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Gábor Orosz
Department of Mechanical Engineering

University of Michigan
Ann Arbor, Michigan 48109
Email: orosz@umich.edu

ABSTRACT
In this paper, we establish a mathematical framework that

allows us to optimize the speed profile and select the optimal
gears for heavy-duty vehicles. The key idea is to solve the analo-
gous boundary value problem analytically for a simple scenario
(linear damped system with quadratic elevation profile) and use
this result to initialize a numerical continuation algorithm. Then
the numerical algorithm can be used to gradually introduce non-
linearities (air resistance, engine saturation), implement data-
based elevation profiles, and incorporate external perturbation-
s (wind, traffic). This approach enables real-time optimization
in dynamic traffic conditions, therefore may be implemented on
board.

1 INTRODUCTION
A large percentage of freight transport nowadays is carried

out by heavy-duty vehicles (HDVs). According to U.S. Depart-
ment of Energy [1], more than 10 million registered HDVs de-
liver 70% of the domestic freight transport counted in value and
they are responsible for 17% of the petroleum consumption in
the transportation sector. Given the same route, different driving
profiles are implemented by truck drivers (speed and gear ap-
plied) which result in a large variation in fuel consumption [2].
This implies that optimizing the driving profile has a huge poten-
tial for saving fuel. Prior works on this topic typically focused
on a single vehicle. Early works [3] described the problem us-
ing optimal control framework and derived a necessary condition

∗Address all correspondence to this author.

for optimality using Pontryagin’s maximum principle, while re-
cent works [4,5,6,7,8] used dynamic programming to solve an
approximate optimization problem numerically. In [9] the solu-
tion was derived analytically for simplified models. Other works
focused on forming vehicle platoons in order to save fuel [10].
In [11] traffic signal information was incorporated in the opti-
mization framework while in [12] traffic volume, density and
speed prediction from a macroscopic traffic model was used.

In this paper, we present a modeling framework that allows
one to optimize the driving profile to achieve better fuel econo-
my given the elevation profile, headwind, and traffic information
along the route. The main progress beyond most recent works
[8,11,13] are the following: (1) We incorporate the terminal time
in the objective function. Tuning the weight of this term provides
a simple way to include traffic information in the optimization;
(2) We consider gear changes in fuel optimization; (3) We con-
sider more practical elevation profiles since our framework is ap-
plicable for general terrain; (4) Our mathematical approach guar-
antees that the optimal solution can be found in a fast manner. In
particular, to solve the optimal control problem we seek solution
of the corresponding boundary value problem (BVP). We first
solve a simplified problem analytically and then use numerical
continuation to gradually change the parameters until reaching
the original nonlinear problem. By doing so, optimality can be
guaranteed meanwhile the computation speed increases.

The optimization problem is formulated in Section 2 and we
generate the analytical solution of an analogous linear system in
Section 3. In Section 4, this solution is used to initialize our nu-
merical continuation software that can produce numerical solu-

1 Copyright c© 2014 by ASME



tion of the nonlinear system. In Sections 3 and 4, we investigate
how the weight on the terminal time regulates the optimal solu-
tions. Finally, we conclude the paper and propose some future
research in Section 5.

2 DRIVING PROFILE OPTIMIZATION BASED ON FU-
EL CONSUMPTION
In this section we lay out a modeling framework that can be

used to optimize fuel economy of HDVs. This framework allows
the use of different models to describe the vehicle dynamics and
a wide variety of fuel consumption maps. In order to keep the
problem analytically tractable, we use a simple vehicle model
and a static fuel consumption map.

2.1 Optimization Problem
The driving profile optimization is formulated as follows.

Find the input ad to minimize the objective function

J0 =
∫ tf

0
q(v,ad)d t +σ0

∫ tf

0
d t, (1)

subject to the constraints

ẋ = f (x,ad),

s(0) = 0, s(tf) = S, v(0) = v0, v(tf) = vf,

0≤ ad ≤ aU(v),
(2)

where x = [s,v]T so that s is the distance (arc-length) traveled, v
is the speed of the vehicle, and the dot represents the derivative
with respect to time t. The initial time is considered to be 0,
while the terminal time is denoted by tf and it is considered to be
unknown. The function q represents the fuel consumption rate
and the function f describes the vehicle dynamics. The boundary
conditions in the second row of (2) fix the total arc-length of the
route S, the initial speed v0, and the final speed vf, while the third
row gives a speed-dependent upper bound for the control input
ad. To avoid braking (since it dissipates kinetic energy), we set
the control input to be nonnegative.

