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1 Introduction
Over the past few decades, passenger vehicles have been equipped with more and
more automation features in order to improve active safety, passenger comfort, and
traffic throughput of the road transportation system. In particular, adaptive cruise
control (ACC) was invented to alleviate human drivers from the constant burden of
speed control [1]. While the influence of ACC is yet to be observed in real traffic due
to its low penetration rate, theoretical studies have found that ACC-equipped vehicles
may have limited benefits on traffic flow [2,3]. In particular, very high penetration of
ACC vehicles is required to suppress speed fluctuations propagating through vehicle
strings, as each ACC vehicle only responds to its immediate predecessor [4].
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In order to overcome such limitations, cooperative adaptive cruise control
(CACC) was proposed, where a platoon of ACC vehicles utilizes vehicle-to-everything
(V2X) communication to coordinate their behavior [5–8]. CACC has been shown to
have the potential to improve fuel economy and traffic efficiency in both theoretical
and experimental studies [9–12]. However, the application of CACC in the early
stages of driving automation may be significantly limited by the requirement that all
vehicles in a CACC platoon must be automated aside from having V2X communi-
cation devices [13,14]. In particular, as mentioned in Ref. [15], “at low market pen-
etrations, . . . the probability of consecutive vehicles being equipped is negligible.”
Given the relatively low cost of V2X devices compared with driving automation, it
is desirable to exploit the benefits of V2X without being restricted by the penetration
rate of automation. Thus, we need to consider a connected automated vehicle design
that is able to utilize V2X information sent from human-driven vehicles ahead.

For the longitudinal control of such a connected automated vehicle design, we
proposed the concept of connected cruise control (CCC) that exploits ad hoc V2X
communication from multiple human-driven vehicles ahead [16]. Several theoretical
studies have shown that connected cruise control is able to significantly improve
active safety and fuel economy of the connected automated vehicle by providing
head-to-tail string stability [17–20].

Since connected automated vehicle design relies on models of preceding vehicles,
uncertainties in the models need to be considered to guarantee robust performance of
the connected vehicle system. In Refs. [21–23], uncertainties of vehicle parameters
in an automated platoon was considered and robust controllers were synthesized
using the H∞ framework. Some other methods were also used in Refs. [24–27]
to discuss the effects of unmodeled dynamics, stochastic communication delay, and
measurement noise. However, a systematic method is needed to guarantee robust
string stability against uncertain parameters of the human drivers ahead, such as their
reaction time delays and feedback gains. In particular, uncertainties in the time delays
should be taken into account without using overly conservative approximations.
Moreover, such analysis should allow flexible connectivity topology and scale well
as the number of vehicles connected via V2X communication increases. Therefore,
in this chapter, we use structured singular value analysis [28,29] to provide tight
bounds which allow connected cruise controllers to be head-to-tail string stable,
despite uncertainties in human car-following behavior. We demonstrate through case
studies how this robust string stability may improve the performance of a connected
automated vehicle among human-driven vehicles.

2 Modeling and control design with delays
In this section, we first model the car-following behavior of human-driven vehicles in
nonemergency situations; see Fig. 1A. While many existing car-following models can
be used to describe the longitudinal behavior of human-driven vehicles, the optimal
velocity model has a very simple mathematical form and provides great physical
intuitions. Thus, we choose this to model human-driven vehicles and also use it as a
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FIG. 1

Two-vehicle configuration: (A) car-following model; (B) range policy function Vi (hi ) of
vehicle i; and (C) block diagram of the transfer function Ti+1,i (s) of vehicle i.

basis for connected vehicle controller. For both human car-following behavior and the
connected cruise controller, we introduce the notion of plant and string stability and
calculate the nominal stability regions without considering parameter uncertainty.

2.1 Car-following model
In this section, we introduce the model to describe the dynamics of a predecessor-
follower pair. When neglecting the rolling resistance and air drag the longitudinal
dynamics of the following vehicle i can be described by

ḣi(t) = vi+1(t) − vi(t), (1)

v̇i(t) = ai(t), (2)

ȧi(t) = 1

ξi
(ui(t) − ai(t)), (3)

where vi+1 is the velocity of the preceding vehicle, hi, vi, and ai are the headway,
velocity, and acceleration of the following vehicle i, and ui is its acceleration
command. The powertrain dynamics is modeled through the actuator lag ξi [16,30].
Since the follower only uses motion information from the immediate predecessor, the
acceleration command can be described by

ui(t) = αi(Vi(hi(t − τi)) − vi(t − τi)) + βi(vi+1(t − τi) − vi(t − τi)), (4)

where τi is the reaction time delay of a human driver and αi and βi are the control
gains. Moreover, Vi(hi) is the range policy function that describes the desired velocity
based on headway. Here, we consider

Vi(hi) =
⎧⎨
⎩

0 if hi ≤ hi,st,
κi(hi − hi,st) if hi,st < hi < hi,go,
vmax if hi ≥ hi,go,

(5)
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see Fig. 1B. That is, the desired velocity is zero for small headways (hi ≤ hi,st)
and equal to the speed limit vmax for large headways (hi ≥ hi,go). Between these,
the desired velocity increases with the headway linearly, with gradient κi. Note that
when hi,st = 0 [m], 1/κi is often referred to as the time headway. Many other range
policies may be chosen, but the qualitative dynamics remains similar if the earlier
characteristics are kept.

