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Abstract. The effects of time delays on the nonlinear dynamics of neural networks
are investigated. A decomposition method is utilized to derive modal equations that
allow one to analyze the dynamics around synchronous states. The D-subdivision
method is used to study the stability of equilibria while the stability of periodic or-
bits is investigated using Floquet theory. These methods are applied to a system of
delay coupled Hodgkin-Huxley neurons to map out stable and unstable synchronous
states. It is shown that for sufficiently strong coupling there exist delay ranges where
stable equilibria coexist with stable oscillations which allow neural systems to re-
spond to different environmental stimuli with different spatiotemporal patterns.

1 Introduction

Since Hodgkin and Huxley has constructed the first biophysical model of a neuron
more than six decades ago [6] the field of neuroscience has gone through a enor-
mous development. This led to detailed understanding of the dynamical phenomena
underlying signal generation and propagation on neural membranes [4]. When mod-
eling these processes, nonlinear ordinary differential equations (ODEs) are used to
describe the voltage changes and ion transport at a given location of the membrane,
while to describe the activity on the surface of the entire neuron partial differential
equations (PDEs) are required. Additional ODEs can be used to describe the chemi-
cal processes at the synapses where signals are transmitted between neurons. Indeed,
such detailed models are not feasible when modeling the behavior of populations of
neurons. In this case, simplifications are often made so that neurons are considered
to be “point-wise” and the couplings are considered to be instantaneous, that is, the
infinite-dimensional dynamics of signal propagation is neglected. In this paper, we
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consider an extended modeling framework for neural networks where neurons are
still point-wise but signal propagation is modeled by inserting time delays into the
coupling functions. This leads to delay differential equations (DDEs) which retain
the essential infinite dimensional dynamics of signal transmission while the models
remain scalable for large numbers of neurons and connections.

In order to understand the behavior of the resulting large interconnected delayed
systems, we decompose the dynamics and derive modal equations in the vicinity
of synchronous states. In particular, we focus on synchronous equilibria and peri-
odic oscillations. The decomposition method used here can also be extended to more
general cluster states [11] while other methods may be used when studying traveling
wave solutions [2,8]. Similar decomposition methods have been used to investigate
the synchronized states in neural networks and laser networks [3,5] and to study the
dynamics of communication protocols [1,9]. We remark that in the former case sta-
bility is usually determined numerically by calculating Lyapunov exponents while
the latter case focuses on linear systems. In this paper, we apply rigorous mathemat-
ical techniques from dynamical systems theory to analyze the nonlinear dynamics
of large interconnected systems.

As the result of the modal decomposition we obtain linear delay differential equa-
tions of small size. One of these modal equations describes the stability of syn-
chronous states within the infinite-dimensional synchronization manifold which is
called tangential stability. The other modal equations correspond to braking the syn-
chrony, that is, they describe the so-called transversal stability; see [11, 12]. When
considering the modal equations around equilibria, they have time-independent
coefficients and consequently the D-subdivision method and Stépán’s formulae
[15] can be used to derive analytical stability charts. Each modal equation pro-
duces a set of stability curves and crossing these curves lead to different oscil-
latory solutions. For periodic oscillations the modal equations have time-periodic
coefficients, that is, one needs to use Floquet theory [7] to evaluate stability. Tan-
gential stability can be evaluated by restricting the dynamics to the synchronization
manifold. For transversal stability, augmented systems are created so that each sys-
tem consists of the nonlinear synchronous equation and a linear transversal modal
equation.