The first terms of the objective function J0 represents the
total fuel consumption

Q =
∫ tf

0
qd t, (3)

while the second term σ0tf represents the total cost correspond-
ing to the terminal time tf. The parameter σ0 is the weight of
the latter one, with unit [g/s]. Zero σ0 gives a traditional driv-
ing profile optimization which is widely studied in the literature.

Considering nonzero σ0 represents the ability to get to the des-
tination at a given time. Also, it may provide a simple way to
incorporate traffic information by using smaller σ0 for heavier
traffic.

2.2 Vehicle Dynamics
The longitudinal dynamics of the HDV is derived using

classical mechanics, with assumption that no slip occurs on the
wheels and that the flexibility of the tires and the suspension can
be neglected. Then using the power law we obtain

meffv̇ =−mgsinφ − γ mgcosφ − k(v+ vw)
2 +

η

R
Te, (4)

see [10,14], where the effective mass meff = m+ I/R2 contains
the mass of the vehicle m, the moment of inertia I of the ro-
tating elements, and the wheel radius R. Furthermore, g is the
gravitational constant, φ is the inclination angle, γ is the rolling
resistance coefficient, k is the air drag constant, vw is the speed of
the headwind, η is the gear ratio (that includes the final gear ratio
and the transmission efficiency), and Te is the engine torque. See
Appendix A for parameter values used in this paper. When units
are not spelled out, quantities should be understood as SI units.

Eq. (4) can be rewritten as

ṡ = v,

v̇ =−α sinφ −β cosφ −κ(v+ vw)
2 +ad,

(5)

where

α =
mg
meff

, β =
γmg
meff

, κ =
k

meff
, ad =

ηTe

meffR
. (6)

Corresponding to (2), the state variables are s and v. The control
input is the rescaled torque ad, with unit of acceleration m/s2.
Here we consider ad as a independent variable (to be designed)
and by choosing the appropriate gear ratio η we can calculate
how much engine torque Te we demand.

In order to obtain the inclination angle φ , we need to de-
fine the elevation profile first. Consider that h(s) gives the ele-
vation as a function of distance traveled s. In practice, elevation
is given as a function of the direct distance d. The relationship
between s,d and h is illustrated in Figure 1. It can be seen that
h′(s) = sinφ and h′(d) = tanφ . One needs the arc-length param-
eterization d(s) to obtain h(s), but since φ < 0.05 [rad] here we
use the approximation cosφ ≈ 1. Moreover, for simplicity we
consider no headwind vw = 0. Thus, (5) can be simplified to

ṡ = v

v̇ =−αh′(s)−β −κv2 +ad.
(7)

2 Copyright c© 2014 by ASME



d[m]

sR

2sR

h[m]

hR
s

φ

FIGURE 1. Elevation h as function of distance d and arc-lengths s.

Throughout this paper, we use simple elevation profile

h(s) = hR

(
s− sR

sR

)2

, (8)

that is shown in Figure 1. We also consider hR� sR, in particular
we use hR = 30 [m], 2sR = 4000 [m]. We emphasize that using
ad as the control input enables us to decouple the optimization
of the speed profile and the gear selection: the rescaled torque
ad is derived first and then the gear is selected to minimize fuel
consumption.

2.3 Fuel Consumption Map
The functional (1) contains map q(v,ad) that specifies the

fuel consumption rate (with unit [g/s]) for a given input ad and a
given speed v. Fuel consumption maps are typically given as
a function of the engine speed ωe and engine torque Te, that
is, q(ωe,Te). Dividing this with the engine power P = Teωe =
meffadv we obtain the brake specific fuel consumption (BSFC):

BSFC =
q(ωe,Te)

Teωe
=

q(v,ad)

meffadv
, (9)

where we used ad = ηTe
meffR

and v = Rωe
η

, cf. (6). Small BSFC
values imply good fuel economy [15]. Previous efforts on fuel e-
conomy optimization usually assumed fixed gear ratio, which re-
sulted in a one-to-one relationship between q(ωe,Te) and q(v,ad)
[9,11]. In this paper, we generate a map with gear changes in-
volved.