Let us assume that the leader is traveling with the constant speed vi+1(t) ≡ v∗,
then the follower admits the equilibrium hi(t) ≡ h∗

i , vi(t) ≡ v∗, ai(t) ≡ 0. We define
the perturbations about the equilibrium as

h̃i(t) = hi(t) − h∗
i , ṽi(t) = vi(t) − v∗, ãi(t) = ai(t), (6)

that results in

˙̃hi(t) = ṽi+1(t) − ṽi(t),

˙̃vi(t) = ãi(t),

˙̃ai(t) = 1

ξi
(αi(κih̃i(t − τi) − ṽi(t − τi)) + βi(ṽi+1(t − τi) − ṽi(t − τi)) − ãi(t)). (7)

Taking the Laplace transform of Eq. (7) with zero initial conditions, one may derive
the transfer function

Ti+1,i(s) = Ṽi(s)

Ṽi+1(s)
= (αiκi + βis)e−sτi

ξis3 + s2 + (αiκi + (αi + βi)s)e−sτi
, (8)

where s is the Laplace variable and Ṽi(s) and Ṽi+1(s) denote the Laplace transforms
of ṽi(t) and ṽi+1(t). The block diagram is presented in Fig. 1C.

In the rest of Section 2.1, we assume nominal parameter values in Eq. (8) and
discuss their influence in human car-following behaviors. By abuse of notation, we
drop the indices i of parameters and refer to them as κ , α, β, τ , and ξ .

At the linear level, the system is plant stable, that is, approaches the equilibrium
asymptotically, if all the infinitely many poles of Eq. (8), that is, the roots of the
characteristic function

D(s) = ξs3 + s2 + (ακ + (α + β)s)e−sτ (9)

are located on the left-half complex plane. When a real pole crosses the imaginary
axis, substituting s = 0 into the characteristic equation D(s) = 0 yields the stability
boundary

α = 0. (10)

On the other hand, when a complex conjugate pair of poles crosses the imaginary
axis, substituting s = iΩ , Ω > 0 into D(s) = 0 and separating the real and imaginary
parts result in the stability boundary
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FIG. 2

Plant and string stability charts for different delays and lags, while fixing τ + ξ = 0.6 [s],
κ = 0.6 [1/s].

α = Ω2

κ
(cos(Ωτ) − ξΩ sin(Ωτ)), (11)

β = Ω(ξΩ cos(Ωτ) + sin(Ωτ)) − α. (12)

Stability diagrams are presented in Fig. 2, where the thick red curves (or gray in
grayscale print) are the nominal plant stability boundaries and the shading indicates
the domain of the plant-stable control gains. The sum of the time delay and lag is
kept τ + ξ = 0.6 [s], while having κ = 0.6 [1/s]. Comparison of the different panels
reveals that the plant-stable domain decreases as the delay τ increases.

To ensure string stability, that is, the attenuation of velocity perturbations between
the leader and the follower at the linear level, we consider sinusoidal excitation
ṽi+1(t) = vamp

i+1 sin(ωt), which (assuming plant stability) leads to the steady-state
response ṽss

i (t) = vamp
i sin(ωt + ψ), where vamp

i /vamp
i+1 = |Ti+1,i(iω)| and ψ =

� Ti+1,i(iω). Requiring |Ti+1,i(iω)| < 1 for all ω > 0 ensures attenuation of
sinusoidal signals and, as superposition holds for linear systems, for the linear
combination of those signals. This condition may be rewritten as ω2P(ω) > 0 where

P(ω) = α2 + 2αβ + ω2 + ξ2ω4 − 2(ακ + (α + β)ξω2) cos(ωτ)

− 2(α + β − ακξ)ω sin(ωτ). (13)

The stability boundaries can be identified corresponding to the minima of P
becoming negative at ω̂ > 0 that is defined by

P(ω̂) = 0, (14)

∂

∂ω
P(ω̂) = 0, (15)
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while satisfying ∂2P
∂2ω

(ω̂) > 0. Solving Eqs. (14), (15) for α and β one may obtain the
string stability boundaries parameterized by ω̂ as

α = f1 ±
√

f 2
1 + 2f0, (16)

β = ακ(ξτ ω̂ cos(ω̂τ ) + (ξ + τ) sin(ω̂τ )) + ω̂(1 + 2ξ2ω̂2)

