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Abstract— In this paper, we compare two different connected
cruise control strategies that utilize vehicle-to-vehicle (V2V)
communication to monitor multiple vehicles ahead in order to
save fuel. One strategy uses direct feedback while the other is
based on dynamic optimization that assigns the control action in
a receding horizon fashion while relying on preview information
about the vehicle immediately ahead. We demonstrate that
both methods produce significant fuel improvements but the
performance of the second controller depends significantly on
the length of time horizon as well as the accuracy of the preview
information.

I. INTRODUCTION

Heavy-duty vehicles (HDVs) account for a significant
share of fuel consumption in the transportation sector [1],
[2]. The wide use of sensors and information networks
enables previewing geological information (road elevation,
wind speed) and can lead to significant fuel savings for
HDVs under sparse traffic [3], [4]. The problem can become
much more challenging in dense traffic conditions, due
to the difficulties in getting reliable information about the
surrounding traffic [5].

Wireless vehicle-to-vehicle (V2V) communication may
be used to acquire information beyond line of sight. By
appropriately fusing sensory and V2V information, one may
reduce traffic congestion and improve the overall fuel effi-
ciency of the traffic flow [6], [7]. In particular, one may apply
the concept of connected cruise control (CCC) that utilizes
motion information from multiple vehicles ahead [8]. The
simplest way of implementing CCC is to use the available
information directly with constant gains and optimize the
these gains in order to achieve the best possible fuel economy
with a fixed controller structure [9]. The advantage of this
approach is that the optimization can be carried out offline
and that the implementation of the controller is straightfor-
ward and can be tuned to drive similar to human drivers.

Another CCC strategy is utilize V2V information to
predict the future speed/position of the vehicle immedi-
ately ahead for a given time horizon [10] and then apply
rolling horizon optimal control (RHOC) (often called model
predictive control (MPC)) [11], [12]. Potentially dynamic
optimization may lead to better fuel economy than the static
one but the lack of predefined control structure may lead to
motion that is very different from that of the human drivers.
Moreover, RHOC relies on preview information about the
motion of the vehicle ahead of preceding vehicle over a long

This work was supported by the University of Michigan Mobility Trans-
formation Center
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time horizon (more than 10s) [13], while a reliable prediction
is typically only available for few seconds [14]. To bypass
such uncertainty in prediction, some researchers model the
speed of preceding vehicle as stochastic process and optimize
fuel using stochastic dynamic programming [15].

In this paper, we compare the two different CCC strategies
explained above in terms of fuel economy improvements. In
particular, we optimize the feedback gains for the feedback-
based CCC and vary the length of the preview horizon as well
as the accuracy of the preview information for the RHOC-
based CCC. Numerical simulations are used to compare to
different approaches and trade-offs have been identified.

II. MODELING

In this section, we describe the models used in this
paper, including vehicle dynamics, fuel consumption map
and input/state constraints.

A. Vehicle Dynamics

The longitudinal dynamics of the HDV is derived using
classical mechanics. We assume that no slip occurs at the
wheels and that the flexibility of the tires and the suspension
can be neglected. Then using the power law we obtain

meff v̇ = mg sinφ+ γmg cosφ+ κ0(v + vw)
2 +

ηTe + Tb

R
, (1)

see [4], where the effective mass meff = m+ I/R2 contains
the mass of the vehicle m, the moment of inertia I of
the rotating elements, and the wheel radius R. Furthermore,
g is the gravitational constant, φ is the inclination angle,
γ is the rolling resistance coefficient, κ0 is the air drag
constant, vw is the speed of the headwind, η is the gear
ratio (that includes the final drive ratio and the transmission
efficiency). Moreover, the engine torque Te is assumed to be
non-negative while the braking torque Tb applied on the axle
is assumed to be non-positive. See [4] for parameter values
used in this paper that are for a Prostar truck manufactured
by Navistar. Based on (1), we have

v̇ = −a sinφ− b cosφ− κ (v + vw)2 + u, (2)

where

a =
mg

meff
, b =

γ mg

meff
, κ =

κ0

meff
, u =

ηTe + Tb

meffR
.

(3)
Throughout the paper, we consider the vehicle traveling on
flat road with no headwind, i.e., φ ≡ 0 and vw = 0. Thus,
(2) simplifies to

v̇ = −b− κ v2

︸ ︷︷ ︸
:=f(v)

+u. (4)
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We remark that this setup enables us to decouple the opti-
mization of the gear change map and the speed profile. In
particular, we assume that the gear change map is given and
we focus our attention on minimizing the fuel consumption
by designing u.