Given a control input ad at a certain speed v, different gears
set the engine at different working points, and therefore, yield
different BSFC values. We choose the gear that gives the least
BSFC among all the available gears and generate the working
zone for each gear in the (v,ad) plane as shown in Figure 2(a)
for a MaxxForce 13 diesel engine with a 10-speed manual trans-
mission used in a Prostar truck manufactured by Navistar [16].
It can be shown that for any given (v,ad) point, there is a single
optimal gear ratio, so one can map the fuel consumption q from
the (ωe,Te) plane to the (v,ad) plane using the associated gear,
which is shown by the contours in Figure 2(b). It can be observed
that the contours of fuel consumption map are similar to the iso-
power curves (P = meffadv). To obtain an analytical model we fit
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FIGURE 2. Contours in the plane of speed v and control input ad. (a)
Optimal gear ratios; (b) Experimental fuel consumption contours, with
units [g/s]; (c) Fitted fuel consumption contours, with units [g/s]; (d)
BSFC with optimal gear ratios applied, with units [kg/(kW · h)]. The
black crosses represent points with minimal BSFC value. In all four
panels, the black dashed curve is the iso-power line that must not be
exceeded in order to keep the engine in the accessible range for all gears.

the data using Willians approximation [17]

q(v,ad) = p2vad + p4v+ p6, (10)

by applying least square fitting method [18] and obtained p2 =
1.8284 ± 0.0019 [gs2/m2], p4 = 0.0209 ± 0.0006 [g/m], p6 =
−0.1868±0.0068 [g/s]. The corresponding contours are shown
in Figure 2(c).

We assume that gear changes occur instantaneously and the
engine’s working point jumps along iso-power curves during
gear change. The blank regions in Figure 2 correspond to (v,ad)
combinations that are not accessible by the engine. This pro-
vides a constraint on ad, i.e., give aU(v) in (2). In particular, if
the state of the vehicle is in the region above the black dashed
iso-power curve, gear changes may lead to engine states that are
not accessible. Therefore, the black dashed curve is the maxi-
mum power Pmax that the engine may produce in any gear. Note
that P = Teωe = meffadv, and thus, we have

aU(v) = min{amax,U/v}, where U =
Pmax

meff
. (11)

In this paper we use amax = 2 [m/s], Pmax = 300.65 [kW]⇒U =
10.14 [m2/s3] that are acquired through fitting.
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2.4 Formulating the Boundary Value Problem
Substituting (10) into (1), we obtain

J0 =
∫ tf

0
(p2vad + p4v+ p6 +σ0)dt. (12)

Since p4v is independent of the control input ad and
∫ tf

0 p4vdt =
p4S is constant, these terms may be dropped. We define σ =
p6 +σ0, drop the subscript of p2, and redefine the cost function

J =
∫ tf

0
padvdt +σtf. (13)

Given the optimal control problem (2,7,13), we apply Pontrya-
gin’s maximum principle [19] to get a necessary condition for the
optimal trajectory. First, we define the augmented Hamiltonian

H(s,v,λ ,µ,ad) = pvad +σ +λv+µ
(
−αh′(s)−β −κv2 +ad

)

+ ν1ad/aU(v)+ν2(1−ad/aU(v)), (14)

where λ and µ are the costates, with units [g/m] and [gs/m],
respectively. The extra multipliers ν1,ν2 are associated with the
constraints in the last row of (2) and they are nonzero only when
equalities occur. We will use the vector notation

X = [s,v,λ ,µ]T. (15)

We convert the optimal control problem (2,7,13) into a free ter-
minal time boundary value problem (BVP)




ṡ
v̇
λ̇

µ̇


 =




v
−αh′(s)−β −κv2 +ad

µαh′′(s)
−λ +2µκv− pad−ν1∂v

( ad
aU(v)

)
−ν2∂v

(
1− ad

aU(v)

)




(16)


s(tf)− s(0)−S
v(0)− v0
v(tf)− vf

H(s(tf),v(tf),λ (tf),µ(tf),ad(tf))




︸ ︷︷ ︸
B(X(0),X(tf))

=




0
0
0
0


 , (17)

where the optimal control ad is given by

ad = argminH(s,v,λ ,µ,ad). (18)

Since H is linear in ad (cf. (14)) with coefficient

z = pv+µ, (19)

(18) yields

ad(t) =





aU(v(t)) if z(t)< 0,
a∗d(t) if z(t) = 0,
0 if z(t)> 0.