(2ξ + τ)ω̂ cos(ω̂τ ) + (1 − ξτ ω̂2) sin(ω̂τ )
− α, (17)

where

f0 = ω̂2((1 + (3ξ + τ)ξω̂2 + ξ3τ ω̂4) sin(ω̂τ ) − ω̂(τ − ξ2(2ξ − τ)ω̂2) cos(ω̂τ ))

2(2ξ(κτ − 1) − τ)ω̂ cos(ω̂τ ) + 2(2κ(ξ + τ) + ξτ ω̂2 − 1) sin(ω̂τ )
, (18)

f1 = 2ω̂(κ(ξ + τ) − 1 + (κτ − 2)ξ2ω̂2 + κiξ cos(2ω̂τ )) + κ(1 − ξ2ω̂2) sin(2ω̂τ )

2(2ξ(κτ − 1) − τ)ω̂ cos(ω̂τ ) + 2(2κ(ξ + τ) + ξτ ω̂2 − 1) sin(ω̂τ )
. (19)

For ω̂ = 0, the equalities |Ti+1,i(0)| = 1 and ∂|Ti+1,i|
∂ω

(0) = 0 always hold. Thus, for

string stability, we need ∂2|Ti+1,i|
∂ω2 (0) < 0 which is equivalent to P(0) = α(α + 2β −

2κ) > 0. This gives the stability boundaries

α = 0, (20)

α = 2(κ − β). (21)

The nominal stability boundaries (16)–(21) are presented in Fig. 2 as black curves
enclosing the string stable domain (shaded dark gray). Here, the dashed straight lines
indicate the plant and string stability boundaries corresponding to Ω = 0 and ω̂ = 0,
respectively. Note that the nominal string stable region grows and becomes open from
above as τ decreases, indicating that the information delay τ has more significant
influence on the string stability than the actuation lag ξ . Also, note that the string
stable domain shrinks when the delay τ increases. In particular, there exist two anchor
points P+ and P− corresponding to ω̂ = 0,

(α+, β+) =
(

4κ(ξ + τ) − 2

2τ(κτ − 1) + ξ(4κτ − 2)
,

1 − 4κ(ξ + τ) + 2κ2τ(2ξ + τ)

2τ(κτ − 1) + ξ(4κτ − 2)

)
, (22)

(α−, β−) =
(

0,
1

2(ξ + τ)

)
, (23)

which can be found by applying the L’Hospital rule to Eqs. (16)–(19). When
increasing τ + ξ the anchor points move toward each other and when they meet,
the string stable domain disappears. Using Eqs. (22), (23), we find the critical sum of
the delay and lag is

τcr + ξcr = 1

2κ
, (24)

and for larger values the string stable domain disappears.
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FIG. 3

A connected vehicle system resulting from a connected automated vehicle using V2X
information from n human-driven vehicles ahead.

2.2 Connected vehicle systems
We consider a heterogeneous chain of vehicles where all vehicles are equipped with
V2X communication devices and some are capable of automated driving, as shown in
Fig. 3. When an automated vehicle receives motion information broadcasted from a
few vehicles ahead, it may choose to use the information in its motion control (see the
dashed arrows), and thus, it becomes a connected automated vehicle. Such a V2X-
based controller then defines a connected vehicle system consisting of the connected
automated vehicle and the preceding vehicles whose motion signals are used by the
connected automated vehicle.

Inside this connected vehicle system, we denote the connected automated vehicle
as vehicle 0, and the preceding vehicles as vehicles 1, . . . , n. Note that we as-
sume a connected automated vehicle does not “look beyond” another connected
automated vehicle. For example, in Fig. 3, vehicle 0 does not include the V2X
signals from vehicles farther ahead than vehicle n in its controller. This assump-
tion greatly simplifies the topology of connected vehicle systems and eliminates
intersections of links that are typically detrimental for the performance of the
system [17,31].

The connected cruise controller for the connected automated vehicle (i = 0) is
assumed in the form of

u0(t) =A1,0(V0(h0(t − σ1,0)) − v0(t − σ1,0)) +
n∑

j=1

Bj,0(vj(t − σj,0) − v0(t − σj,0)), (25)

where the control gains Aj,0 and Bj,0 and communication delay σj,0 correspond to
the links between vehicle j and the connected automated vehicle 0. Here, the range
policy function V0(h0) is defined as in Eq. (5), and its gradient is denoted by κ0 for
h0,st ≤ h0 ≤ h0,go.

Unlike many CACC algorithms, in the connected vehicle system shown in Fig. 3,
the preceding vehicles 1, . . . , n are not required to cooperate with the connected auto-
mated vehicle. Moreover, aside from broadcasting their motion information through
V2X communication, no automation of these vehicles is required. Correspondingly,
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the feedback gains and delay times in Eq. (4) cannot be tuned for the connected
automated vehicle design. However, the connected automated vehicle 0 may fully
exploit V2X signals from vehicles 1, . . . , n with no constraint on the connectivity
topology.

Note that when n = 1, the connected automated vehicle only uses motion
information from its immediate predecessor, and Eq. (25) gracefully degrades to the
same control structure as human-driven vehicles [32] or automated vehicles without
connectivity [4].

