvalues λ . Note
that one may define an operator which possesses these eigen-
values and serves as the infinitesimal generator for (4) in the
infinite dimensional space of continuous functions on [−1,0];
see [21, 22].

3 BIFURCATION THEORY APPROACH
When system parameters are varied the trivial solution

x(t) ≡ 0 of a linear system can lose stability in two possible
ways. Either a real eigenvalue moves through zero to the right
half complex plane (leading to non-oscillatory stability loss), or
a pair of complex conjugate eigenvalues cross the imaginary axis
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from left to right (leading to oscillatory stability loss where the
frequency is given by the imaginary part of those eigenvalues).
In the corresponding nonlinear system, fold and Hopf bifurca-
tions may occur. In the parameter plane, stable and unstable do-
mains are separated by stability curves, which are often catego-
rized as fold and Hopf curves. We adopt this terminology here
even though we do not investigate nonlinear effects. Moreover,
we define generalized stability curves (i.e., generalized fold and
Hopf curves) that correspond to eigenvalues that cross a given
vertical line in the complex plane. Note that these are not related
to bifurcations in the corresponding nonlinear system and only
make sense at the linear level. These generalized curves allow
us to locate parameter values that correspond to given eigenvalue
configurations for the leading eigenvalues.

Substituting λ = γ ± iω into (5), separating real, and imagi-
nary parts and assuming ω > 0, we obtain

a = γ +
γ − e−γ (γ cosω −ω sinω)

1− e−γ (ω cosω + γ sinω)/ω
,

b =− γ2 +ω2

1− e−γ (ω cosω + γ sinω)/ω
,

(6)

which describe the generalized Hopf curves in the (a,b)-plane in
parameterized form. For ω = 0, Eq. (5) results in

b =
γ

1− e−γ (γ −a) , (7)

and the corresponding straight line is the generalized fold curve
in the (a,b)-plane. Indeed, the curves given by (6) and (7) change
with γ . For γ = 0 they are the stability boundaries, while for γ ̸= 0
they produce diagrams which we refer as generalized stability
charts. We remark that γ < 0 corresponds to robust stability [21],
while γ > 0 corresponds to unstable design.

Fig. 2 shows generalized stability charts for different values
of γ . Straight lines and curves correspond to generalized fold
and Hopf curves, respectively. The numbers indicate how many
eigenvalues with real part larger than γ are in that region. These
can be determined by calculating the eigenvalues numerically at
a chosen point within a chosen domain and then counting the
number crossing eigenvalues when moving from one domain to
another; see [20] for more details. The shaded regions (bounded
by solid curves) are the generalized stability regions. The arrows
show how the frequency ω increases along the Hopf curves and
the values of ω corresponding to a,b → ±∞ are also indicated.
The left panel in Fig. 2 shows the case where γ = 0, which is the
stability chart. When ω → 2kπ,k = 1,2, . . . the parameters a,b
go to infinity because the denominator

d(γ,ω) = 1− e−γ (ω cosω − γ sinω)/ω , (8)

in (6) goes to zero. In the middle panel of Fig. 2 we have
γ = −0.5. The diagram looks similar to the γ = 0 case, since
a,b still go to infinity at some finite values of ω . However, some
Hopf curves appear in the upper half plane and generate regions
with odd numbers of “unstable” eigenvalues. Also, the Hopf
curves show asymptotic behavior when ω → ωk, k = 1,2, . . . (but
ωk ̸= kπ), and the curves are hyperbolic (while for γ = 0 they
were parabolic). The right panel in Fig. 2 depicts the general-
ized stability chart for γ = 0.5 which looks quite different from
the other panels: the Hopf curve does not go to infinity at finite
values of ω , but intersect itself and creates loops.