(20)

This is a “bang-bang” controller, i.e., the control input switches
abruptly between different values. The first case is related to the
constraint (11) while in the second case the control input is such
that the trajectory is kept in the plane z = 0. To reveal how can
system dynamics remain in the plane z= 0, we give the following
remarks.

Remark 1. Assume κ 6= 0 in (16) and that no constraints are
applied to control input ad. Then the necessary and sufficien-
t condition to maintain z = 0 is having constant speed v =
3
√

σ/(2pκ), which can be calculated by setting v̇ = 0 and us-
ing (14,16,17,19).

Remark 2. If the gradient h′(s) is mild, that is, given v(0) =
v(tf),h(s), v > 0, s ∈ [0,S], we have 0 ≤ αh′(s) + β + κv2 <
min{U/v,amax}, then the control input a∗d(t) = αh′(v0t)+ β +
κv2

0 keeps the speed constant while satisfying (20).

Remarks 1 and 2 yield that traveling with a constant speed
on a road of mild elevation may be optimal. This result corre-
sponds to the conclusion of [7,20]. However, when the route is
steep, we need to switch between maximum and minimum ac-
cording to (20).

It is known that there is no general existence and unique-
ness conditions for boundary value problems, even for smooth
dynamic systems [18]. Therefore, whether a solution exists
is unknown when setting up parameter values. While system
(16,17,20) consist of smooth subsystems, switches make the sys-
tem non-smooth. Moreover, varying the parameter σ changes
the boundary condition (17) according to (14) and slight change
in this parameter may result in significant change of the optimal
control input. Due to these issues, available BVP solvers can-
not be applied to solve the system (16,17,20) directly. Before we
apply our own solver, we solve an analogous simplified problem
analytically. This allows us to characterize the properties of the
optimal solution and we can use the analytical solution to initial-
ize our numerical solver.

3 ANALYTICAL SOLUTION OF THE LINEAR DAMPED
SYSTEM
In this section, we linearize the BVP (16,17,20) and derive

the analytical solution. This allows us to characterize how the
optimal solution changes with the parameter σ . Moreover, the
analytical solution will be utilized in Section 4 to initialize the
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numerical continuation that is used to solve the original nonlinear
BVP (16,17,20).

Here, the air drag is approximated by linear damping, i.e.,
κv2 is replaced by κv0v, where v0 = v(0). Moreover, the con-
straints on ad is given by 0≤ ad ≤ aU where aU is constant such
that aU ≤ amax (cf. (11)). Thus (16) is substituted by the affine
equations




ṡ
v̇
λ̇

µ̇


=




0 1 0 0
−2α

hR
s2
R
−κv0 0 0

0 0 0 2α
hR
s2
R

0 0 −1 κv0







s
v
λ

µ


+




0
2α

hR
sR
−β +ad

0
−pad


 .

(21)
According to (20), the input ad stays at its maximum aU or min-
imum 0 when z 6= 0. When ad is constant, the dynamics of s,v
and the dynamics of λ ,µ are decoupled. Therefore, we obtain
the solution in the form




s1
v1
λ1
µ1


=




F1(s0,v0, t1,ad)
F2(s0,v0, t1,ad)
F3(λ0,µ0, t1,ad)
F4(λ0,µ0, t1,ad)


 ,

︸ ︷︷ ︸
F(X0,t1,ad)

(22)

where we used the abbreviated notation s(t1) = s1, v(t1) = v1,
λ (t1) = λ1, µ(t1) = µ1, s(0) = s0 ,v(0) = v0, λ (0) = λ0, µ(0) =
µ0. Note that, when ad is not constant but a function of time,
we may still get a expression similar to (22), but it becomes a
functional. Even though we cannot guarantee that a unique solu-
tion exists, we assume that the boundary condition (17) allows at
least one solution.

If the system does not satisfy the conditions in Remarks 1
and 2, the control input switches between the cases in (20). In
general, there may be multiple switches but in case of the simple
elevation profile (8), we only observed one switch. Thus, in this
paper we restrict ourselves to this case, i.e., we assume that the
trajectory crosses z = pv+ µ = 0 once as shown by the trajec-
tories in Figure 3. The control input ad either switches from the
maximum aU to minimum 0 (trajectories 1 and 2), or vice versa
(trajectories 3 and 4). Trajectories 1 and 4 are named traverse
scenarios since these trajectories go through the plane z = 0.
On the other hand, trajectories 2 and 3 tangentially attach to the
plane, travel along it, and leave it after some time. We name
these tangential scenarios. When the trajectory is tangential to
the surface z = 0, the control input is a∗d(t) = αh′(s)+β +κv0v;
see (20) and Remark 2.