In this paper, we apply these techniques to systems of delay coupled Hodgkin-
Huxley neurons considering different connectivity structures. We derive the bifur-
cation structure arising within the synchronization manifold and show that this
structure is independent of the connectivity and the number of oscillators in the sys-
tem when the coupling strength is scaled appropriately. On the other hand, transver-
sal bifurcations of equilibria and periodic orbits are influenced by the coupling struc-
ture. We demonstrate that for appropriate values of time delay and coupling strength,
stable synchronous equilibrium coexist with stable oscillations. In this case, apply-
ing different external perturbations the system approaches different spatiotemporal
patterns that can be exploited when encoding information.
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2 Decomposition of Delayed Networks around Synchronous
States

In this paper, we consider a system consisting of N identical oscillators coupled by
identical couplings:

ẋi(t) = f
(
xi(t)

)
+

1
N

N

∑
j=1

ai j g
(
xi(t),x j(t− τ)

)
, (1)

for i = 1, . . . ,N, where the internal state of node i is described by the vector xi ∈ R
n

and the internal dynamics consist of a set of nonlinear ODEs ẋi = f (xi). The cou-
plings are described by the function g(xi,x j) that depends on the states of the in-
teracting nodes. The time delay τ is the time needed for the signal transmission
processes to take places. The coupling structure of the system is captured by
a directed graph, whose elements are represented by the coefficients of the N-
dimensional adjacency matrix

ai j =

{
1 if node j is connected to node i,

0 otherwise,
(2)

for i, j = 1, . . . ,N. Referring to the graph representation of the network, the oscilla-
tors are often called nodes and the connections between them called edges. Here, we
use the abbreviated notation AN = [ai j] and assume that AN is diagonalizable, that is,
if an eigenvalue has algebraic multiplicity m then it also has geometric multiplicity
m, resulting in m linearly independent eigenvectors. The methods presented below
may still be used when this condition does not hold but the algebraic calculations
become more involved. We remark that equation (1) requires an infinite dimensional
state space and the initial conditions are functions on the time interval [−τ,0].

In this paper, we focus on the synchronous state

xi(t) = xs(t) , i = 1, . . . ,N . (3)

Substituting (3) into (1) results in the delay differential equation

ẋs(t) = f
(
xs(t)

)
+

M
N

g
(
xs(t),xs(t− τ)

)
, (4)

where the row sum

M =
N

∑
j=1

ai j , (5)

must be the same for every i to ensure the existence of synchronous solutions. We
remark that equation (3) still requires an infinite dimensional state space, that is, the
synchronization manifold defined by (3) is infinite dimensional. Equation (4) may
produce a variety of different behaviors, e.g., equilibria, periodic orbits, and even
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chaotic motion. Here we focus on the first two cases. Synchronized equilibria are
defined by

xs(t)≡ x∗s , (6)

and substituting this into (4) results in

0 = f
(
x∗s
)
+

M
N

g
(
x∗s ,x

∗
s

)
, (7)

that is, the delay does not influence the location of equilibria (but may influence
their stability). On the other hand, synchronous periodic oscillations satisfy

xp
s (t) = xp

s (t +Tp) , (8)

where Tp represents the period. These can be determined by solving the boundary
value problem comprised of (4) and (8) and the shape and stability of these orbits
are influenced by the delay.

We define the perturbations yi = xi− xs for i = 1, . . . ,N, so the linearization of
(1) about the synchronous solution (3) can be written as

ẏi(t) = Lyi(t)+R
N

∑
j=1

ai j y j(t− τ) , (9)

for i = 1, . . . ,N. When linearizing about the synchronous equilibrium (6), the n× n
matrices L,R are time-independent, that is,

L∗ = D f
(
x∗s
)
+

M
N

D(1)g
(
x∗s ,x

∗
s

)
, R∗ =

1
N

D(2)g
(
x∗s ,x

∗
s

)
, (10)

where and D(1) and D(2) represent derivatives with respect to the first and second
variables, respectively. In this case, (9) gives a linear time-invariant system allowing
the use of analytical techniques like the D-subdivision method and Stépán’s formu-
lae [15] to determine the stability of the equilibrium. However, when linearizing
about synchronous oscillations (8), the matrixes L,R in (9) become time-periodic
with period Tp, that is,

L(t) = D f
(
xp

s (t)
)
+

M
N

D(1)g
(
xp

s (t),x
p
s (t− τ)

)
= L(t +Tp) ,

R(t) =
1
N

D(2)g
(
xp

s (t),x
p
s (t− τ)

)
= R(t +Tp) .