To better understand the difference between the three cases
above, we plot the denominator (8) as a function of the frequency
ω for different values of γ in Fig. 3. For γ = 0 (red dashed curve)
the denominator becomes zero at ω = 2kπ,k = 1,2, . . .; cf. the
left panel of Fig. 2. For γ =−0.5 the blue solid curve intersects
the horizontal axis at ω = ωk, k = 1,2, . . .. Along the intervals
ω ∈ [ωk,ωk+1] where k is odd, the curve is negative and this
correspond to the generalized Hopf curves above the horizontal
axis in the middle panel of Fig. 2. Finally, for γ = 0.5 (green
dotted curve) the denominator is positive for all ω values and the
corresponding generalized stability curve does not go to infinity
for finite values of ω; cf. the right panel of Fig. 2.

By tuning the parameters a,b there are several leading eigen-
value configurations that can be designed:

1. Two real eigenvalues (e.g., λ1 =−1 and λ2 =−3);
2. One real eigenvalue and real part of a pair of two complex

conjugate eigenvalues (e.g., λ1 =−1 and λ2,3 =−3± iω);
3. Real parts of two pairs of complex conjugate eigenvalues

(e.g., λ1,2 =−1± iω and λ3,4 =−3± iω̃);
4. One pair of complex conjugate eigenvalues (e.g., λ1,2 =

−0.5± i3);

We will show below an example for each case.

3.1 Designing two real eigenvalues
One way to design a spectral gap is to design two real eigen-

values. To illustrate this, Fig. 4 shows the generalized stability
boundaries for γ1 = −1 (blue curves) and γ2 = −3 (red curves).
The blue and red shaded regions correspond to eigenvalues that
have real part less than γ1 and γ2, respectively. The number
of “unstable” eigenvalues are indicated in each region for both
cases: the first element of the pair gives how many eigenvalues
have real part larger then γ1 while the second element shows this
for γ2. By substituting γ1 and γ2 into (7) one may find that the
corresponding generalized fold curves intersect at

aff = γ1 +
M(1− eγ1)(γ1 −M)

M(1− eγ1)− γ1(1− eM)
,

bff =
γ1Meγ1(γ1 −M)

M(1− eγ1)− γ1(1− eM)
,

(9)
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FIGURE 2. Generalized stability charts for different values of the real part γ as indicated above. In the shaded regions (bounded by solid curves) all
eigenvalues have real part smaller than γ . In each region the number of “unstable” eigenvalues (with real part larger than γ) are indicated.

where M = γ1−γ2 is the size of the spectral gap. In particular, for
γ1 =−1 and γ2 =−3 we obtain (a,b)≈ (−0.26,−0.43), which
is denoted by D1 in Fig. 4 and the corresponding eigenvalue con-
figuration is shown at the bottom. Since D1 is at the boundary
of regions (1, ·),(0, ·), the rightmost eigenvalue is λ1 = γ1. Simi-
larly, the second eigenvalue is λ2 = γ2, since D1 is at the bound-
ary of regions (·,1),(·,2).

The question arises whether there is a limitation in the de-
sign for two real eigenvalues. Due to (7), the two fold curves
with different γ are not parallel, so they always intersect at (9).
Moreover, the intersection always produces the desired eigen-
value configuration γ1 > γ2, i.e., the solid segment of the γ1 line
intersects dashed segment of the γ2, because other cases contra-
dict the fact that γ1 corresponds to the leading eigenvalue fol-
lowed by the eigenvalue at γ2.

3.2 Designing one real eigenvalue and the real part of
a pair of complex conjugate eigenvalues

Alternatively, one can design one real eigenvalue and a pair
of complex conjugate eigenvalues with a fixed real part, that is,
consider the rightmost three eigenvalues to be λ1 = γ1 and λ2,3 =
γ2 ± iω where ω is arbitrary. As shown in Fig. 4, the fold curve
for γ1 = −1 and a Hopf curve for γ2 = −3 intersect at (a,b) ≈
(−4.97,2.31) which is denoted by D2 and corresponds to the
eigenvalue configuration displayed at the bottom. Since D2 is at
the boundary of regions (1, ·),(0, ·), the rightmost eigenvalue is
at λ1 = γ1. The second and third eigenvalues are at λ2,3 = γ2± iω ,
since D2 is also at the boundary of regions (·,1),(·,3).