By solving the affine equation (21) analytically, the linear
system (17,20,21) can be transformed to a system of nonlinear
algebraic equations. By using the notation defined in (17,22), for

s

v

µ

z > 0

1

2

z < 0

4

3

FIGURE 3. Four possible scenarios involving one switch. Trajecto-
ries 1, 2 are for the case when ad switches from maximum to minimum
(i.e., z = pv+µ switches from negative to positive). Trajectory 1 shows
a traverse scenario, while trajectory 2 depicts a tangential scenario. Tra-
jectories 3, 4 are for the case when ad switches from minimum to maxi-
mum (i.e., z = pv+µ switches from positive to negative). Trajectory 4
represents a traverse scenario, while trajectory 3 shows a tangential sce-
nario. For the tangential scenarios 2 and 3, bold segments correspond to
z = 0 while for the traverse scenarios 1 and 4, crosses indicate z = 0.

the traverse scenario we obtain

B(X0,Xf) = 0,
X1 = F(X0, t1,ad1),

Xf = F(X1, tf− t1,adf),

(23)

where ad1,adf ∈ {0,aU} such that ad1 6= adf. Solving these equa-
tions we obtain t1, tf,λ0,µ0. On the other hand, for the tangential
scenario we obtain

B(X0,Xf) = 0,
pv̇+ µ̇ = 0, for t ∈ [t1, t2],

X1 = F(X0, t1,ad1),

Xf = F(X2, tf− t2,adf),

(24)

where ad1,adf ∈ {0,aU} such that ad1 6= adf. Solving these equa-
tions we obtain t1, t2, tf,λ0,µ0.

Note that, the solutions of (23) and (24) have to be checked
whether the initial value z(0) = pv(0) + µ(0) corresponds to
(20). Also, one may obtain solutions such that the speed v be-
comes negative during the procedure, which is not physically re-
alistic. Moreover, (24) may result solutions which require that
ad violates the constraint 0≤ ad ≤ aU in order to maintain z = 0.
Such solutions may occur for certain parameters S,vf,v0,amax,
but we do not study these cases in this paper.
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Now we investigate how the solutions change with the pa-
rameter σ . Our particular interest is how the solution switches
between the different types of trajectories shown in Figure 3.
We first introduce some critical values for σ . The change be-
tween scenarios 1 and 2 happens when z(t1) = 0, ż(t1) = 0 hold,
which occurs at the critical value σcr1. The same condition can
be used to find σcr2 where the system changes between scenarios
3 and 4. We introduce the critical value σcr3, corresponding to
the change between scenarios 1 and 4, which occurs when the
objective function (13) takes the same value. Denoting the cor-
responding switching times by t(1)1 , t(1)f and t(4)1 , t(4)f , we obtain

∫ t(1)1

0
aUvdt +σcr3t(1)f =

∫ t(4)f

t(4)1

aUvdt +σcr3t(4)f . (25)

Typically, one of the scenarios has less fuel consumption while
the other has shorter traveling time. For scenario 1 the input ad
switches from aU to 0, while for scenario 4, it switches from 0 to
aU. Thus scenario 1 has shorter traveling time while 4 has less
fuel consumption, since speeding up at the first part will result
in a larger average speed. However, for negative values of σcr3,
shorter traveling time happens to have less fuel consumption as
well.

Depending on the relationship between σcr1,σcr2 and σcr3,
we have the following possibilities:

1. For σcr1 < σcr2, the change between 1 and 4 happens at σcr3.
Then 1 is the optimal solution for σ > σcr3 and 4 is the opti-
mal solution for σ < σcr3.

2. For σcr1 > σcr2, the dynamics is more complicated. If
σ > max{σcr1,σcr3} then the optimal solution is 1; if
σ < min{σcr2,σcr3} then the optimal solution is 4; if
min{σcr2,σcr3} ≤ σ ≤max{σcr1,σcr3} then the optimal so-
lution is 2 or 3 or some more complicated multiple switch
solution, whichever minimizes the objective function (13).
We refer to this σ domain as the “undetermined range”.