(11)

Thus, one must use Floquet theory to evaluate the stability of oscillations. The corre-
sponding monodromy operators usually cannot be written in closed form and conse-
quently, numerical techniques like full discretization [14] or semi-discretization [7]
are needed.

Using y = col [y1 y2 . . . yN ] ∈R
nN the linear system (9) can be rewritten as

ẏ(t) = (IN⊗L)y(t)+ (AN⊗R)y(t− τ) , (12)
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where IN is the N-dimensional unit matrix and AN is the adjacency matrix. In order
to decompose system (12) we construct the coordinate transformation

y = (TN ⊗ I)z , (13)

where z = col [z1 z2 . . . zN ] ∈ R
nN , I is the n× n unit matrix, while TN =

[e1 e2 . . . eN ] where ei is the i-th eigenvector of the adjacency matrix AN . This
transformation yields the linear modal equations

żi(t) = Lzi(t)+Λi Rzi(t− τ) , (14)

for i = 1, . . . ,N, where Λi is the i-th eigenvalue of the adjacency matrix AN . Note
the due to the constant row sum (5), we have Λ1 = M and e1 = col[1 . . . 1 ]. The
corresponding modal equation is indeed the linearization of (4) and it describes the
tangential stability: stability against perturbations that keep the synchronous con-
figuration. The other modal equations for i = 2, . . .N describe transversal stability:
stability against perturbations that split the synchronous configuration; see [11, 12].
We remark that forΛi,i+1 = Σi± iΩi ∈C, defining ξi = Rezi,ηi =−Imzi and taking
the real and imaginary parts of (14) leads to the 2n-dimensional real system

[
ξ̇i(t)
η̇i(t)

]
=

[
L O
O L

][
ξi(t)
ηi(t)

]
+

[
ΣiR ΩiR
−ΩiR ΣiR

][
ξi(t− τ)
ηi(t− τ)

]
, (15)

where O represents the n-dimensional matrix with zero elements.
In this paper, we consider N = 5. For all-to-all coupling (without self coupling)

the adjacency matrix, its eigenvalues, and the transformation matrix (given by the
eigenvectors) can be written as

A5 =

⎡
⎢⎢⎢⎢⎣

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

⎤
⎥⎥⎥⎥⎦ ⇒

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Λ1 = 4 ,

Λ2 =−1 ,

Λ3 =−1 ,

Λ4 =−1 ,

Λ5 =−1 ,

TN =

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1
1 −1 0 0 0
1 0 −1 0 0
1 0 0 −1 0
1 0 0 0 −1

⎤
⎥⎥⎥⎥⎦ . (16)

Here the row sum is M = N − 1 = 4 (cf. (5)) and the transversal eigenvalue has
multiplicity M. We will also consider the adjacency matrix

A5 =

⎡
⎢⎢⎢⎢⎣

0 1 0 1 1
0 0 1 1 1
1 1 0 0 1
1 0 1 0 1
1 1 0 1 0

⎤
⎥⎥⎥⎥⎦ ⇒

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Λ1 = 3 ,

Λ2 = 0 ,

Λ3 =−1 ,

Λ4 =−1+ i ,

Λ5 =−1− i ,

TN =

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1
1 −2 1 −2+6i

5
−2−6i

5
1 −2 1 −1−7i

5
−1+7i

5
1 1 1 −8−i

5
−8+i

5
1 1 −3 1 1

⎤
⎥⎥⎥⎥⎦ ,

(17)
where M = 3 and all eigenvalues are distinct.
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2.1 Stability of Synchronous Equilibria and Periodic Orbits