The limitations of this design may be of interest. Substitut-
ing γ1 into (7) and γ2 into (6) and eliminating a and b one may

derive

−ω
(
(γ1 − γ2)

2 +ω2)+ e−γ1 ω (γ2
2 +ω2)+ e−γ2γ1

×
((

γ2(γ1 − γ2)+ω2)sinω +(γ1 −2γ2)ω cosω
)
= 0 .

(10)

By plotting the corresponding surface in the three dimensional
space (γ1,γ2,ω), one can show that it is contained in the domain
γ2 < 0, γ2 < γ1. This indicates that it is not possible to place the
complex conjugate eigenvalues to the right of the real eigenvalue.
This can also be observed in Fig. 4 as the fold curve that belongs
to γ2 =−3 does not intersect Hopf curves belonging to γ1 =−1.

3.3 Designing the real parts of two pairs of complex
conjugate eigenvalues

Based on the above argument, when the rightmost eigenval-
ues are given by a complex conjugate pair, a spectral gap can only
be provided if these are followed by another pair of complex con-
jugate eigenvalues. Suppose our desired rightmost four eigenval-
ues are λ1,2 = γ1 ± iω , λ3,4 = γ2 ± iω̃ , where ω, ω̃ are arbitrary.
In Fig. 4, a blue Hopf curve for γ1 =−1 and a red Hopf curve for
γ2 = −3 intersect at (a,b) ≈ (−3.20,−4.16) which is denoted
by D3 and the corresponding eigenvalue configuration is shown
at the bottom. Thus, the rightmost eigenvalues are λ1,2 = γ1± iω ,
since D3 is at the boundary of regions (2, ·),(0, ·). Similarly, the
second pair of eigenvalues is λ3,4 = γ2 ± iω̃ , since D3 is at the
boundary of regions (·,2),(·,4). One can also investigate the
limitation of spectrum design for this case, but we leave that as a
problem for future research.
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FIGURE 3. The denominator (8) for different values of the real part:
γ = 0 — red dashed, γ =−0.5 — blue solid, γ = 0.5 — green dotted.
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FIGURE 4. Generalized stability charts for γ1 = −1 (blue) and γ2 =

−3 (red). The first and second elements of the number pairs indicate
how many eigenvalues have real part larger than −1 and −3, respec-
tively. The intersections marked as D1, D2, D3 correspond to the de-
signed eigenvalue configurations shown at the bottom where the fre-
quencies ω and ω̃ are not specified.

3.4 Designing a pair of complex conjugate eigenval-
ues

Finally, we can design the rightmost complex conjugate pair
λ1,2 = γ ± iω without specifying a spectral gap , which is equiv-
alent to saying that there is a generalized Hopf type of stability
loss at γ with given frequency ω . This corresponds to a point

FIGURE 5. Available region for the real and imaginary parts of the
designed eigenvalues.

on a “primary” generalized Hopf curve, i.e., on a solid curve in
Fig. 2 constituting a boundary between regions with 0 and 2 “un-
stable” eigenvalues. (Dashed curves separate regions with higher
numbers of eigenvalues.)

In this case, one is interested in the limitations in γ and ω .
For γ ≤ 0 the primary Hopf curve corresponds to the frequency
domain ω ∈ [0,ω1] where ω1 is the minimum positive frequency
for which d(γ ,ω) = 0, cf. (8) and Fig. 3. However, the limita-
tions for γ > 0 are harder to determine due to the self intersec-
tions of the Hopf curve that correspond to having two different
frequencies ω1 ̸= ω2 for fixed γ; cf. the right panel of Fig. 2.
Consider (6) and solve the system

0 = a(ω1,γ)−a(ω2,γ) ,
0 = b(ω1,γ)−b(ω2,γ) ,

(11)

for ω1,ω2 which is equivalent to finding the equilibria of the re-
lated mock differential equation

ω̇1 = a(ω1,γ)−a(ω2,γ) ,
ω̇2 = b(ω1,γ)−b(ω2,γ) ,

(12)

where γ is considered as a parameter. Indeed, when γ is varied,
the equilibrium changes. We use numerical continuation [24], in
particular the package DDE-BIFTOOL [25], to continue the so-
lution while changing γ and the boundary is shown in the com-
plex plane in Fig. 5. Here shading denotes the region in the com-
plex plane where eigenvalues can be placed.