Similarly as in Section 2.1, here we consider the nominal stability of the
connected vehicle system (1)–(4), (25) around the equilibrium, where the vehicles
travel with the same constant speed vi(t) = v∗, ai(t) = 0 and their corresponding
headways are constant hi(t) = h∗

i such that Vi(h∗
i ) = v∗. Linearization of

Eqs. (1)–(4) including Eq. (25) about the equilibrium (h∗
i , v∗, 0) gives

˙̃h0(t) = ṽ1(t) − ṽ0(t),

˙̃v0(t) = ã0(t),

˙̃a0(t) = 1

ξ0

⎛
⎝A1,0(κ0h̃0(t − σ1,0) − ṽ0(t − σ1,0))

+
n∑

i=1

Bi,0(ṽi(t − σi,0) − ṽ0(t − σi,0)) − ã0(t)

⎞
⎠ (26)

for the connected automated vehicle and

˙̃hi(t) = ṽi+1(t) − ṽi(t),

˙̃vi(t) = ãi(t),

˙̃ai(t) = 1

ξi
(αi(κih̃i(t − τi) − ṽi(t − τi)) + βi(ṽi+1(t − τi) − ṽi(t − τi)) − ãi(t)) (27)

for the human-driven vehicles i = 1, . . . , n.
We assume that the connected vehicle system (26), (27) is plant stable, that

is, when the input perturbation ṽn+1(t) ≡ 0, the perturbations h̃i, ṽi, ãi of the
preceding vehicles and h̃0, ṽ0, ã0 of the connected automated vehicle tend to zero
regardless of the initial conditions. Instead, we focus on how the connected auto-
mated vehicle responds to speed perturbations propagating through the system. When
the speed fluctuation ṽ0 of the connected automated vehicle has smaller amplitude
than the input ṽn, we call the connected automated vehicle design head-to-tail
string stable.

The notion of string stability between two consecutive vehicles was previously
used to explain the amplification of speed perturbations along a chain of vehicles
without connectivity [33]. However, by considering head-to-tail string stability, we
allow speed perturbations to be amplified among the uncontrollable vehicles 1, . . . , n,
and we focus on how the connected automated vehicle attenuates the perturbations.
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Being head-to-tail string stable not only enables a connected automated vehicle to
enjoy better active safety, energy efficiency, and passenger comfort, but also it can
help to mitigate traffic waves [17].

We assume zero initial conditions for Eqs. (26), (27) and obtain

Ṽ0(s) =
n∑

i=1

Ti,0(s)Ṽi(s),

Ṽi(s) = Ti+1,i(s)Ṽi+1(s),

(28)

where Ṽ0(s) and Ṽi(s) denote the Laplace transforms of ṽ0(t) and ṽi(t), and the link
transfer functions are

T1,0(s) = (A1,0κ0 + B1,0s)e−sσ1,0

ξ0s3 + s2 + A1,0(κ0 + s)e−sσ1,0 + ∑n
l=1 Bl,0se−sσl,0

, (29)

Ti,0(s) = Bi,0se−sσi,0

ξ0s3 + s2 + A1,0(κ0 + s)e−sσ1,0 + ∑n
l=1 Bl,0se−sσl,0

, (30)

Ti+1,i(s) = (αiκi + βis)e−sτi

ξis3 + s2 + (αiκi + (αi + βi)s)e−sτi
. (31)

Thus, the head-to-tail transfer function of the connected vehicle system is

Gn,0(s) = Ṽ0(s)

Ṽn(s)
= det(T(s)), (32)

where the transfer function matrix is given by

T(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

T1,0(s) −1 0 · · · 0 0
T2,0(s) T2,1(s) −1 · · · 0 0
T3,0(s) 0 T3,2(s) · · · 0 0

...
...

...
. . .

...
...

Tn−1,0(s) 0 0 · · · Tn−1,n−2(s) −1
Tn,0(s) 0 0 · · · 0 Tn,n−1(s)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (33)

see Ref. [17] for the proof. The criterion for head-to-tail string stability at the linear
level is guaranteed if the perturbations are attenuated for any frequency, that is,

|det(T(iω))| < 1, ∀ω > 0, (34)

where we substituted s = iω. In order to facilitate robustness analysis in the following
section, we rewrite Eq. (34) as

1 − det(T(iω))δc �= 0, ∀ω > 0, (35)

where δc is an arbitrary complex number inside the unit circle in the complex plane,
that is, δc ∈ C, |δc| < 1.
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(A)

(B)

FIG. 4

A four-vehicle configuration: (A) connected vehicle system with the information flow
indicated by the dashed arrows and (B) the corresponding block diagram showing the
propagation of speed perturbations Ṽi (s), for i = 3, 2, 1, 0.