As an example, we consider a specific problem where
v(tf) = v(0) = 25 [m/s], aU = 0.6 [m/s2]. The critical values are
σcr1 = 12.73 [g/s], σcr2 = 1.05 [g/s], σcr3 = 5.06 [g/s], that is,
the undetermined range is [σcr2,σcr1]. The terminal time tf and
total fuel consumption Q are plotted in Figure 4 as a function of
σ . The corresponding time profiles for the points A, B, C are
shown in Figure 6. Here the analytical solutions are depicted as
red dashed curves while the numerical solutions, obtained by 4th
order Runge-Kutta method, are shown as blue solid curves. In all
figures, the analytical and numerical solutions are almost undis-
tinguishable from each other. Notice that for case B a section of
the trajectory is tangent to the z = 0. In cases B and C the peak
speed may be too high to be realistic due to the fact that linear air
drag is considered and no speed dependent constraint is applied.
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FIGURE 4. The upper panel gives the terminal time tf as a function
of σ , while the lower panel shows the fuel consumption Q as a function
of σ , for v(tf) = v(0) = 25 [m/s], aU = 0.6 [m/s2]. The green vertical
dashed-dotted line denotes σcr2, the black vertical dashed line denotes
σcr1, and the blue dashed line denotes σcr3. The time evolution of the
system is shown in Figure 6 for the points marked (A) σ = −5 [g/s],
(B) σ = 10 [g/s], (C) σ = 40 [g/s].
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FIGURE 5. The initial value of the switching variables z(0) is shown
as a function of parameter σ for v(0) = 10[m/s], v(tf) = 30[m/s],
aU = 1[m/s2]. The critical values σcr1, σcr2, σcr3 are highlighted. The
horizontal red dashed line is at z(0) = 0 and it intersects with the left
branch corresponding to scenario 4 at the red cross.

When nonlinearities are added later in Section 4, the peak speed
will reduce to realistic values.

Although there are other possibilities theoretically (e.g.
σcr3 > σcr1), we did not observe such cases under realistic cir-
cumstances. However, we remark that the optimal solution may
be absent for certain σ values. In order to make (20) hold while
varying σ , the sign of z(0) must match with control action (20),
i.e., we want z(0) < 0 for scenarios 1 and 2 and z(0) > 0 for
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FIGURE 6. Time evolution of the speed v (top row), the corresponding control input ad (middle row), and the switching variable z (bottom row)
for different values of the parameters σ as indicated. The columns correspond to the points A, B, C marked in Figure 4. Red dashed curves represent
analytical solutions while blue solid curves represent numerical solutions and they match very well.

scenarios 3 and 4 (see Figure 3). For example, if (20) is vio-
lated, (23) may not generate a solution with one switch. As an
example, we consider v(0) = 10 [m/s],v(tf) = 30 [m/s],amax =
1 [m/s2], that yield the critical values σcr1 = 4.72 [g/s],σcr2 =
5.69 [g/s],σcr3 = −0.43 [g/s]. Since σcr3 < σcr1 < σcr2, there is
no undetermined range, i.e., only scenarios 1 and 4 are possible.
The initial value of the switching variable z(0) can be obtained
by solving (17,19,23), and it is shown as a function of parameter
σ in Figure 5. The left branch with positive slope corresponds to
scenario 4 (i.e., ad switches from 0 to aU) while the right branch
with a negative slope corresponds to scenario 1 (i.e., ad switches
from aU to 0). Indeed, trajectory 4 shall be the optimal solution
for σ ≤ σcr3 while trajectory 1 shall be the optimal solution for
σ ≥ σcr3. However, on the left of the red cross, we have z(0)< 0,
that is, scenario 4 violates (20), and thus, it must be discarded.
Moreover, scenario 1 only exists for σ > σcr1. Since σcr1 > σcr3,
we can conclude that for σ < σcr1 then there exist no optimal
solution, while for σ > σcr1, scenario 1 is the optimal solution.