Finally, we discuss the special case when ω = 0 which yields
the leading eigenvalue λ1,2 = γ with multiplicity two. This can
also be obtained by setting γ1 = γ2 = γ when considering two
real leading eigenvalues as was discussed in Sec. 3.1. To obtain
the corresponding parameter values one needs to solve D(γ) = 0
and ∂D(γ)/∂γ = 0 for a and b. Thus, the characteristic equation
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(5) leads to the parametric curve

a = γ
(

2+
γ

eγ −1− γ

)
,

b =− γ2eγ

eγ −1− γ
,

(13)

that is shown as a green curve in Fig. 7. The green dot indicates
where γ = 0 and γ increases from left to right along the curve as
indicated by arrows. On one hand, one may use the left section
of the curve to design systems with “critical damping”. On the
other hand, multiplicity may lead to convergence problems for
numerical methods as will be discussed in Sec. 4.1.

4 LAMBERT W FUNCTION METHOD
The scalar distributed delay system (4) can be converted into

a system of two scalar variables with discrete delay. Then the as-
signment of its eigenvalues can readily be handled by the matrix
Lambert W function method [14], using the Lambert W tool-
box [26]. The advantage of the Lambert W function approach
is that the real part of the eigenvalues follows the order of the
branch number [15]. This allows one to focus on a few rightmost
eigenvalues as is our goal here.

Multiplying (5) with λ yields

D(λ ) = λ 2 −aλ −b(1− e−λ ) , (14)

which is the characteristic equation of the 2-nd order system

ẍ(t) = a ẋ(t)+b
(
x(t)− x(t −1)

)
. (15)

Note that when multiplying by λ , we introduce a zero eigenvalue
into the spectrum. We refer to this as an “intrinsic” zero eigen-
value.

Let us define the vector

x(t) =
[

x(t)
ẋ(t)

]
, (16)

then (15) is equivalent to the system

ẋ(t) = Ax(t)+Ad x(t −1) , (17)

where the matrices A,Ad ∈ R2×2 are defined as

A =

[
0 1
b a

]
, Ad =

[
0 0
−b 0

]
. (18)

We need to select the parameters a,b in the matrices A,Ad to get
the desired spectrum (plus one zero intrinsic eigenvalue).

To compute the eigenvalues of (17) using the Lambert W
function approach [14,15]. We need to solve the following equa-
tions

Ad =Wk(AdQk)eWk(AdQk)+A ,

Sk =Wk(AdQk)+A ,
(19)

where Wk is the matrix Lambert W function and the vector
k = [ k1, k2 ] is the (vector-valued) branch number so that
ki ∈ {0,±1,±2, . . .}. Solving the first equation for Qk, one
can use the second equation to obtain Sk and the eigenvalues
of Sk give the eigenvalues of (14). In general, when consider-
ing k = [ 0, 0 ] the corresponding Sk possesses the two leading
eigenvalues, while considering k= [+1, +1 ] and k= [−1, −1 ]
we can cover the following two eigenvalues and so on. However,
since one eigenvalue of the matrix AdQk is zero, it is necessary
to use hybrid branches where ki ̸= k j. In this case one needs to
consider three different k vectors that include all ki ∈ {0,±1} in
order to ensure that we cover the two leading eigenvalues [15].

Here we combine the eigenvalue calculations [26] with a
root finding algorithm. This way the iterations converge to the
parameter values that ensure the required eigenvalue configura-
tion. However, these numerical iterations may be time consum-
ing and the speed of convergence can depend on the selected
initial value of Qk.