To illustrate the head-to-tail string stability, here we consider a connected
automated vehicle using motion information from three preceding vehicles, as shown
in Fig. 4A. The transfer function matrix for this connected vehicle system is

T(s) =
⎡
⎣T1,0(s) −1 0

T2,0(s) T2,1(s) −1
T3,0(s) 0 T3,2(s)

⎤
⎦ , (36)

where the elements T1,0(s), T2,0(s), T3,0(s), T2,1(s), and T3,2(s) are given by
Eqs. (29)–(31), while Eq. (32) results in the head-to-tail transfer function

G3,0(s) = det(T(s)) = T3,0(s) + T3,2(s)T2,0(s) + T3,2(s)T2,1(s)T1,0(s). (37)

The flow of information is illustrated on a schematic block diagram in Fig. 4B.
We consider the case when the preceding vehicles i = 1, 2 have parameters
αi = 0.25 [1/s], βi = 0.5 [1/s], κi = 0.8 [1/s], τi = 0.3 [s], ξi = 0.5 [s],
while the connected automated vehicle has σ1,0 = σ2,0 = σ3,0 = σ = 0.1 [s],
κ0 = 0.6 [1/s], ξ0 = 0.5 [s] and the design parameters are chosen as A1,0 = 0.4 [1/s],
B1,0 = 0.2 [1/s], B2,0 = 0.4 [1/s], and B3,0 = 0.4 [1/s].

In Fig. 5A, we plot the head-to-tail transfer function |G3,0(iω)| of the connected
automated vehicle (solid gray curve) and the link transfer function |T3,2(iω)| that
describes how vehicle 2 responds to the motion of vehicle 3 (dotted purple curve).
Here this is equal to |T2,1(iω)| as vehicles 2 and 1 have the same parameters. While
the magnitude of the head-to-tail transfer function stays below 1, the link transfer
functions of vehicles 2 and 1 reach beyond 1 for low frequencies. This indicates that
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(A) (B)

FIG. 5

(A) Example transfer functions |T3,2(iω)| = |T2,1(iω)|, |G3,0(iω)| and (B) corresponding
simulations for ω = 0.6 [rad/s].

speed perturbations at low frequency are amplified by vehicles 2 and 1 but eventually
are suppressed by the connected automated vehicle. This observation is supported by
a simulation shown in Fig. 5B, where the speed input v3(t) = v∗ + vamp

3 sin(ωt) with
v∗ = 15 [m/s], vamp

3 = 5 [m/s], ω = 0.6 [rad/s] is plotted as dashed brown curve. The
stationary time profiles for vehicles 2 and 1 are plotted by dotted purple and point-
dotted green curves, respectively. The color code corresponds to the vehicle colors in
Fig. 4A.

In Fig. 5B, one may notice the difference in the equilibrium headway, that is,
h∗

0 = 30 [m] and h∗
1 = h∗

2 = 23.75 [m]. This is caused by the differences in the slopes
of the range policy functions Vi(hi). In particular, while hi,st = 5 [m] for i = 0, 1,
2, we have κ0 = 0.6 [1/s] and κ1 = κ2 = 0.8 [1/s]; see Eq. (5) and Fig. 1B. This
highlights that the trajectories in Fig. 5B strongly depend on the parameters of the
preceding vehicles. The same control parameters used in Fig. 5 may behave poorly
with a different set of parameters κi, αi, βi, τi, and ξi.

3 Robust string stability
Since a connected automated vehicle may not know the dynamics of the preceding
vehicles 1, . . . , n accurately, the V2X-based controller should be robust against
their parameter uncertainties (aside from the model uncertainties of the connected
automated vehicle itself). In this section, we assume additive perturbations κ̃i, α̃i, β̃i,
τ̃i, and ξ̃i in the parameters of human-driven vehicles. To ensure good performance
under these parameter changes, we apply robust control design.
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3.1 Uncertainties in a predecessor-follower system
As an illustration of the robust string stability, we consider vehicle i that only uses
information from one vehicle ahead. Here, we set i = 0 without loss of generality
(see Fig. 1) and drop the index i of the parameters κ , α, β, τ , and ξ in this section.
Thus, we have the input ṽi+1(t), the output ṽi(t), and the nominal head-to-tail transfer
function is given by

Gi+1,i(s) = Ti+1,i(s) = (ακ + βs)e−sτ

ξs3 + s2 + (ακ + (α + β)s)e−sτ
, (38)

see Eq. (8).
Uncertainties in the plant may appear in different forms. Without any restrictions,

let us assume that every parameter in the model is uncertain. While additive
uncertainties α̃, β̃, ξ̃ , and κ̃ result in additive uncertainty terms, an additive delay
uncertainty τ̃ will result in a multiplicative exponential term e−sτ̃ in Eq. (38), that is,

Gi+1,i(s) + G̃i+1,i(s) = ((κ + κ̃)(α + α̃) + (β + β̃)s)e−s(τ+τ̃ )

(ξ + ξ̃ )s3 + s2 + ((κ + κ̃)(α + α̃) + (α + α̃ + β + β̃)s)e−s(τ+τ̃ )
,

(39)

where G̃i+1,i(s) represents only the uncertainty. In spite of the fact that G̃i+1,i(s) can
be expressed algebraically, the question is how to formulate the uncertain model that
is the most suitable for robust analysis.