As mentioned above, when linearizing about synchronous equilibria (6), the matri-
ces L,R are time independent, cf. (10). Thus, in order to determine stability, the trial
solutions zi(t) = Zi eλ t , λ ∈ C, Zi ∈ C

n are substituted into (14), which result in the
characteristic equations

det
(
λ I−L−Λi Re−λτ

)
= 0 , (18)

for i = 1, . . . ,N. When all the infinitely many characteristic roots λ are located in the
left-half complex plane for i = 1 and i = 2, . . .N, the equilibrium is tangentially and
transversally stable, respectively. Substituting λ = iω , ω ≥ 0 into the above equa-
tion one may obtain the tangential and transversal stability boundaries that divide
the parameter space into stable and unstable domains. For each domain, stability
can be evaluated by applying Stépán’s formulae [15]. When crossing a tangential
stability boundary the synchronized configuration is kept by the arising oscilla-
tions while crossing a transversal boundary gives rise to asynchronous oscillatory
solutions.

When linearizing about the synchronized oscillations (8), the matrices L,R are
time-periodic with period Tp, cf. (11). Instead of exponential trial solutions one must
use Floquet theory to determine stability [7]. This requires the reformulation (14)
using the state variables zi,t (θ ) = zi(t + θ ), θ ∈ [−τ,0] that are contained by the
infinite-dimensional space of continuous functions. These states can be obtained
from the initial functions as

zi,t = Ui(t)zi,0 , (19)

using the solutions operators Ui(t) for i = 1, . . . ,N. The eigenvalues of the mon-
odromy operators Ui(Tp), called Floquet multipliers, determine the tangential and
transversal stability of oscillations. If all these multipliers are smaller than 1 in mag-
nitude, then the periodic solution is stable. As the monodromy operators cannot be
written into closed form, one needs to use numerical techniques to determine the sta-
bility boundaries. First, we compute the periodic orbit which is the solution of the
boundary value problem (4,8) using numerical collocation. Then using arc-length
continuation we find the orbit when parameters are varied; see [14] for details. For
i = 1, (14) is the linearization of (4) and collocations provide a discretization of the
monodromy operator U1(Tp) in (19) which allows the computation of the tangential
Floquet multipliers. However, for i = 2, . . .N, to obtain the transversal Floquet mul-
tipliers (i.e., the eigenvalues of Ui(Tp) for i = 2, . . .N), the matrices in (14) or (15)
have to be evaluated at the periodic solution. Thus, we create augmented systems
consisting of (4,8) and a chosen equation of (14) or (15). The corresponding 2n or
3n dimensional equations possess a periodic orbit: the first n variables are equal to
xp

s while zi ≡ 0 or ξi = ηi ≡ 0.
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3 Synchrony of Delay Coupled Hodgkin-Huxley Neurons

Since the original work of Hodgkin and Huxley [6] a large number different models
have been proposed to describe voltage activity and ion transport at the neural mem-
brane (e.g., FitzHugh-Nagumo model, Morris-Lecar model); see [4]. As a matter of
fact, these all originate form the Hodgkin-Huxley model which is still considered
to be an etalon in neuro-dynamics. Here we consider Hodgkin-Huxley neurons cou-
pled via direct electronic coupling called gap junctions; see [13]. (For the same
model with synaptic coupling see [8].)

The time evolution of the system is given by the delay differential equations

CV̇i(t) = I− gNam3
i (t)hi(t)

(
Vi(t)−VNa

)
− gKn4

i (t)
(
Vi(t)−VK

)

− gL
(
Vi(t)−VL

)
+
κ
N

N

∑
j=1

ai j
(
Vj(t− τ)−Vi(t)

)
,

ṁi(t) = αm
(
Vi(t)

)(
1−mi(t)

)
−βm

(
Vi(t)

)
mi(t) ,

ḣi(t) = αh
(
Vi(t)

)(
1− hi(t)

)
−βh

(
Vi(t)

)
hi(t) ,

ṅi(t) = αn
(
Vi(t)

)(
1− ni(t)

)
−βn

(
Vi(t)