4 NUMERICAL SOLUTION OF THE NONLINEAR
PROBLEM
In this section we solve the original nonlinear BVP

(16,17,20) using numerical continuation. This technique was o-
riginally developed to compute solutions of systems of parame-
terized nonlinear equations [21]. We adapt the idea here to track
the solutions of BVPs while varying parameters starting from the
solution of the simplified equations (17,20,21). Besides the non-
linear “bang-bang” controller (20), the original problem also has
two other types of nonlinearity: air drag in (16) and nonlinear
input constraint aU(v) in (11). The idea is to add these nonlin-
earities gradually to the linear damped system by varying system

parameters.
The nonlinear air drag term is added by varying κ̃ from 0 to

κ in

κ̃v2 +(κ− κ̃)v0v. (26)

To introduce the input constraint (11), we start from U =
vmaxamax = 50m/s× 2m/s2 and decrease it until we reach U =
Pmax/meff = 10.14[m2/s3]. Then we change the maximum accel-
eration gradually from aU = 0.6[m/s2] to amax = 2[m/s2]. Thus,
we end up with solving a series of subproblems, where every
solution serves as the initial guess to the next subproblem.

However, continuation cannot be applied for nonsmooth sys-
tems. Thus, we derive an approximate system by smoothing sys-
tem (16,17,20). Specifically, the smoothed version of constraint
(11) is written as

aU(v) =
amax +U/v

2
− (amax−U/v)2

2
√

ε1 +(amax−U/v)2
, (27)

while the smoothed version of the switching rule (20) can be
written as

ad =
1
2

aU(v)
(

1− z√
ε2 + z2

)
, (28)

where ε1 and ε2 are small parameters, with units [m2/s4] and
[g2s2/m2], respectively. The results are visualized in Figure 7,
where we compare the nonsmooth formulae (11,20) (red dashed
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FIGURE 7. Visualizing the effect of smoothing. The upper panel
shows the speed of the truck as a function of the switching variable z.
The horizontal dotted line is at v =U/amax. The lower panel depicts the
control input. The horizontal black dotted line indicates the maximum
control input amax, the red dashed curve is the “bang-bang” controller
input (11,20) and the blue solid curve is the smoothed control input
(27,28). Here we use U =Pmax/meff = 10.14 [m2/s3], amax = 0.6[m/s2],
ε1 = 0.001[m2/s4], and ε2 = 0.01[g2s2/m2].

curve) to the smoothed ones (27,28) (blue solid curve). The hor-
izontal black dotted line in the upper panel is at v = U/amax.
When v is below this line, (11) gives ad = amax, otherwise it
gives ad = U/v. The effect of the speed profile can be seen in
the lower panel when z < 0. Here the horizontal dotted line in-
dicates ad = amax. This panel also illustrates that for z < 0 (20)
gives ad = aU(v) while for z > 0 it gives ad = 0. Notice that for
the small ε1, ε2 values used (see caption) the smoothed controller
gives a good approximation of the nonsmooth one.

Our BVP solver is based on the shooting method [18], a sim-
ple, straightforward, and widely used method that is applicable
when the initial values of costates λ (0),µ(0) and the terminal
time tf are unknown. We apply Newton iterations so that we vary
the initial conditions and solve the corresponding initial value
problem (IVP) by numerical integration. As the Newton itera-
tions converge, the solution approaches the optimal one which
satisfies the boundary conditions at the terminal time. Thus, the
shooting method transforms the BVP into a system of algebra-
ic equations with unknown variables λ (0),µ(0), tf. In the solver
we use the Newton trust region method to solve the nonlinear
algebraic equations [22].

Following the results shown in Figures 4 and 6, we solve
the nonlinear problem for the same parameter values and plot
the terminal time tf and the total fuel consumption Q as func-
tion of σ in Figure 8. The critical values are σcr1 = 24.98 [g/s],
σcr2 = 5.75 [g/s], and σcr3 = 12.78 [g/s]. Recall that if σ < σcr2
or σ > σcr1, the analytical results suggest that the optimal so-
lution is given by a traverse scenario. This feature remains the
same for nonlinear system. However for σcr2 < σ < σcr1, the lin-
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FIGURE 8. The terminal time tf (upper panel) and the fuel consump-
tion Q (lower panel) as a function of σ for v(tf) = v(0) = 25 [m/s]. The
critical values σcr1, σcr2, σcr3 are highlighted. The corresponding tra-
jectories are shown in Figure 9 for the points marked (A) σ =−5 [g/s],
(B) σ = 10 [g/s], (C) σ = 40 [g/s].

ear approximation predicts a tangential solution while this does
not hold for nonlinear system.