B. Fuel consumption map and input constraints

Fuel consumption rates are typically given as a function of
the engine speed ωe and engine torque Te, that is, q(ωe, Te).
Given a control input u at a certain speed v, different
gears set the engine to different working points. For a well-
designed gear shift logic one can assign a unique gear for
each v and u, such that the transformation

(u, v) =

(
Rωe

η
,
ηTe

meffR

)
(5)

is well-defined [16]. This way the fuel consumption map
q(ωe, Te) is transformed to q(v, u). One may fit Willans
approximation

q(v, u) =

{
p2v u+ p1v + p0, if u ≥ 0,

p1v + p0, , if u < 0,
(6)

to data in order to get an analytical approximation of the
fuel consumption rate [17]. The distinction between the two
cases is made since for u < 0 then engine torque is set
to zero as the vehicle applies braking. In particular for the
Maxxforce engine used in the Prostar truck we obtain p2 =
1.8284±0.0019 [gs2/m2], p1 = 0.0209±0.0006 [g/m], p0 =
−0.1868± 0.0068 [g/s]; see [4], [16].
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Fig. 1: (a) The working region (7,8) is indicated by blue shading
in the (v, u)-plane. (b) The range policy function (12) shown by
the blue solid curve. The blue shaded area corresponds to the
constraints in (17).

Due to the power limitations of the engine and the torque
limitations of the brakes we also obtain constraints on the
rescaled torque u. The upper bound consists of two segments,
a constant section at umax for low speed and an iso-power
curve at Pmax for higher speed, while the lower bound is
given by the constant umin. Since P = Teωe = meffuv, we
have

umin ≤ u ≤ min

{
umax,

Pmax

meffv

}
. (7)

In this paper we use umax = 2[m/s2], Pmax = 300.65 [kW],
and umin = −3[m/s2] that are acquired through data fitting.
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Fig. 2: Layout of the connected vehicle system with a HDV vehicle
at the tail controlled by a CCC algorithm. Each preceding vehicle
is reacting to motion of the vehicle immediately ahead while the
truck utilizes V2V information about n vehicles ahead.

The constraints (7) together with the speed constraints

0 ≤ v ≤ vmax, (8)

are indicated by the blue shaded domain in Fig. 1(a).

III. CAR-FOLLOWING PROBLEM SETUP

In this section, we first describe the traffic flow using car
following models. We then formulate the two different CCC
strategies that exploit V2V information to improve the fuel
economy.

A. Car-following models

Assume that the CCC vehicle could utilize V2V infor-
mation from n vehicles ahead (see Fig. 2) and that these
preceding vehicles are controlled by human drivers who react
only to the motion of the vehicle immediately ahead. Thus,
the longitudinal dynamics of the preceding vehicles are given
by

ṡi = vi,

v̇i = ui(si, si−1, vi, vi−1; pi),
(9)

for i = 1, . . . , n− 1, where dot denotes differentiation with
respect to time t, the symbols si and vi denote the position
and the speed of the i-th vehicle, and pi corresponds to the
parameters used in the control strategy ui.

In particular, we assume that the preceeding vehicles use
the car-following rule

ui = αh,i

(
V (si+1−si−Li+1)−vi

)
+βh,i(vi+1−vi), (10)

to control their longitudinal motion. Here αh,i and βh,i

denote the control gains while the human reaction time is
neglected for simplicity. Moreover, Li+1 denotes the length
of the i+1-th vehicle and range policy V (h) gives the desired
speed of the driver as a function of the headway

hi = si+1 − si − Li+1, (11)

see Fig. 2. For small headway h ≤ hst the vehicle is expected
to stop; for large headway h ≥ hgo it is expected to travel
with the maximum speed vmax; between hst and hgo the
desired speed shall increase monotonically with the headway
[8].

In this paper, we use the range policy

V (h) =





0 if h ≤ hst,

vmax
h− hst

hgo − hst
if hst < h < hgo,

vmax if h ≥ hgo,

(12)
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that is shown in Fig. 1(b) as a blue solid curve. Between hst

and hgo this corresponds the constant time headway

Th =
hgo − hst

vmax
. (13)

Here we set hst = 5[m], hgo = 35[m], and vmax = 30[m/s]
that yields Th = 1[s] corresponding to an average driver. We
remark that smaller hst and smaller Th typically correspond
to more aggressive drivers while larger hst and larger Th

typically correspond to more cautious drivers. The magenta
curves enclosing the blue shaded domain indicate some of
these scenarios when compared to the blue curve.