)
ni(t) ,

(20)

for i = 1, . . . ,N, where the time t is measured in ms, the voltage of the i-th neu-
ron at the soma Vi is measured in mV, and the dimensionless gating variables
mi,hi,ni ∈ [0,1] characterize the “openness” of the sodium and potassium ion chan-
nels embedded in the cell membrane. The conductances gNa, gK, gL and the ref-
erence voltages VNa, VK, VL for the sodium channels, potassium channels and the
so-called leakage current are given together with the membrane capacitance C and
the driving current I in the appendix of [13]. The equations for mi, hi, ni are based
on measurements and the nonlinear functions αm(V ), αh(V ), αn(V ), βm(V ), βh(V ),
βn(V ) are also given in the appendix of [13]. The coupling term κ

N

(
Vj(t−τ)−Vi(t)

)
represents a direct electronic connection between the axon of the j-th neuron and
the dendrites of the i-th neuron. Here Vi(t) is the postsynaptic potential, Vj(t− τ) is
the presynaptic potential, κ is the conductance of the gap junction, and τ represents
the signal propagation time along the axon of the j-th neuron (dendritic delays are
omitted here). That is, the presynaptic potential is equal to what the potential of the
soma of the j-th neuron was τ time before.

For κ = 0 the neurons are uncoupled. In this case, there exist a unique stable
oscillatory state where neurons spike periodically (with period Tp ≈ 11.57 ms), see
the green curves in Fig. 1. The equation that describes the dynamics on the infinite
dimensional synchronization manifold can be obtained by substituting

[Vi mi hi ni ] = [Vs ms hs ns ] , i = 1, . . . ,N , (21)

into (20); cf. (3,4). In this case, the coupling term becomes κ M
N

(
Vs(t− τ)−Vs(t)

)
.

Notice that this term disappears for τ = 0, that is, the synchronized motion is the
same as the uncoupled one. However, this does not hold for τ > 0.
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Fig. 1 Stable periodic solution of model (20) without coupling κ = 0. Panel (a) shows the
periodic variation of the membrane voltage V as a function of time t (with period Tp ≈ 11.57
ms) while panel (b) depicts the periodic orbit in state space. The red dot represents the unsta-
ble equilibrium.

When linearizing (20) about (21) one obtains the matrixes

L =

⎡
⎢⎢⎣
−p− M

N
κ
C −a1 −a2 −a3

−b1 −c1 0 0
−b2 0 −c2 0
−b3 0 0 −c3

⎤
⎥⎥⎦ , R =

⎡
⎢⎢⎣

1
N
κ
C 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , (22)

where

p = (gNam3
s hs + gKn4

s + gL)/C ,

a1 = gNa3m2
s hs(Vs−VNa)/C , b1 =−α ′m(Vs)(1−ms)+β ′m(Vs)ms ,

a2 = gNam3
s (Vs−VNa)/C , b2 =−α ′h(Vs)(1− hs)+β ′h(Vs)hs ,

a2 = gK4n3
s (Vs−VK)/C , b3 =−α ′n(Vs)(1− ns)+β ′n(Vs)ns ,

(23)

c1 = αm(Vs)+βm(Vs) , c2 = αh(Vs)+βh(Vs) , c3 = αn(Vs)+βn(Vs) ,

that appear in the linear equation (9,12) as well as in the modal equations (14,15).

3.1 Stability of Synchronous Equilibria

Let us consider synchronized equilibria, that is, [Vs(t) ms(t) hs(t) ns(t) ] ≡
[V ∗s m∗s h∗s n∗s ]. At this state the coupling term disappears and consequently the
synchronized equilibrium is the same as the equilibrium of an uncoupled neuron.
For parameters defined in [13] we have a unique equilibrium as shown by the red
dot in Fig. 1(b). Moreover, the matrices (22) become constant (cf. (10)) and the
characteristic equation (18) leads to

λ 4+d1λ 3+d2λ 2+d3λ +d4+
1
N
κ
C

(
M−Λieλτ

)(
λ 3+ c̃1λ 2+ c̃2λ + c̃3

)
= 0 , (24)
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where

c̃1 = c1 + c2 + c3 , c̃2 = c1c2 + c1c3 + c2c3 , c̃3 = c1c2c3 ,

d1 = p+ c̃1 ,

d2 = pc̃1 + c̃2−
(
a1b1 + a2b2 + a3b3

)
,

d3 = pc̃2 + c̃3−
(
a1b1(c2 + c3)+ a2b2(c1 + c3)+ a3b3(c1 + c2)