Let us define the notation

Qk =

[
qk

11 qk
12

qk
21 qk

22

]
, (20)

where the vector-values index k is switched to a superscript to
simplify the notation. Notice that if we define

Qk =

[
qk

11 qk
12

0 0

]
, (21)

then, due to the sparse structure of Ad in (18), both (20) and (21)
yields

AdQk =

[
0 0

−bqk
11 −bqk

12

]
. (22)

This implies that there always exists a solution of Qk in the
form of (21), i.e., we can assume an initial matrix Qk with the
above sparse structure which reduces the computation time sig-
nificantly. As shown in the Appendix, using hybrid branches
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FIGURE 6. Eigenvalue configurations designed using the Lambert W approach. Panels (a), (b) and (c) correspond to the points D1, D2 and D3 in
Fig. 4. For panel (d) the real and imaginary parts of only the leading eigenvalues are designed. The corresponding numerical values are shown in
Table 1.

with branch numbers k = [ 0, k ] we obtain

Wk(AdQk) =

[
0 0

Wk(−bqk
12)q

k
11/qk

12 Wk(−bqk
12)

]
. (23)

Substituting (21,22,23) into the first equation of (19) results in

[
0 0
−b 0

]
=

[
0 0

Wk(−bqk
12)q

k
11/qk

12 Wk(−bqk
12)

]
× exp

([
0 1

Wk(−bqk
12)q

k
11/qk

12 +b Wk(−bqk
12)+a

])
.

(24)

After calculating the matrix exponential on the right hand
side we obtain two coupled scalar equations that can be numer-
ically solved for qk

11 and qk
12. This way the computational de-

mand can be reduced significantly compared to using the stan-
dard matrix Lambert W approach. For example, if we select
a ∈ [−2,0] and b = 1 in (17,18) it takes approximately 100 sec-
onds (on a standard desktop computer) to compute the eigenval-
ues for branches 0,±1,±2 using the standard matrix Lambert
W approach. Once we exploit the presence of zeros in Qk, it
only takes about 1 to 2 seconds. Note that in order to reproduce
the two leading eigenvalues it is adequate to consider the hybrid
branches with branch numbers [ 0, 0 ], [ 0, +1 ], [ 0, −1 ] but we
will show a more complete eigenvalue picture when presenting
the results. We remark that each hybrid branch also reproduces
the intrinsic zero eigenvalue but since this does not have physical
meaning we do not show this on the figures.

Figure 6(a), (b) and (c) show the eigenvalues corresponding
to the cases D1, D2 and D3 in Fig. 4, respectively. The numerical
values of the designed eigenvalues and the corresponding param-
eters are given in Table 1. We remark that in cases (b) and (c),
only the real parts of the eigenvalues are given while the imagi-
nary parts are obtained through the design procedure. Figure 6(d)

eigenvalues parameters

(a) λ1 =−1, λ2 =−3 (a,b) = (−0.26,−0.43)

(b) λ1 =−1, λ2,3 =−3± i6.15 (a,b) = (−4.97,2.31)

(c) λ1,2 =−1± i3.53, λ3,4 =−3± i9.11 (a,b) = (−3.20,−4.16)

(d) λ1,2 =−0.5± i3 (a,b) = (−0.73,−3.46)

TABLE 1. Numerical values corresponding to the panels of Fig. 6.
Note that in cases (b) and (c) only the real parts of the eigenvalues are
designed.

shows the case when the leading complex conjugate pair is de-
signed so that both the real and imaginary parts are prescribed;
see Table 1 for the numerical values of eigenvalues and param-
eters. In case (d), the design can be achieved since the desired
eigenvalues lie in the shaded domain in Fig. 5.

4.1 Numerical issues
Although the Lambert W function is useful for computing

the spectrum of a distributed delay system, there are certain val-
ues of parameters for which we run into numerical convergence
problems. To characterize these areas (for the case of constant
weight function) in the parameter plane we randomly select pa-
rameters in the range (a,b)∈ (−10,10) and then randomly select
the initial values for qk

11 and qk
12 in (24) with real and imagi-

nary parts contained by the interval (−10,10). If the iterations
converge, we plot a gray asterisk in the (a,b)-plane as shown in
Fig. 7. Notice that no convergence were achieved in a strip and
in the left part of the selected regime.