In order to formulate the uncertainties in a general way, we must separate the
uncertainty from the nominal model. We use the Rekasius substitution to handle
uncertainty in the delay, such that

e−sτ̃ = 1 − sϑ̃(s)

1 + sϑ̃(s)
, (40)

where we restrict ourselves to s = iω and therefore, we have

ϑ̃(iω) = 1

ω
tan

ωτ̃

2
, (41)

see Ref. [34]. This substitution is exact and suitable for the robust analysis in the
region 0 ≤ ω < π/τ̃ , since it covers the same domain in the complex plane as e−iωτ̃ .
Similar attempt with higher-order approximation is given in Ref. [35].

By taking into account the uncertain parameters (with the Rekasius substitu-
tion), the block diagram shown in Fig. 6 can be drawn. Based on this graphical
representation, one can get the following system of equations for the inputs u =
[u1, u2, u3, u4, u5]
, w = Ṽi+1(s) and outputs y = [y1, y2, y3, y4, y5]
, z = Ṽi(s) in
the form

y1 = (w − z)
1

s
, (42)

y2 = (w − z)
1

s
κ + u1 − z, (43)
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FIG. 6

Block diagram of the car-following model with parametric uncertainty.

y3 = (w − z), (44)

y4 =
(((

(w − z)
1

s
κ + u1 − z

)
α + u2 + u3 + (w − z)β

)
e−sτ − u4

)
s, (45)

y5 =
(

y4

s
− u4 − u5 − y5

1

s

)
1

ξ
, (46)

z = y5
1

s

1

s
. (47)

This can be formulated as [
y
z

]
= m(s)

[
u
w

]
, (48)

u = δ(s)y, (49)

where m(s) is the interconnection matrix and δ(s) is the uncertainty matrix. In the
present case, these matrices are written as

m(s) =
[

m1,1(s) m1,2(s)
m2,1(s) m2,2(s)

]
, (50)

δ(s) = diag[κ̃ , α̃, β̃, ϑ̃(s), ξ̃ ], (51)

where

m1,1(s)

= 1

D(s)

⎡
⎢⎢⎢⎣

αe−sτ e−sτ e−sτ 2 1
ξs3 + s2 + βse−sτ −(κ + s)e−sτ (κ + s)e−sτ 2(κ + s) s + κ

−αse−sτ −se−sτ se−sτ 2s s
αs3(1 + ξs)e−sτ s3(1 + ξs)e−sτ s3(1 + ξs)e−sτ se−sτ c(s) − s2(1 + ξs) e−sτ sc(s)

e−sτ s3α e−sτ s3 e−sτ s3 −2s3 −s3

⎤
⎥⎥⎥⎦,

(52)

m1,2(s) = 1

D(s)

⎡
⎢⎢⎢⎢⎣

s + αe−sτ + s2ξ

κs − βse−sτ + s2κξ

ξs3 + s2 + αse−sτ

(καs2 + βs3)e−sτ (1 + ξs)
e−sτ s2(sβ + ακ)

⎤
⎥⎥⎥⎥⎦ , (53)
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FIG. 7

m − δ uncertain interconnection structure.

m2,1(s) = 1

D(s)

[
αse−sτ se−sτ se−sτ −2s −s

]
, (54)

m2,2(s) = 1

D(s)
(κα + βs)e−sτ , (55)

moreover D(s) is the characteristic function defined in Eq. (9) and c(s) = s(α +β)+
ακ is introduced for convenience. This is called the m − δ uncertain interconnection
structure that can be graphically represented by the block diagram in Fig. 7; see
Ref. [28].

The transfer function between the input w and output z involves the uncertainty
matrix δ(s). The solution can be expressed using the upper linear fractional transfor-
mation Fu (upper LFT) as

Fu(m(s), δ(s)) := m2,2(s)︸ ︷︷ ︸
Gi+1,i(s)

+ m2,1(s)δ(s)(I − m1,1(s)δ(s))−1m1,2(s)︸ ︷︷ ︸
G̃i+1,i(s)

=
((κ + κ̃)(α + α̃) + (β + β̃)s)e−sτ 1−sϑ̃(s)

1+sϑ̃(s)

(ξ + ξ̃ )s3 + s2 + ((κ + κ̃)(α + α̃) + (α + α̃ + β + β̃)s)e−sτ 1−sϑ̃(s)
1+sϑ̃(s)

,

(56)

under the condition that

det(I − m1,1(s)δ(s)) �= 0. (57)

One can show that this condition results the perturbed characteristic equation, and
therefore, a necessary condition for robust plant stability. Note that Eq. (56) is
equivalent to Eq. (39) including the Rekasius substitution.