)
,

d4 = pc̃3−
(
a1b1c2c3 + a2b2c1c3 + a3b3c1c2

)
,

(25)

that are evaluated at Vs(t) ≡ V ∗s . Substituting λ = iω into (24), separating the real
and imaginary parts, and using some algebraic manipulations one may obtain the
stability boundaries in the (τ,κ)-plane parameterized by the angular frequency ω .
In particular, consideringΛ1 = M results in the tangential boundaries

τ =
2
ω

{
arctan

[
− α(ω)
β (ω)

]
+ �π

}
, �= 0,1,2, . . .

κ =−CN
2M

α2(ω)+β 2(ω)
α(ω)γ(ω)

,

(26)

where

α(ω) = (d1− c̃1)ω6 +(d2c̃1 + c̃3− d3− d1c̃2)ω4 +(d3c̃2− d2c̃3− d4c̃1)+ d4c̃3 ,

β (ω) =−ω7 +(d2 + c̃2− d1c̃1)ω5 +(d1c̃3 + d3c̃1− d4− d2c̃2)+ (d4c̃2− d3c̃3)ω ,

γ(ω) = ω6 +(c̃2
1− 2c̃2)ω4 +(c̃2

2− 2c̃1c̃3)ω2 + c̃2
3 .

(27)

Similarly for Λi ∈ R one may obtain the transversal boundaries

τ =
2
ω

{
arctan

[
1

M+Λi

α(ω)
β (ω)

(
−Λi±

√
Δ
)]

+ �π

}
, �= 0,1,2, . . .

κ =
CN

M2−Λ2
i

α(ω)
γ(ω)

(
−M∓

√
Δ
)
, (28)

where

Δ =Λ2
i −

(
M2−Λ2

i

)β 2(ω)
α2(ω)

. (29)

For Λi = Σi + iΩi ∈ C the first equation in (28) changes to

τ =
2
ω

{
arctan

[
1

M+Σi +Ωi
α(ω)
β (ω)

α(ω)
β (ω)

(
−Σi+Ωi

β (ω)
α(ω)

±
√
Δ
)]

+ �π

}
, (30)
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Fig. 2 Stability charts corresponding to the formulae (26,28,30,31) are shown in panels (a,c)
and the corresponding angular frequencies are shown in panels (b,d). The top and bottom
rows correspond the adjacency matrices (16) and (17), respectively. The stable domain is
shaded, black “lobe shaped” curves represent tangential boundaries for Λ1 = M, and colored
“wavy” curves represent transversal boundaries for Λ2 =−1 — thin blue, Λ3 = 0 — dashed
green, and Λ4,5 =−1± i — thick red.

and Λ2
i = Σ2

i +Ω 2
i . Finally, we remark that for Λi = 0 the boundary is given by

κ =−CN
M
α(ω∗)
γ(ω∗)

, (31)

where ω∗ is the solution of β (ω∗) = 0, that is, this boundary is delay independent.
The corresponding curves are plotted for N = 5 in the (τ,κ)-plane in Fig. 2(a)