The time evolution of the system is shown in Figure 9 for (A)
σ =−5 [g/s], (B) σ = 10 [g/s], (C) σ = 40 [g/s]. Here blue solid
curves represent the trajectories acquired by the our BVP solver
based on the smoothed controller (27,28), while the red dashed
curves represent the nonsmooth trajectories when applying the
“bang-bang” controller (11,20) with the same initial condition-
s and tf values. The numerical solution of the nonlinear system
maintains the same trend as the analytical solution of the linear
system. In cases A and C, the two approaches give very similar
results (cf. Figures 6 and 9). But the nonlinear solutions tend to
apply maximum control for longer time intervals, due to larger
air drag, and smaller maximum torque available. In case B only
the trajectories of the system with smooth controller are shown,
because the trajectories with nonsmooth controller deviate sig-
nificantly from the target at the terminal time. Within the unde-
termined range [σcr2,σcr1], the smoothed controller may lead to
more complicated switching scenarios for the nonlinear system.

We summarize our results in Table 1, where we show the
terminal time tf and the total fuel consumption Q for different σ

values for v(0) = v(tf) = 25 [m/s]. For comparison, we also show
the results for constant speed (that can be maintained using stan-
dard cruise control). When σ is small the optimal solution con-
sumes approximately 11.9% less fuel compared to the constant
speed scenario. On the other hand, when the weight on terminal
time is large and the truck terminates earlier but consumes more
fuel. We remark that in order to maintain the constant speed,
braking and large engine torque may be needed (i.e., (11) may
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FIGURE 9. Time evolution of the speed v (top row), the corresponding control input ad (middle row), and the switching variable z for different values
of the parameter σ as indicated. The columns correspond to the points A, B, C marked in Figure 8. Blue solid curves represent trajectories obtained
when applying the smoothed controller (27,28) while the red dashed curves are obtained by applying the “bang-bang” controller (11,20) for the same
initial conditions.

tf[s] Q[g]

σ =−5 (Case A) 161.6 1076.8

σ = 40 (Case C) 115.7 1670.0

Cruise Control 160.0 1222.3

TABLE 1. Terminal time tf and fuel consumption Q for v(0) = v(tf) =
25[m/s].

be violated). Therefore the constant speed driving profile is not
necessarily in the function space for the optimal control prob-
lem. Finally we remark that including the headwind is a natural
extension (cf. (5)). Numerical results show that the increase of
headwind will increase the time period when maximum available
control input shall be applied.

5 CONCLUSION AND FUTURE WORK
In this paper we proposed a framework for fuel economy

optimization of heavy duty vehicles that can incorporate road el-
evation, headwind and traffic information. Starting from the an-
alytical solution of a simplified problem, the problem is solved
numerically using numerical continuation. It is shown that by
varying the cost related to terminal time, the optimal solution
may change significantly. This suggest a strategy for tuning the
solutions based on traffic information while obtaining this cost in
real-time. Future works also include extensions that can handle
longer, more complicated, data-based elevation profiles as well
as detailed traffic information. We also plan to implement collo-
cation methods for the BVP solver in order to increase computa-
tion speed.
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A Parameters used in this paper

Parameter Value

Mass (m) 29484 [kg]

Air Drag Coefficient (k) 3.84 [kg/m]

Tire Rolling Radius (R) 0.504 [m]

Tire Rolling Resistance Coefficient (γ) 0.006

Maximum Acceleration (amax) 2 [m/s2]

Engine Rotational Inertia (I) 39.9 [kg·m2]

Gravitational Constant (g) 9.81 [m/s2]

Number of Forward Gears 10

1st Gear Ratio/Efficiency 12.94/0.97

2nd Gear Ratio/Efficiency 9.29/0.97

3rd Gear Ratio/Efficiency 6.75/0.97

4th Gear Ratio/Efficiency 4.9/0.97

5th Gear Ratio/Efficiency 3.62/0.97

6th Gear Ratio/Efficiency 2.64/0.97

7nd Gear Ratio/Efficiency 1.90/0.97

8rd Gear Ratio/Efficiency 1.38/0.98

9th Gear Ratio/Efficiency 1/0.99

10th Gear Ratio/Efficiency 0.74/0.98

Final Drive Ratio /Efficiency 4.17/0.98

TABLE 2. Data of a 2012 Navistar Prostar truck [16].
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