Recall that the string stability criterion (35), similarly, the perturbed transfer
function (56), needs to satisfy

1 − Fu(m(iω), δ(iω))δc �= 0, ∀ω > 0 (58)

and for any complex number δc ∈ C, |δc| < 1. Using the Schur formula (see
Ref. [36]), we rewrite Eqs. (57), (58) for s = iω as
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det

([
I 0
0 1

]
−

[
m1,1(iω) m1,2(iω)

m2,1(iω) m2,2(iω)

] [
δ(iω) 0

0 δc

])
�= 0. (59)

In Eq. (59), the uncertainty matrix is not normalized. Let us introduce the weights
ρi(s) and normalized uncertainties δr

i ∈ R, |δr
i | < 1, such that

κ̃ = ρ1δr
1, α̃ = ρ2δr

2, β̃ = ρ3δr
3, ϑ̃(s) = ρ4(s)δr

4, ξ̃ = ρ5δr
5, (60)

where δi represents a real parameter uncertainty. Then, Eq. (59) can be rewritten in a
normalized form as

det(I − m̂(iω)δ̂) �= 0, (61)

where

m̂(iω) =
[

m1,1(iω)r(iω) m1,2(iω)

m2,1(iω)r(iω) m2,2(iω)

]
, (62)

r(iω) = diag[ρ1, ρ2, ρ3, ρ4(iω), ρ5], (63)

δ̂ = diag[δr
1, δr

2, δr
3, δr

4, δr
5, δc]. (64)

Eq. (63) emphasizes that the weight of each parameter is constant, except for the
time delay (ρ4 = ϑ̃), which varies with the frequency according to the Rekasius
substitution.

In order to quantify the robustness of the system, we use the structured singular
value (μ) analysis introduced by Doyle [28]. We define the μ-value of m̂(iω) as the
inverse of the smallest σ̄ (δ̂) when Eq. (61) fails at frequency ω, that is,

μ(ω) =
(

min
δ̂

{σ̄ (δ̂): det(I − m̂(iω)δ̂) = 0}
)−1

, (65)

where σ̄ (δ̂) denotes the largest singular value of δ̂. When Eq. (61) holds regardless
of the perturbation values in δ̂, we have μ(ω) = ∞, while if Eq. (61) is not
satisfied for any perturbation structure, then μ(ω) = 0. As μ(ω) increases, a
smaller perturbation value in δ̂ may lead to a singular (I − m̂(iω)δ̂) and results in
string instability. Therefore, the condition for robust string stability against bounded
parameter variation is

μ(ω) < 1, ∀ω > 0, (66)

similarly to the head-to-tail string stability Eq. (34).
Note that μ cannot be computed directly using Eq. (65), since the optimization

problem is not convex in general and may have multiple local extrema [37]. However,
if we are interested in finding upper and/or lower bounds, several alternative
formulations have been developed [28,37–39]. In this work, we use the mussv
function in MATLAB μ-Analysis and Synthesis Toolbox to obtain the upper and
lower bounds of μ [40].
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FIG. 8

(A) Robust stability charts in the plane (β, α) for κ = 0.6 [1/s], τ = 0.2 [s], ξ = 0.4 [s] with
uncertainties 0%, 3%, 6%, 9%, 12%, and 15% in κ, ξ , and τ (0% in α and β). Black
curves indicate the nominal string stable boundary (0% uncertainty) and dark gray curves
indicate the robust string stable boundaries. (B) The nominal transfer function |Gi+1,i (iω)|
curve (thick black) and μ(ω) curves (thin gray ) for parameter point (β, α) = (0.6, 0.7) [1/s]
marked by a black dot in panel (A).

As an example, a robust string stability diagram is presented in Fig. 8. To
demonstrate the sensitivity of the string stable domain, we chose the parameters
κ = 0.6 [1/s], τ = 0.2 [s], ξ = 0.4 [s], as shown in the middle panel in Fig. 2.
Panel (A) shows the contraction of the robust string stable region as the uncertainty
increases from 0% to 15% in parameters κ , τ , and ξ , while panel (B) plots the μ-
bounds corresponding to control gains α = 0.6 [1/s] and β = 0.7 [1/s] marked as a
black dot. Note that when the uncertainty in the parameters are set to zero, that is,
r(iω) = 0, then the robust string stable condition (61) reduces to the nominal string
stable condition (58), which is satisfied only if δc = Gi+1,i(iω)−1. In this case one
obtains μ(ω) = |Gi+1,i(iω)| by definition from Eq. (65).

3.2 Robust connected cruise control design
In order to demonstrate the applicability of the method developed here, we present
a case study for the connected vehicle system consisting of a connected automated
vehicle and three human-driven cars with uncertainty, that is, n = 3 in Eq. (27)
as shown in Fig. 9A. The schematic block diagram with uncertainties is presented in
Fig. 9B, which is the extension of Fig. 4B. While the nominal transfer function matrix
is given in Eq. (36), we assume each parameter in vehicles 2 and 1 have certain levels
of uncertainty and compute the robust string stable regions in the (B2,0, B3,0)-plane
for different values of A1,0 and B1,0.