and (c) for the coupling matrixes (16) and (17), respectively. The tangential stability
boundaries are shown as black curves and these form lobes. One may observe that in
(26) τ is independent of the number of oscillators N and the row sum M while κ is
proportional to N/M. Corresponding to this the lobes in Fig. 2(c) are the “stretched”
versions of the lobes in Fig. 2(a). The transversal boundaries are shown as colored
curves and for each transversal eigenvalue Λi the boundary appears as a “wavy”
curve. For all-to-all coupling there is only one transversal curve corresponding to
the multiplicity of the modal eigenvalues in (16). For general coupling (17) there are
four distinct curves: the horizontal dashed green line corresponds to the zero modal
eigenvalue, the thin blue curve corresponds to the real modal eigenvalue while the
thick red curves correspond to the complex conjugate pair of modal eigenvalues.
Notice that the larger the magnitude of the transverse modal eigenvalue is, the larger
the “amplitude” of the “wavy” curve is.
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The stability of the synchronized equilibrium changes via Andronov-Hopf bifur-
cation when crossing either a tangential or a transversal stability curve. That is a pair
of complex conjugate eigenvalues crosses the imaginary axis leading to oscillations.
The corresponding frequencies are shown in Fig. 2(b) and (d). One may observe that
along the tangential lobes the frequency changes with κ in the interval ω ∈ [0,∞).
On the other hand, frequencies along tangential boundaries are contained in a closed
interval that increases with the magnitude of the transversal eigenvalue. Applying
the analytical stability criteria [15], it can be shown that the system is tangentially
stable within in the leftmost lobe while transversal stability of each mode can be
guaranteed when choosing parameters above the corresponding “wavy” curve. Thus
the equilibrium is linearly stable in the shaded domain that appears to be larger for
the all-to-all coupled network.

3.2 Stability of Synchronous Periodic Orbits

As shown above, the modal equations (14,15) with matrices (22) allow one to de-
termine the stability of equilibria in a systematic way. However, neural systems
encode information using rhythmic patterns which correspond to periodic oscilla-
tions. To derive synchronous oscillations, one must solve (20,21) when considering
[Vs(t) ms(t) hs(t) ns(t) ] = [Vs(t +Tp) ms(t +Tp) hs(t +Tp) ns(t +Tp) ], where
Tp is the period of oscillations. We use the numerical continuation package DDE-
BIFTOOL [14] to follow branches of periodic solutions when varying parameters.
To evaluate the stability of these solutions we use the nonlinear equation describing
the dynamics on the synchronization manifold (i.e., (20) with restriction (21)) and
augment this with a modal equation from (14) or (15).

The left and right columns of Fig. 3 show the bifurcation diagrams for the ad-
jacency matrices (16) and (17), respectively. Each panel depicts the peak-to-peak
voltage amplitude |Vs| as a function of the time delay τ while the value of the
coupling strength κ is indicated on each panel. The horizontal axis represents the
synchronized equilibrium. Solid green and dashed red curves represent stable and
unstable states, respectively. Bifurcations are marked as stars (Hopf and Neimark-
Sacker), crosses (fold and pitchfork), and diamonds (period doubling). The color of
the marker indicates which mode becomes unstable: black symbols indicate tangen-
tial stability losses while green, blue and red symbols corresponds to zero, real and
complex conjugate modal eigenvalues, cf. Fig. 2. For simplicity we only mark the
bifurcations where the stability of a mode changes.

Notice that the structure of the bifurcation diagrams and the tangential stability
losses are the same for all-to-all and general coupling when rescaling the κ values
by 4/3; cf. (4). For weak coupling the equilibrium is tangentially unstable while
the periodic orbit is tangentially stable for all values of τ; see panels (a) and (f).
For stronger coupling the equilibrium may loose its tangential stability via Hopf
bifurcations (black stars) corresponding to the lobes in Fig. 2 and the arising oscil-
lations stay within the synchronization manifold; see panels (c–e) and (h–j). Oscil-
latory solutions may undergo tangential fold bifurcations (black crosses) leading to
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Fig. 3 Bifurcation diagrams showing the peak-to-peak voltage amplitude |Vs| of synchro-
nized oscillations as a function of the delay τ for different values of the coupling strength κ .
The left and right columns correspond to the adjacency matrices (16) and (17), respectively.
The horizontal axis represents the equilibrium. Stable and unstable states are depicted by solid
green and dashed red curves. Stars represent Hopf bifurcations of equilibria or Neimark-
Sacker bifurcations of periodic orbits, crosses represent fold or pitchfork bifurcations, and
diamonds denote period doubling bifurcations. The color of symbols distinguishes between
the modes; see the caption of Fig. 2.
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Fig. 4 Stable (solid green) and unstable (dashed red) periodic orbits corresponding to τ = 3
ms and κ = 1.2 mS/cm2; cf. Fig. 3(e). The corresponding periods are Ts ≈ 15.39 ms and
Tu ≈ 17.78 ms.