Note that the hybrid branch approach can only be applied
when the Jordan form of AdQk is diagonal (cf. Appendix) which
may lead to convergence problems when the leading eigenvalues
have multiplicity greater than one. To illustrate this we added
the stability curves (6,7) for γ = 0 to Fig. 7 (cf. the left panel of
Fig. 2). Along the straight fold line the eigenvalue 0 has multi-
plicity two due to the intrinsic zero eigenvalue generated when
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FIGURE 7. Convergence regions and multiplicities in the parameter
plane. The gray area indicates where Lambert W function approach
converges. The blue curves correspond to stability boundaries given by
(6,7) for γ = 0 where the arrow indicates the increase of ω along the
Hopf curve. The green curve is given by (13) and it shows the location
where the systems has a leading eigenvalue of multiplicity two. The
arrows show increase of γ and the green dot indicates γ = 0.

rewriting the system into vectorial form. Moreover, the green
curve, given by (13), corresponds to the case where the lead
eigenvalue is real and has multiplicity two (while the intrinsic
zero eigenvalue still exists). At the intersection of the curves (in-
dicated by green dot) we have a zero eigenvalue of multiplicity
three. Figure 7 demonstrates that sections of these curves co-
incide with the strip where the Lambert W approach does not
converge. However, it is not a one-to-one correspondence. Un-
derstanding further details of convergence problems is left for
future research.

5 CONCLUSION
In this paper, we studied the problem of designing the right-

most eigenvalues of a linear scalar system with distributed delay.
Our main methodological contributions to spectrum design were
the introduction of generalized stability charts and the extension
of the Lambert W method to distributed delay systems. Using
generalized stability charts we reduced the problem to finding
intersections of curves in the parameter plane. In order to charac-
terize design limitations we used numerical continuation. In or-
der to make the matrix Lambert W approach applicable we refor-
mulated the scalar distributed delay system using vector-valued
variables and discrete time delays. By exploiting the sparse struc-
ture of the appearing matrices we reduced the computation time
significantly. We also identified regions in the parameter space
where numerical convergence is slow.

Future research work can focus on several extensions. One is

to determine design limitations in higher dimensions [20]. Also,
finding more efficient numerical algorithms for the Lambert W
method remains an open question. Finally, one may want to bet-
ter understand the connection between these two approaches.
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APPENDIX
Consider the matrix Hk = AdQk defined in (22). The eigen-

values of Hk can be obtained from the characteristic equation

det(λ I−Hk) = λ (λ +bqk
12) = 0 , (25)

where I is the 2-dimensional identity matrix. Using the eigen-
vectors v1 and v2 of Hk we define the transformation

T = [ v1, v2 ] , (26)

to obtain the Jordan form

Jk = T−1HkT =

[
0 0
0 −bqk

12

]
. (27)

The matrix Lambert W function Wk for the (vector valued)
branch number k = [ k1, k2 ] can be written as

Wk(Hk) = Wk(TJk T−1)

= TWk(Jk)T−1

= T
[
Wk1(0) 0

0 Wk2(−bqk
12)

]
T−1 ,

(28)

where the last equality holds for hybrid branches because Jk is
diagonal [15,27]. Here Wki is the scalar Lambert W function and
it has the property

{
Wki(0) = 0 if ki = 0 ,
Wki(0)→ ∞ if ki =±1,±2, . . . .

(29)

To avoid singularities we consider the hybrid branches with
branch number k = [ 0, k ] for k = 0,±1 which ensures that we
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cover the first two eigenvalues [15]. Then, we have

Wk(Hk) = T
[
W0(0) 0

0 Wk(−bqk
12)

]
T−1

= T
[

0 0
0 Wk(−bqk

12)

]
T−1

=
Wk(−bqk

12)

−bqk
12

T
[

0 0
0 −bqk

12

]
T−1

=
Wk(−bqk

12)

−bqk
12

Hk

=

[
0 0

Wk(−bqk
12)q

k
11/qk

12 Wk(−bqk
12)

]
.

(30)

This proves (23).
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