In order to construct a connected uncertainty structure, we need to include the
uncertain model for each vehicle that might be different. Let us use upper indices
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(A)

(B)

FIG. 9

Example configuration with uncertainties: (A) connectivity topology and (B) block diagram.

(3, 2) and (2, 1) to denote the links between vehicles 3–2 and 2–1. The corresponding
system of equations for each vehicle read

y1 = m(2,1)
1,1 (s)u1 + m(2,1)

1,2 (s)w1, (67)

y2 = m(3,2)
1,1 (s)u2 + m(3,2)

1,2 (s)w2, (68)

z1 = m(2,1)
2,1 (s)u1 + m(2,1)

2,2 (s)w1, (69)

z2 = m(3,2)
2,1 (s)u2 + m(3,2)

2,2 (s)w2, (70)

z = T1,0(s)z1 + T2,0(s)z2 + T3,0(s)w2, (71)

w1 = z2, (72)

w2 = w. (73)

Note that here we have w = Ṽ3(s) and z = Ṽ0(s). After simplifications with
m(2,1)

2,2 (s) = T2,1(s) and m(3,2)
2,2 (s) = T3,2(s), the solution for Eqs. (67)–(73) directly

yields

⎡
⎣y1

y2
z

⎤
⎦ = M(s)

⎡
⎣u1

u2
w

⎤
⎦ , (74)
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where the interconnection structure is given by

M(s) =

⎡
⎢⎢⎣

m(2,1)
1,1 (s) m(2,1)

1,2 (s)m(3,2)
2,1 (s) m(2,1)

12 (s)T3,2(s)

0 m(3,2)
1,1 (s) m(3,2)

1,2 (s)

m(2,1)
2,1 (s)T1,0(s) m(3,2)

2,1 (s)(T2,0(s) + T1,0(s)T2,1(s)) G3,0(s)

⎤
⎥⎥⎦ , (75)

and the weight matrix of the corresponding uncertainties reads

R(s) =
[

r(2,1)(s) 0
0 r(3,2)(s)

]
. (76)

With some generalizations, one can show that the structure of equations remains the
same, that is,

det(I − M̂(iω)�̂) �= 0, (77)

where

M̂(iω) =
[

M1,1(iω)R(iω) M1,2(iω)

M2,1(iω)R(iω) M2,2(iω)

]
, (78)

�̂ = diag[δr
1, . . . , δr

10, δc]. (79)

Here, 10 corresponds to the 5 + 5 independent parameters of vehicles 1 and 2.
Again, the computation of μ-values are performed by the MATLAB toolbox

using the mussv function. The results are presented in Fig. 10A, where we assumed
that each parameter of each vehicle is perturbed by the same percentage of their
nominal value, that is, αi, βi, κi, τi, and ξi has identical relative uncertainty. The
nominal human driver parameters are κi = 0.8 [1/s], αi = 0.25 [1/s], βi =
0.5 [1/s], τi = 0.3 [s], and ξi = 0.5 [s] (same for both vehicles for simplicity),
while the fixed parameters of the connected automated vehicle are κ0 = 0.6 [1/s],
σ = σ1,0 = σ2,0 = σ3,0 = 0.1 [s], and ξ0 = 0.5 [s]. The same set of
parameters were used in the simulations in Section 2.2, Fig. 5. In this configuration,
human-driven vehicles are string unstable, but head-to-tail string stability can be
guaranteed by appropriate selection of the gains of the connected automated vehicle.
The subplots in Fig. 10A show how the uncertain parameters (10 in total) affect
the robust stable domain of control parameters (A1,0, B1,0, B2,0, B3,0). One of the
most robust parameter combination for realizable gain combinations is located at
(0.4, 0.2, 0.3, 0.3) [1/s].

For this point, some μ(ω) curves are presented in Fig. 10B for different
uncertainty levels. The curves show that the upper-lower bounds are sufficiently tight,
therefore, the robust boundaries obtained by the numerical method are close to the
real robust boundaries. The μ-curves also show that at least 20% robustness can be
guaranteed with the selected control gains.
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(A) Robust string stability charts in the (B2,0, B3,0) plane for different values of A1,0 and
B1,0, when using uncertainties 10−20−30%. (B) μ-curves for different levels of
uncertainty at parameter point (A10, B10, B20, B30) = (0.4, 0.2, 0.3, 0.3) [1/s].

4 Conclusion
In this chapter, we applied the structured singular value analysis to investigate
the influences of uncertain human car-following parameters on string stability of
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connected cruise controllers. In particular, the uncertain time delays were handled
using the Rekasius substitution, so that the robust bounds on head-to-tail string
stability remained tight. We demonstrated through case studies that these robustness
results could be used to design connected automated vehicles that reject traffic
perturbations well and improves performance of traffic flow despite uncertain human
car-following behavior.
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