Finally, note that (9,10,11) admit a so-called uniform flow
equilibrium

hi(t) ≡ h∗, vi(t) ≡ v∗ = V (h∗), (14)

where equidistant vehicles follow each other with the same
speed. This is indicated in Fig. 1(b) as a blue star. In this
paper we will investigate the dynamics in the vicinity of the
equilibrium with h∗ = 20[m] and v∗ = 15[m/s].

B. Feedback-based CCC

In this framework we use the received V2V information
explicitly in order to design the dynamics of the CCC
vehicle. In particular, to mimic the behaviour of human
drivers described by (9,10) while still exploiting the velocity
information obtained via V2V communication from n vehi-
cles ahead, we consider the control law

u = −f(v)+α
(
V (s1−s−L1)−v

)
+

n∑

j=1

βj(vj−v). (15)

where V denotes the range policy function defined in (12).
Substituting this into (4) we obtain

ṡ = v,

v̇ = α
(
V (s1 − s− L1)− v

)
+

n∑

j=1

βj(vj − v).
(16)

Notice that including the dissipative term f(v) in the control
law (15) allows us to cancel this term. This may also be
achieved by other methods, e.g., by using integral action
[8]. Also notice that (16) also satisfies the equilibrium (14)
(without index i).

In order to minimize the fuel economy we optimize the
control gains α and βj , j = 1, . . . , n similar to [9]. When
running numerical simulations the constraints (7,8) will also
be enforced.

C. RHOC-based CCC

In this framework we use the received V2V information
implicitly. Assuming that preview information about the
position of the vehicle immediately ahead can be constructed
over the time horizon T using the received V2V information,
we apply receding horizon optimal control along the sample

period ∆T . That is, the following optimal control problem
is solved at each tj = j∆T

Minimize
∫ tj+T

tj

q(u, v) dt,

Subject to
[
ṡ
v̇

]
=

[
v

f(v) + u

]
,

v Th + hst ≤ s1 − s− L1 ≤ v Th + hst,[
s(tj)
v(tj)

]
=

[
s(j∆T )
v(j∆T )

]
,

(17)

and the constraints (7,8) shall also be satisfied. The time
horizon and the sample time is chosen such that T = N∆T
for some N ∈ N. In order to generate trajectories that
stay close to the range policy (12) we included some state
constraints in (17). These together with (8) are shown by the
blue shaded region in Fig. 1(b).

RHOC algorithms are typically designed and implemented
in discrete-time in coordination with the sample period ∆T .
However, such discretization may lead to “jerky” trajectories.
To avoid such phenomena we define the control inputs ud

and ub such that

u = ud + ub, ubud = 0. (18)

In fact, ud = ηTe

meffR
is the rescaled driving torque, while

ub = Tb

meffR
is the rescaled braking torque; cf. (2,3). Then

we pose the following constraints

u̇d < ∆ū, u̇b > ∆u. (19)

On the other hand, to simplify the optimal control problem
(7,8,17) the following linear approximations are made. First,
we construct linear approximation of f (cf. (4)) around the
equilibrium value v∗, that is,

f̂(v) = −b− κv∗v. (20)

Second, (7) is substituted by the simplified version

umin ≤ u ≤ u∗max, (21)

where u∗max = min
{
umax,

Pmax

meffv∗

}
is constant in the whole

speed domain (8); see Fig. 1.
Thus, (8,17,19,21) are discretized using explicit Euler

method with time step ∆T yielding

Minimize
N−1∑

k=0

(
1

2

[
x(k|tj)
u(k|tj)

]T

Q

[
x(k|tj)
u(k|tj)

]
+ Px(k|tj)

)
∆T,

Subject to x(k + 1|tj) = Ax(k|tj) + Bu(k|tj) + d,

Wx(k|tj) ≤ g(k|tj),
x(0|tj) = x(tj),

u ≤ u(k|tj) ≤ u,

ud(k + 1|tj)− ud(k|tj) ≤ ∆u∆T,

ub(k|tj)− ub(k + 1|tj) ≤ −∆u∆T,
(22)
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where

x =

[
s
v

]
, u =

[
ud

ub

]
,

Q =




0 0 0 0
0 0 p2 0
0 p2 0 0
0 0 0 0


 , P =




0
p1

0
0


 ,

A =

[
1 ∆T
0 1− κ v∗∆T

]
, B =

[
0 0

∆T ∆T

]
,

d =

[
0

−b∆T

]
, u =

[
0

umin

]
, u =

[
u∗max

0

]
,

W =




−1 −T h

1 T h

0 −1
0 1


 , g(k|tj) =




−s1(k|tj) + hst

s1(k|tj)− hst

0
vmax


 .