coexisting Tp-periodic solutions. For a range of κ a cascade of fold bifurcations is
observed that culminate in single point where Tp → ∞; see the spiral in panels (b)
and (g). Tangential period doubling (flip) bifurcations (black diamonds) give rise to
branches of 2Tp-periodic oscillations that are typically tangentially unstable. (These
are not depicted in the figures). Also, co-dimension two fold-flip bifurcations can be
observed when the coupling is sufficiently strong; see panels (b–e) and (g–h). For
strong coupling tangential Neimark-Sacker bifurcations (black stars) result in quasi-
periodic oscillations; see panels (e) and (j). (Such oscillations cannot be traced with
the current state-of-the-art techniques).

The equilibrium may also loose its transversal stability via Hopf bifurcations
(colored stars) corresponding to the “wavy” curves in Fig. 2. The oscillations aris-
ing trough these bifurcations brake the synchrony. For synchronous oscillations,
transversal stability losses may occur via pitchfork bifurcations (colored crosses),
via period doubling bifurcations (colored diamonds), and via Neimark-Sacker bi-
furcations (colored stars). Corresponding to the multiplicity of modal eigenvalues
each transversal boundary found for (16) splits into three for (17), so that stability is
typically lost to the mode with complex conjugate modal eigenvalues (that are the
largest in magnitude) via Neimark-Sacker bifurcation (red stars).

For strong coupling one may observe domains where stable synchronized equi-
librium coexist with stable and unstable synchronized oscillations. These domains
arise via subcritical Hopf bifurcations and, depending on the initial conditions, the
system may approach the equilibrium or the periodic solution. Such orbits are de-
picted in Fig. 4. When comparing this figure with Fig. 1 one may notice the changes
in the shape of the stable (solid green) periodic orbit. Moreover, the period of sta-
ble oscillations (Ts ≈ 15.39 ms) and the period of unstable oscillations (Tu ≈ 17.78
ms) exceed the period of the uncoupled oscillations (Tp ≈ 11.57 ms). We remark
that there exist additional stable periodic solutions corresponding to different clus-
ter states that can be approached by the system for certain initial conditions but these
are not investigated in this paper; see [11] for more details.
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4 Conclusion and Discussion

Systems of delay coupled Hodgkin-Huxley neurons were studied in this paper and
the dynamics of synchronized states were mapped out when varying the coupling
strength and the coupling delay. The dynamics were decomposed and modal equa-
tions of small size were derived that describe the tangential and transversal dynam-
ics in the vicinity of the synchronous equilibria and oscillations. These equations
allowed us to characterize the synchronous dynamics and determine the regions
where the system approaches synchronized states. The most important outcome of
the analysis is that when the coupling is strong enough there exist delay ranges
where stable synchronized equilibria coexist with stable oscillations. We remark
that for simplified neural models such multi-stability may not occur [10] which em-
phasizes the importance of models that are based on biophysical measurements.

While in this paper we only mapped out synchronous oscillations, detailed in-
vestigations show that many different cluster oscillations may also exist in these
domains [11]. That is, depending on the initial conditions, the neural system may
approach the synchronous equilibrium (which is a homogenous rest state) or differ-
ent oscillatory states corresponding to different spatiotemporal patterns. As external
stimuli can “reset the initial condition”, the multi-stable dynamics discovered allow
the neural system to respond to different external stimuli with different spatiotem-
poral patterns which is crucial for encoding environmental information. Note that
such domains only exist for sufficiently large time delays which emphasizes that
delays cannot be neglected when modeling neural networks. In fact, our results sug-
gest that nature may tune the delays in large interconnected biological systems so
that the information encoding capabilities of organisms are maximized.
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