(23)

We remark that udub = 0 in (18) can be omitted due to the
following theorem.

Theorem 1: The global minimizer of (22,23) {x(k +
1|tj),u(k|tj)}N−1

k=0 yields ud(k|tj)ub(k|tj) = 0, for all
k = 0, . . . , N − 1.
The proof can be found in Appendix A.

The objective function in (22) is of quadratic form, while
all the constraints are linear. As a result, the optimization
problem (22,23) can be formulated as quadratic program-
ming problem and can be efficiently solved. At each tj and
the first step of the solution will be applied over the interval
[tj , tj + ∆T ) using a zero-order hold, that is,

u(t) = ud(0|tj) + ub(0|tj), t ∈ [tj , tj + ∆T ). (24)

Note that when implementing this on the original system (4)
we enforce the original constraint (7) for v > v∗. That is we
actually apply

umin ≤ u ≤ min

{
u∗max,

Pmax

meffv

}
, (25)

instead of (21); see Fig. 1(a).

IV. COMPARISON OF DIFFERENT CCC STRATEGIES

In this section, we compare the performance of the two
frameworks through a case study of 2 + 1 vehicles. The
preceding vehicles’ speed profiles are shown in Fig. 3. The
head vehicle’s velocity v2 is generated by a PI controller with
gains Kp = 1[1/s], Ki = 0.05[1/s2] to follow the reference
signal (red dashed curve). The next vehicle’s velocity is
generated by (9,10,11) using gains αh,1 = 0.2 [1/s], βh,1 =
0.3 [1/s] that correspond to a typical human driver [18].

A. Feedback-based CCC

In order to optimize the fuel economy of the CCC ve-
hicle we consider different α, β1, β2 combinations within
[0, 2] [1/s] and evaluate the fuel consumption of the HDV
using numerical simulations. In Fig. 4(a), the fuel consump-
tion is shown as surface above the (α, β1)-plane, so that
for each (α, β1) pair the value is associated with the β2 ∈

0 20 40 60 80 100
10

15

20

v
[m
s

]

t[s]

v1

v2
Reference

Fig. 3: Speed profile the two preceding vehicles in a (2+1)-vehicle
scenario.

[0, 2] [1/s] that gives the least fuel consumption. To make a
fair comparison with RHOC-based CCC, the constraint (25)
is used and for v∗ = 15[m/s] we have u∗max = 0.6760[m/s2].
Note that the surface is only showed for those parameter
combination where no collision occurs. For example, in the
non-reactive case of α = β1 = β2 = 0, collisions occur. It
can be seen that for a large range of (α, β1), adding β2 may
improve fuel economy significantly.

To show how to select β2, we fix α = 0.2 [1/s], β1 =
0.3 [1/s] and vary β2 between 0 and 6. The results are shown
in Fig. 4(b) while the time profiles of the states v, h and the
input u are displayed in Fig. 5 corresponding to the crosses.
The maximum improvement is for β2 = 1.1 [1/s], which
leads to 19.4% improvement compared to the case β2 = 0.
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Fig. 4: (a) Fuel consumption as a function of (α, β1) showing the
best performance within the β2 range [0, 2] [1/s]. The black cross
denotes the point associated with α = 0.2 [1/s], β1 = 0.3 [1/s].
(b) Fuel consumption as a function of β2 for α = 0.2 [1/s], β1 =
0.3 [1/s]. The trajectories corresponding to the crosses are displayed
in Fig. 5

B. RHOC-based CCC

To balance accuracy and real time calculation efficiency,
we set ∆T = 0.1 [s]. Moreover, we choose T = 0.8[s],
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Fig. 5: Time profiles for αh,1 = 0.2 [1/s], βh,1 = 0.3 [1/s], α =
0.2 [1/s], β1 = 0.3 [1/s], and different β2 as indicated.

hst = 2[m] for the aggressive limit and T = 1.2[s],
hst = 8[m] for the cautious limit. Finally we select, ∆u =
0.4[m/s3], ∆u = −2[m/s3].

In the ideal case, the preview information about the
position of the vehicle immediately ahead is accurate for
long time. We are interested in is how large the benefit
could be compared to the feedback controller, and how much
would the improvement decrease when using inaccurate
information about the motion of the preceding vehicle. For
the inaccurate preview case, we assume only the current
speed and acceleration of the preceding vehicle is available
and construct the prediction

s1(k|tj) = s1(tj) + v1(tj)k∆T +
1

2
a1(tj)(k∆T )2, (26)

that is used in (23). Moreover, in case this prediction violates
the constraint (8) the values of the velocity of the preceding
vehicle are saturated at the appropriate boundary.

In Fig. 6 we compare the RHOC-based CCC using ac-
curate as well as inaccurate information to the feedback-
based CCC for the preview horizon T = 10[s]. The time
evolution of v, h and u are shown in panels (a,b,c) and
trajectories in the (h, v) plane are displayed in penal (d). The
fuel consumptions calculated using (6) are 333.52[g] (accu-
rate preview), 489.84[g] (inaccurate preview), and 417.39[g]
(feedback), respectively. By making full use of the headway
limit, with accurate information, the RHOC-based CCC can
achieve better performance compared to feedback controller.
However, such improvement is compromised when the in-
formation is inaccurate and the fuel efficiency is even worse
than that using feedback-based CCC. This example shows

Fig. 6: (a,b,c) Time profiles for the RHOC-based CCC for preview
horizon T = 10[s] with accurate or inaccurate preview information,
compared with those of the feedback-based CCC for α = 0.2[1/s],
β1 = 0.3[1/s], and β2 = 1.1[1/s]. (d) The corresponding trajecto-
ries in the (h, v)-plane.

the potential large variations in fuel consumptions in RHOC-
based CCC given different preview information.

To study the effect of the preview horizon, we vary T
from 2[s] to 20[s] and summarize the results in Fig. 7.
The improvements are measured compared to the β2 =
0 case. Even with accurate information, the RHOC-based
CCC requires preview information with long enough preview
horizon in order to outperform feedback-based CCC in fuel
consumption. In other words the RHOC-based CCC with
time horizon T < 5[s] improve the fuel economy less than
the feedback-based CCC. Having longer preview horizon
may improve fuel economy significantly, given accurate pre-
view information. However, when the preview information
is inaccurate, the performance is worse than the feedback-
based CCC. Therefore, having an computationally expensive
RHOC design may not be superior to a simple feedback-
based CCC design. Furthermore, the RHOC-based CCC in
general leads to larger variation in headway which may also
compromise driver comfort and string stability.
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Fig. 7: Improvements of RHOC-based CCC for different values
of the preview horizon T . The black circles correspond to hav-
ing accurate preview information, while red crosses correspond
having inaccurate preview information. The green horizontal line
corresponds to the improvement associated with the feedback-based
CCC with α = 0.2[1/s], β1 = 0.3[1/s], and β2 = 1.1[1/s]. The
improvements are measured for the β2 = 0 case.

V. DISCUSSION AND FUTURE RESEARCH

In this paper, we compared the fuel economy of two
different connected cruise control strategies exploiting infor-
mation of multiple vehicles ahead acquired through vehicle-
to-vehicle (V2V) communication. One was based on direct
feedback structure, the other was based on optimization.
We showed that feedback structure is simple, and can im-
prove fuel economy by using instantaneous information. The
optimization-based method assigned the control action in a
receding horizon fashion and it requires preview information
about the vehicle immediately ahead. While the optimization-
based method may provide more significant fuel savings
given accurate information with long enough preview time
horizon, its performance was compromised significantly as
the accuracy level of preview information decreased, and it
performed worse than the simple feedback-based design.
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APPENDIX

A. Proof of Theorem 1

Proof: We prove this theorem by contradiction. Sup-
pose there exists k such that ud(k|tj)ub(k|tj) 6= 0, then
ud(k|tj) > 0, ub(k|tj) < 0. Then one has

1

2

[
x(k|tj)
u(k|tj)

]T

Q

[
x(k|tj)
u(k|tj)

]

= p2ud(k|tj)v(k|tj) > p2 (ud(k|tj) + ub(k|tj)) v(k|tj)

Thus, the sequence obtained by replacing ud(k|tj) and
ub(k|tj) with ûd = ud(k|tj) + ub(k|tj) and ûb = 0,
respectively, yields a smaller value of the objective function
while it does not violate the constraints and does not change
the optimal trajectory. This contradicts the fact that {x(k +
1|tj),u(k|tj)}N−1

k=0 is the global minimizer.
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